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Abstract

The Kleene-Kreisel density theorem states that total ideals are dense in the
finitely generated partial ideals of a given type. We investigate the status of this
statement for non-flat domains, through their representation as non-flat coherent
Scott information systems, in an internal, bottom-up approach. We prove that
such information systems are implicitly atomic, in the sense that, at each type, a
neighborhood has an equivalent one whose closure is atomic, and use this fact to
provide finite witnesses for density and separation.

1 Introduction
Adhering to the paradigm of functional programming, we view data types as countably
based Scott domains in the tradition that started with Dana Scott’s and Yuri Ershov’s
independent work in the late sixties and early seventies. More particularly, we view
these domains through their representations as information systems, which were again
introduced by Scott in [9]. For us, programs are typed terms with denotations lying in
corresponding function spaces over information systems.

The systems we use turn out to be coherent, in the sense that the consistency of
information reduces to a series of independent binary tests. A crucial choice in our
setting is to work with non-flat rather than flat domains, where varying degrees of par-
tiality are allowed. Among other things, this is a sufficient imposition to have in order
to obtain injectivity and disjoint ranges for the constructors of the base types.1 More
intuitively, non-flatness yields richer domains, a fact that may sometimes facilitate ar-
guments that wouldn’t carry through in the flat setting. The “finite density” argument
of this paper is one good example.

A bottom-up approach to the problem of density
Branching out of the general domain-theoretic setting for computability, the theory of
coherent information systems as we study it aims at a theory where partiality is the
norm rather than a freak of nature: an ideal corresponds to an algorithm, and as such it
may in general have arguments to which it can not reply; in particular, these arguments
are allowed to be partial too.

1We assume acquaintance with coherent Scott information systems as well as with algebraic coherent
Scott information systems, that is, with systems induced by given constructors and the function spaces over
them; finally, we assume acquaintance with the resulting type system, and with the Scott topology naturally
associated with each type. For details one may consult [8].
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On the other hand, an algorithm may indeed happen to be “total”. We define the
total ideals at type ρ, and write Gρ, by the following: at base type α, an ideal x is
total if it contains a total token (that is, a token that is constructed without use of the
partiality pseudoconstructor ∗); at type ρ → σ, f is total when, fed a total input, it
yields a total output, that is, when

∀
x∈ρ

(x ∈ Gρ → f(x) ∈ Gσ) ,

where b ∈ f(x) if and only if 〈U, b〉 ∈ f , for some U ⊆ x.
The density property for a type, the latter being understood as a space governed by

the Scott topology, is the property that every open set in the space nurtures total points,
in other words, that total points are dense in the space, despite our fundamental premise
that we work with spaces of generally partial points. More formally, the property “ρ is
dense” is stated in our setting as

∀
U∈Conρ

∃
x∈ρ

(x ∈ Gρ ∧ U ⊆ x) .

Density was first stated by Georg Kreisel already in [5], and since Ulrich Berger’s [1],
the standard way to deal with it is to show (by mutual induction) that both density
and “separation” hold at every type; intuitively, a function space ρ → σ is considered
to feature the separation property, if any two open sets W1 and W2 of conflicting
information can be separated by a point x of type ρ, meaning, that x draws conflicting
values W1(x) and W2(x) when tested on the neighborhoods2.

In search of finite witnesses
It turns out that this generic domain-theoretic method, when made concrete within our
setting in a top-down manner, can prove rather too abstract, and even cumbersome.
In an information system ideals are approximated by very tangible finite lists of to-
kens, the neighborhoods, and one would expect that constructions of the like of total
or separating witnesses, should also be made as tangible as it gets. In spite of such
expectations, in all adaptions of the density argument to the information system setting
so far, both the separating and the totalizing witnesses are given on the level of ideals.3

We attempted to improve this situation in [4], where we showed that one may first
prove “finite separation” at every type—where the witnesses are not total ideals any-
more but simply neighborhoods—and then use this as a lemma to prove density at every
type, a bonus advantage being that one can avoid the mutual inductive argument.4 Here
we go one step further, and attempt to witness density as well in a finite way.

Let us now roughly sketch our bottom-up intuition. We want to capture totality, as
we know it from the generally infinite level of ideals, within the finite level of neigh-
borhoods. In particular, we understand the definition of totality on the infinite level
as follows: a set at type ρ → σ is total when (a) it is an ideal, that is, consistent and
deductively closed, (b) it admits all totals of type ρ as arguments—a property we think

2Closer to the spirit of Ulrich Berger, and assuming that the type of booleans is around, one may give
a separator as a functional X of type (ρ → σ) → B, such that if W1 and W2 are inconsistent, then for
example X (W1) = tt and X (W2) = ff.

3The theory of non-flat coherent Scott information systems as a model for higher-type computability,
aiming at an implementation on a proof assistant has been one of the main strands of research within the
Munich logic group. For several takes on the density argument see [6, 7, 2, 3], as well as [4].

4See [4, §2.4].

2
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of as “omniception”5—, and (c) it responds to every total argument with a total value
at type σ. We bring the notion down to the finite level by simply disposing of half of
the demand (a), namely, that the set of tokens be deductively closed: we prove that
every neighborhood extends to a “total neighborhood” (“finite density”), and that the
closure of every total neighborhood is a total ideal, thus establishing the standard den-
sity theorem for our setting. As we will see, the argument will interestingly be based
on a traditional mutual induction between an appropriate notion of separation on the
one hand, and a notion of “finite” totality on the other.

Eigen-neighborhoods and implicit atomicity
A central tool in our approach is the notion of an “eigen-neighborhood” of a given
neighborhood. At type ρ → σ, two tokens 〈U1, b1〉 and 〈U2, b2〉 may be trivially
consistent, in the sense that U1 and U2 are inconsistent, or they can be consistent both
on the left and on the right, that is, U1 �ρ U2 and b1 �σ b2; in an eigen-neighborhood,
all pairs of tokens are non-trivially consistent. Moreover, an eigen-neighborhood H of
a neighborhood W also features left deductive closure (with respect to W ), meaning
that there is no pair in W whose left part is entailed by the (consistent) left parts of H
and is not already contained in H .

The reason for considering such special sublists of neighborhoods is intimately re-
lated to our view on the density argument. A total neighborhood W should provide
support for an arbitrary total ideal of the left type; this support (together with its corre-
sponding right parts) is exactly an eigen-neighborhood of W .

But besides density, eigen-neighborhoods prove to be of wider importance in the
theory of coherent information systems, since they act as generalized tokens which
portray an atomic behavior regarding entailment. Indeed, we show that our coherent
information systems are “implicitly atomic”, in the sense that every neighborhood has
an equivalent one whose closure is atomic.6 As we will see, acknowledgment of im-
plicit atomicity in our systems plays a crucial role in simplifying the density argument.

2 Neighborhoods in lists
Whenever we regard the arguments of a higher-type neighborhood we face a list which
is not necessarily consistent. Let Γ ∈ Lstρ be such a list,7 and denote its consistent
sublists by ConΓ ; for example, it is a ∈ ConΓ (seen as a neighborhood), for every
a ∈ Γ , as well as ∅ ∈ ConΓ for every Γ ∈ Lstρ. Clearly, if Γ ∈ Conρ already, then
ConΓ = P(Γ ), while in general it is ConΓ ⊆ P(Γ ).

Call M ∈ ConΓ a maximal neighborhood in Γ , and write M ∈ MaxΓ , if

∀
a∈Γ

(a �ρ M → a ∈M) .

An easy observation is that for all V ∈ Conρ, it is U `ρ V for some U ∈ ConΓ if
and only if M `ρ V for some M ∈ MaxΓ (leftwards let U := M and rightwards use
transitivity of entailment at type ρ).

5A rather pompous but arguably grammatically smoother synonym for admission or acceptance of all.
6Recall that a neighborhood U has an atomic closure when, for an arbitrary token b, if U ` b then there

is a token a ∈ U , such that
{
a
}
` b.

7In the following we just write Lstρ for possibly inconsistent lists of tokens of type ρ.
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Moreover, the consistency of a list is characterized easily through its left and right
maximal neighborhoods: at base types, clearly, a list is consistent if and only if it is its
own sole maximal neighborhood, while for higher types we have the following.

Proposition 1. A listΘ ∈ Lstρ→σ is a neighborhood if and only if for each left maximal
M ∈ Max (argΘ) there is a right maximal N ∈ Max (valΘ) with ΘM ⊆ N .

Proof. Write Γ and ∆ for argΘ and valΘ respectively.
From left to right, let Θ ∈ Conρ→σ and M ∈ MaxΓ . If U,U ′ ∈ M , it will be

U �ρ U ′, and then WU �σ WU ′; so there must be a maximal N ∈ Max∆ with
WU ⊆ N for every U ∈ Max .

From right to left, letΘ ∈ Lstρ→σ with the property that for each left maximalM ∈
MaxΓ there is a right maximalN ∈ Max∆ such thatΘM ⊆ N ; let 〈U, b〉 , 〈U ′, b′〉 ∈
Θ with U �ρ U ′; there will be a maximalM ∈ MaxΓ with U,U ′ ∈ Γ ; by hypothesis,
there will be an N ∈ Max∆ such that

b+ b′ ⊆WU +WU ′ ⊆ ΘW ⊆ N ,

so Θ is consistent.

We need to be a bit careful with the way we use the lists of arguments in given
neighborhoods: do we mean them as lists of neighborhoods, that is, lists of type Nρ,
or as lists of the neighborhoods’ tokens, that is, lists of type ρ? For our purposes, it
turns out that, given a list in Nρ, we can work with its underlying “flat” list in ρ, and
then draw safe conclusions about it in Nρ again.

Define a flattening mapping fl : LstNρ → Lstρ in the usual way:

fl(Γ ) :=
∑
U∈Γ

∑
a∈U

a ;

in set-theoretical notation we may as well write fl(Γ ) = ∪Γ .

Proposition 2. Let Γ ∈ LstNρ. Then

∀
M∈MaxΓ

∃!
Mf∈Max fl(Γ )

Mf `Nρ M ∧ ∀
Mf∈Max fl(Γ )

∃!
M∈MaxΓ

Mf `Nρ M .

Proof. Let Γ ∈ LstNρ. For the first conjunct, let M ∈ MaxΓ ; it is consistent, so
U �Nρ U ′, for all U ∈ M , which means that a �ρ a′, for all a ∈ U , a′ ∈ U ′;
then there must exist a maximal neighborhood Mf in fl(Γ ), which will contain all
a ∈ U , for any U ∈ M , so Mf `Nρ M . Suppose that M ′

f is yet another maximal
neighborhood in fl(Γ ), withM ′

f `Nρ M ; then, since entailment preserves consistency,
for all a ∈ fl(Γ ) it is

[a] �Nρ M → a �ρ Mf ∧ a �ρ M ′
f ,

which yields Mf = M ′
f due to their maximality with respect to consistency.

For the second conjunct, let Mf ∈ Max fl(Γ ); since the situation is finite, we may
argue indirectly; let M1, . . . ,MT be all maximals in Γ , and suppose that Mf 6`Nρ Mt

for any t = 1, . . . , T ; by the first conjunct, there is an M t
f ∈ Max fl(Γ ), with M t

f `
Mt, for every t, and since Mt’s together cover Γ , their corresponding M t

f ’s together
must cover fl(Γ ); on the other hand, the supposition yields Mf 6�ρ M t

f , for all t,
which would mean that there are a ∈ Mf r fl(Γ ), a contradiction. Assume now that
Mf `Nρ M and Mf `Nρ M ′, for M,M ′ ∈ MaxΓ ; then M �Nρ M ′, so M = M ′

by maximality.
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B. A. Karádais, “Implicit atomicity and finite density for non-flat domains”, draft of 13 Dec 2013, 3:26 p.m.

3 Implicit atomicity
Let W be a neighborhood at a type ρ. We define the set EigW of its eigen-
neighborhoods as follows. At a base type α, the only eigen-neighborhoods of a neigh-
borhood U are ∅ and U itself. At a higher type ρ → σ, a sublist H ⊆ W is an
eigen-neighborhood of W , if it is left-consistent, that is,

∀
U1,U2∈argH

U1 �ρ U2

(so consequently b1 �σ b2 for the corresponding arguments as well), and closed under
left entailment (relatively to W ), that is,

∀
U∈argW

(argH `Nρ U → U ∈ argH) ,

where Nρ is the corresponding information system of the neighborhoods of ρ8.
Every U ∈ Conρ generates an eigen-neighborhood HU,W of W , by

〈U0, b0〉 ∈ HU,W :⇔ 〈U0, b0〉 ∈W ∧ U `ρ U0 .

Observe then that
WU `σ b↔ valHU,W `σ b .

Moreover, it is clear that the set of eigen-neighborhoods is finite and that W ∼ρ→σ∑
H∈EigW H .
The eigen-neighborhoods behave as generalized tokens to some extent, enough to

reveal a hidden atomicity that underlies the otherwise non-atomic algebraic entailment.
The following anticipates Theorem 5.

Proposition 3. Let W1,W2 ∈ Conρ→σ . The following hold:

W1 �ρ→σ W2 ↔ ∀
H1∈EigW1

∀
H2∈EigW2

(argH1 �Nρ argH2 → valH1 �σ valH2) ,

W1 `ρ→σ W2 ↔ ∀
H2∈EigW2

∃
H1∈EigW1

(argH2 `Nρ argH1 ∧ valH1 `σ valH2) .

Proof. See [4].

Write 〈U, V 〉 for
∑
b∈V 〈U, b〉 and U ∼ρ U ′ for U `ρ U ′ ∧ U ′ `ρ U 9. With the

use of eigen-neighborhoods we can achieve manageable conservative extensions of a
neighborhood.

Proposition 4 (Conservative extension). Let W ∈ Conρ→σ , and H1, . . . ,Hm ∈
EigW . For any choice of U1, . . . , Um ∈ Conρ and V1, . . . , Vm ∈ Conσ with the
property that Ui `ρ argHi and valHi `σ Vi, for i = 1, . . . ,m, it is

W ∼ρ→σ W +

m∑
i=1

〈Ui, Vi〉 .

8Recall thatNρ = (Conρ,ConNρ,`Nρ), where
∑l
j=1 Uj ∈ ConNρ if and only if ∪lj=1Uj ∈ Conρ

and
∑l
j=1 Uj `Nρ U if and only if ∪lj=1Uj `ρ U . This is an information system which is coherent if ρ

is coherent and moreover the two have isomorphic domains of ideals, see [4, Chapter 3].
9Equientailment is clearly an equivalence on neighborhoods.
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Proof. For the consistency of the extension W +
∑m
i=1 〈Ui, Vi〉, let i, j = 1, . . . ,m;

then

Ui �ρ Uj ⇒ argHi �ρ argHj ⇒ valHi �σ valHj ⇒ Vi �σ Vj ,

by propagation of consistency and consistency of W ; this suffices.
For the equientailment, let i = 1, . . . ,m; it is

Hi = 〈argHi, valHi〉 `ρ→σ 〈Ui, Vi〉 ,

so W `ρ→σ W +
∑m
i=1 〈Ui, Vi〉. The converse is trivial.

For every H ∈ EigW there is exactly one UH ∈ Conρ (up to equientailment) and
exactly one V H ∈ Conσ (up to equientailment), so that H ∼ρ→σ

〈
UH , V H

〉
; just set

UH := fl(argH) and V H := valH .

Say that W is in eigenform, if for every H ∈ EigW it is
〈
UH , V H

〉
⊆ W . Further-

more call W monotone, if for all 〈U1, V1〉 , 〈U2, V2〉 ⊆W it is

U1 `ρ U2 → V1 `σ V2 .

We will also need the elementary fact that every base-type neighborhood has an
eigentoken, that is, an equientailing token. The quickest way to see this is through
the fact that the eigentoken is the “supremum” of the neighborhood: the supremum
sup(a, b) of two consistent tokens is defined inductively as follows:

sup(a, ∗) = sup(∗, a) = a ,

sup(Ca1 · · · ar, Cb1 · · · br) = C sup(a1, b1) · · · sup(ar, br) ,

for every r-ary constructor C of the base type. If U =
{
a1, . . . , al

}
is a consistent list,

then we set
sup(U) := sup(al, · · · sup(a2, a1) · · · ) .

It is direct to see that this is well-defined and also that sup(U) ∼ U .

Theorem 5 (Implicit atomicity). Every type is implicitly atomic, that is, for every
neighborhood there exists an equientailing one, whose closure is atomic.

Proof. We want to show that

∀
U∈Conρ

∃
UE∈Conρ

(
UE ∼ρ U ∧ ∀

b∈Tρ

(
UE `ρ b→ ∃

a∈UE

{
a
}
`ρ b

))
.

At a base type α, given a neighborhood U , set UE :=
{

sup(U)
}

. At a higher type
ρ → σ, assume that σ is implicitly atomic, and let W ∈ Conρ→σ . We will use an
equivalent neighborhood of W in monotone eigenform. Set

WE :=
∑

H∈EigW

〈
argH, (valH)E

〉
.

It is easy to see that this list is finite and consistent; that it is monotone follows from
the monotonicity of application; that it is in eigenform is obvious by construction.
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We show the equientailment. Let 〈U, b〉 ∈W , and consider the eigen-neighborhood
HU,W of W that is generated by U . It is U `ρ argHU,W and b ∈ valHU,W , so
(valHU,W )E `σ b by the induction hypothesis, and WE `ρ→σ W . For the other di-
rection, let 〈argH, b〉 ∈WE , for some eigen-neighborhood H of W ; by the construc-
tion of WE , it is b ∈ (valH)E ; then by the induction hypothesis it is valH `σ b, so
we have found an eigen-neighborhood of W (namely H itself) that entails 〈argH, b〉.

Now we show the atomic closure of WE . Let 〈U, b〉 ∈ Tρ→σ be an arbitrary token,
and assume that WE `ρ→σ 〈U, b〉; starting by the definition of entailment we get

WEU `σ b⇔ valHU,WE `σ⇔ (valHU,W )E `σ b .

By the induction hypothesis, there exists a b0 ∈ (valHU,W )E , such that
{
b0
}
`σ b,

so we have found a token 〈argHU,W , b0〉 ∈ WE , for which 〈argHU,W , b0〉 `ρ→σ

〈U, b〉.

Note that in general there may be many equientailing atomic neighborhoods for a
given neighborhood. In the following, the reader is invited to assume that the neigh-
borhoods we consider have an atomic closure, in other words, that they are atomic, and
ponder on the implications for the arguments at hand, though we will restrict ourselves
to the use of Proposition 3 every time we invoke implicit atomicity.

4 Separating lists and total neighborhoods
At type ρ consider a not necessarily consistent, but finite list Γ ∈ Lstρ, and assume
it is nonempty to avoid trivialities. Call it omniceptive (for totals) if every total ideal
x ∈ Gρ shares an inhabited neighborhood with Γ 10, that is, if

∃
U∈Con0ρ

(U ∈ ConΓ ∧ U ⊆ x) .

Notice that, by its deductive closure, if x shares a neighborhood U with a list Γ , then
it also shares every U ′ ∈ ConΓ with U `ρ U ′. At type N, the list ∆1 := 0 + S0, with
inhabited neighborhoods

{{
0
}
,
{
S0
}}

, is not omniceptive, since it does not share a
neighborhood with, say, the total ideal

{
SS0, SS∗, S∗, ∗

}
, but the list ∆2 := 0 + S∗

is. An important case of omniception is when the shared neighborhood is maximal in
the list: a list is omniceptive by maximals, or traditionally separating, when for every
total ideal x ∈ Gρ,

∃
M∈Conρ

(M ∈ MaxΓ ∧M ⊆ x) .

The importance of separation is that the shared maximal will be inconsistent to all other
maximals, making it easy to pair this neighborhood with a value of our choice without
endangering consistency.

Now consider a neighborhoodU ∈ Conρ in monotone eigenform, whose (flattened)
list of arguments is omniceptive. At base types this is a trivial notion due to the absence
of argument lists.11 At a higher type ρ→ σ, if W is a neighborhood with argW being
omniceptive, then it would suffice for the corresponding values to be “total” in order
for the closure of W to be a total ideal.

10Write Con0 for the collection of inhabited neighborhoods.
11Intuitively, one may think of a base type α as being morally equivalent to the type U → α (U being

the unit type induced by an algebra with one nullary constructor) so then any U ∈ ConU→α would have an
omniceptive argument list.

7
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Formally, at type ρ, define U ∈ GConρ, and say that U is a total neighborhood, by
the following; at type α,

U ∈ GConα := ∃
a∈GTα

U `α a ;

at type ρ→ σ,

W ∈ GConρ→σ := ∀
x∈Gρ

∃
H∈EigW

(argH ⊆ x ∧ valH ∈ GConσ) .

Lemma 6. Let ρ and σ be arbitrary types. For all W ∈ Conρ→σ , x ∈ Gρ, and
V ∈ Conσ , if W (x) `σ V , then V ⊆W (x).

Proof. Assume that W (x) `σ V . We want to show that V ⊆ W (x), so let b ∈ Tσ
be such a token, that V `σ b; we want now to show that b ∈ W (x), that is, we need
to find a U ∈ Conρ, such that 〈U, b〉 ∈ W and U ⊆ x. By the assumptions and the
transitivity of entailment we get W (x) `σ b, so there exists an eigen-neighborhood H
of W , such that argH ⊆ x and valH `σ b; it is H ⊆ W ⊆ W by transitivity, and
〈argH, b〉 ∈W by closure of W , so we may choose U := argH .

Lemma 7 (Extension lemma). An ideal that includes a total ideal is itself total.

Proof. At a base type α, let x ∈ Gα and y ∈ Ideα be two ideals with x ⊆ y. Then there
is a total token a ∈ Tα, such that a ∈ x, so also a ∈ y. At a higher type ρ → σ, let
f ∈ Gρ→σ , g ∈ Ideρ→σ , and assume that f ⊆ g. We want to show that g is also total,
so consider an arbitrary x ∈ Gρ. By the totality of f we have that f(x) ∈ Gσ , and
since it is straightforward to see that f(x) ⊆ g(x), we get g(x) ∈ Gσ by the induction
hypothesis at σ.

Proposition 8. At an arbitrary type, a neighborhood is total if and only if its closure
is a total ideal.

Proof. Let ρ be a type. We want to show that

∀
U∈Conρ

(
U ∈ GConρ ↔ U ∈ Gρ

)
.

At a base type α, it is immediate that U entails a total token if and only if its closure
contains it.

At a type ρ → σ, let W ∈ Conρ→σ . Assume that W ∈ GConρ→σ . We want to
show that W ∈ Gρ→σ , that is, that for every x ∈ Gρ, it is also W (x) ∈ Gσ . So let x
be a total at type ρ; by the assumption, there is an eigen-neighborhood H of W , such
that argH ⊆ x and valH ∈ GConσ; it follows that

W (x) `σ valH , (?)

where valH ∈ GConσ . By the induction hypothesis at σ, it is valH ∈ Gσ , so by
Lemma 6 the formula (?) gives valH ⊆W (x); it is then W (x) ∈ Gσ by Lemma 7.

For the other direction, assume thatW ∈ Gρ→σ . To show thatW ∈ GConρ→σ , we
have to come up with an eigen-neighborhood H for each x ∈ Gρ, which will satisfy
both argH ⊆ x and valH ∈ GConσ . So let x be a total at ρ. The assumption yields
that W (x) ∈ Gσ . By the definition of application, this means that

∑
AW,x(b) b ∈ Gσ ,

where
AW,x(b) := ∃

U∈Conρ

(
〈U, b〉 ∈W ∧ U ⊆ x

)
;

8
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such U ’s indeed exist, since the ideal is inhabited (being total). But 〈U, b〉 ∈ W
means W `ρ→σ 〈U, b〉, which, by implicit atomicity, means that there is an eigen-
neighborhood H of W , such that U `ρ argH and valH `σ b; for this eigen-
neighborhood, by the deductive closure of x, we get that argH ⊆ x, so AW,x(b)
implies

BW,x(b) := ∃
H∈EigW

(argH ⊆ x ∧ valH `σ b) ,

while it’s not hard to see that also BW,x(b) implies AW,x(b). So the assumption now
reads

∑
BW,x(b) b = valH ∈ Gσ . By the induction hypothesis at σ, it is valH ∈

GConσ , so we’re done.

Corollary 9. A total functional maps total neighborhoods to total functionals.

Proof. Let ρ → σ be some higher type, and let f ∈ Gρ→σ and U ∈ GConρ. We
want to show that f(U) ∈ Gσ . By Proposition 8, since U is a total neighborhood,
its closure will be a total ideal, so f(U) ∈ Gσ; this straightforwardly implies that
f(U) ∈ Gσ .

We can also prove a “finite” analogue to the Extension Lemma 7.

Proposition 10 (Finite extension lemma). Extension preserves finite totality, that is, a
neighborhood that entails a total neighborhood is itself total.

Proof. We want to prove the following.

∀
U,U ′∈Conρ

(U ′ `ρ U ∧ U ∈ GConρ → U ′ ∈ GConρ) .

At a base type α, let U,U ′ ∈ Conα, such that U ′ `α U and U ∈ GConα. Let a be the
total token that U entails; by transitivity of entailment, it is U ′ `α a as well.

At a higher type ρ → σ, let W,W ′ ∈ Conρ→σ , such that W ′ `ρ→σ W and
W ∈ GConρ→σ . We want to show that W ′ ∈ GConρ→σ , so let x ∈ Gρ be an
arbitrary total. By the totality of W , there is an eigen-neighborhood H of W , such that
argH ⊆ x and valH ∈ GConσ; by implicit atomicity, there is an eigen-neighborhood
H ′ of W ′, such that argH `ρ argH ′ and valH ′ `σ valH , since x is closed, it is
argH ′ ⊆ x, and by the induction hypothesis at σ it follows that valH ′ ∈ GConσ , so
H ′ is indeed an eigen-neighborhood as we need it.

5 Finite density
We will use the following conventions. Say that a (not necessarily consistent) list Γ1

extends the list Γ2, if for each U2 ∈ ConΓ2
there is a U1 ∈ ConΓ1

, such that U1 `ρ U2.
For example, the list ∆1 from before extends ∆2, while the list ∆3 := 0 + S0 + SS∗
extends both of them, and the (already consistent)U1 := SS0 extendsU2 := SS∗+S∗.
It is clear that if Γ1 extends Γ2, then every maximal neighborhood of Γ1 extends a
unique maximal neighborhood of Γ2. Say that an eigen-neighborhood H of W is
maximal in W , and write H ∈MEigW , if argH ∈ Max fl(argW ).

We will also need the size of a token of an algebra α, defined as the number of
its proper constructors: for example, in our pet algebra we would have ‖0‖ = 1,
‖B∗BS∗1‖ = 4, and so on.
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Theorem 11 (Finite density). Assume that the type system is built upon finitary alge-
bras, each of which features a distinguished nullary token. At an arbitrary type, every
list can be extended to a separating list and every neighborhood can be extended to a
total neighborhood.

Proof by mutual induction. We concentrate first on separation. At a base type α, let
Γ ∈ Lstα. Set sΓ to be the maximum size of Γ ’s tokens, that is, sΓ := maxa∈Γ ‖a‖.
Then set ΓS :=

{
a ∈ Tα | ‖a‖ ≤ sΓ

}
. This is a finite list that obviously does the

job.12

At a higher type ρ → σ, assume that neighborhoods at ρ can be extended to total
neighborhoods and that lists at σ can be extended to separating lists. Let Θ ∈ Lstρ→σ ,
and write Γ for fl(argΘ). Set

ΘS := Θ +
∑

U∈MaxΓ

〈
UG, (ΘUG)S

〉
.

It is obvious by definition that the list ΘS is finite and extends Θ. To show that it
is separating consider a total ideal f ∈ Gρ→σ . By Corollary 9, it is f(UG) ∈ Gσ;
by induction hypothesis, since (ΘUG)S is separating, it will share one of its maximal
neighborhoods with f(UG), that is, there will exist a maximal N ∈ Conσ , such that

N ∈ Max (ΘUG)S ∧N ⊆ f(UG) ;

then
〈
UG, N

〉
is a neighborhood that f and ΘS share, which extends a maximal of Θ,

so is itself maximal in ΘS by the finite density at ρ.
Now we turn to finite density. At a base type α, let U ∈ Conα. By implicit

atomicity, this neighborhood has an eigentoken aU . If aU = ∗, then set aGU := 0α,
where 0α is the distinguished nullary token of α. If aU = Ca1 · · · ar, for a constructor
C of arity r ≥ 0, then set aGU := CaG1 · · · aGr . For the total extension of U , finally, set
UG :=

{
aGU
}

.
At a higher type ρ→ σ, assume that lists at ρ can be extended to separating lists and

that neighborhoods at σ can be extended to total neighborhoods. Let W ∈ Conρ→σ .
Write Γ for fl(argW ); this is a list at type ρ which can be extended to a separating list
ΓS ; consider the neighborhood

W̃ := W +
∑

U∈Max ΓS

〈U,WU〉 ;

since ΓS extends Γ , it follows that for every maximal neighborhood U in the former
there exists a unique maximal eigen-neighborhood H of W such that U `ρ argH

while WU = valH by construction; so by Proposition 4, W̃ is a conservative exten-
sion of W . Set

WG := W̃ +
∑

H∈MEig W̃

〈
argH, (valH)G

〉
.

The list WG is obviously finite and extends the neighborhood W̃ (and consequently
W as well).

Consistency follows by Proposition 1, since every maximal neighborhood U of
fl(argWG) features by construction as an argument in WG r W̃ , in the form argH

12Note that this is a rather crude construction, yielding a brute-force method for providing a separating
extension for a given list.

10
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for some maximal eigen-neighborhood H of W̃ , and is paired with (valH)G, which is
a maximal neighborhood in valWG by the induction hypothesis at σ.

It remains to show that it is a total neighborhood. Let x be a total ideal at type ρ.
Since argWG = arg W̃ is separating by construction, there will be a maximal eigen-
neighborhood Hx of WG, such that argHx ⊆ x. By the construction of WG, it is
W (x) = W · argHx = valHx ∈ GConσ .

Corollary 12 (Density). Every type is dense.

Proof. Let ρ be a type, and U ∈ Conρ. By Theorem 11 there exists a total neighbor-
hood UG that extends U . By Proposition 8, UG has a total closure, so the ideal that we
seek is UG.

6 Discussion
It is very simple, but quite interesting and important to notice that the construction in
our Theorem 11 would not succeed if we worked with flat domains. The reason is that
separation, as we defined it, would fail at non-trivial base types, like the natural num-
bers: suppose that we are given the singleton list Γ := S0; in our setting, a separating
list extending Γ is 0+S0+SS∗ (actually, by the high-complexity version of our proof,
it would be ∗+ 0 + S∗+ S0 + SS∗); but in a flat setting, there is no finite part of the
token carrier

{
∗, 0, S0, SS0, . . .

}
, that could ever support all totals.

This remark was pointed out to the author by Davide Rinaldi, who has indepen-
dently arrived at a similar construction as ours, motivated by formal topological con-
siderations and working with structures that we believe are very similar in nature to the
collections of eigen-neighborhoods in a given information system. A further collabo-
rative pursuit should help clarify the connections of our essentially domain-theoretical
approach to the viewpoint of formal topology, which among other things could help
pinpoint the notion of atomicity in a formal topological setting—an issue which is yet
unresolved to the best knowledge of the author.

Outlook
There are two or three points in the above exposition that could allow elaboration and
even improvement. Firstly, we avoided using the feature of implicit atomicity, so to
speak, explicitly, and we confined ourselves to the use of the more moderate Proposi-
tion 3. A heavy, explicit use of Theorem 5 should render a tighter exposition.

Secondly, our construction of the separating witness in Theorem 11 craves for
a brave trimming. An investigation—unavoidably of combinatorial nature—on low-
complexity witnesses of separation may also lead to recognition of new normal forms
for higher-type neighborhoods, and is certainly a subject for further study.

Thirdly, though we have succeeded in providing finite witnesses for density, it
would arguably make for a conceptually neater exposition to have a characterization
of finite totality exclusively by finite means. This is also something to look into.

Now, apart from the present topic of density, further work in this direction would
include using implicit atomicity in the sense of our Theorem 5, to tackle other known
problems in higher-type computability theory, like definability, which up to now are
established for our setting, if at all, only partially, or as results of non-intrinsic and
maybe redundantly general and powerful domain-theoretic machinery.
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