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DRAFT OF 21 OCT 2016, 2:02 P.M.

Abstract

We prove a strong version of the Kreisel density theorem by providing a witness
generated by a compact element. This is achieved by interpreting finite types as
domains over nonflat base types. Separation is obtained as a corollary, and the
mismatch of the nonflat and flat-based versions of totality is discussed.

1 Introduction
In the area of denotational semantics of functional programming it is standard to view
data types as countably based Scott domains in the tradition that started with Dana
Scott’s and Yuri Ershov’s independent work in the late sixties and early seventies.
More particularly, we may view these domains through their representations as Scott
information systems, where programs are representatives of typed terms x : ρ with
denotations being ideals in appropriate information systems, that is, consistent and
deductively closed sets of tokens a P x; ideals are approximated by finite sets U Ď x,
their so called formal neighborhoods.

A crucial choice in our setting is to work with nonflat rather than flat domains for the
base types. These arise when we model base type partiality not as an extra pseudotoken
K, but as an extra nullary pseudoconstructor ˚, which participates in the formation of
further tokens and therefore leads to varying degrees of partiality. For example, instead
of just a bottom for the natural numbers, we have the partial tokens ˚, S˚, SS˚ et cetera;
tokens that do not involve the pseudoconstructor ˚, like 0, S0, SS0, and so on, are called
total tokens. A basic advantage of this feature compared to flat base types is that we
obtain injectivity and disjoint ranges for the constructors.

More generally, base-type nonflatness yields domains which are in a certain sense
both richer, in that they contain more tokens, and tidier, in that they are finitely branching.
Such domains seem to accommodate arguments that a flat setting cannot afford, and this
paper intends to give one nontrivial example of this kind: an explicitly finitary approach
to the Kreisel density theorem, a key result in the theory of higher-type computability1.
Density was first stated and proved by Georg Kreisel in [25], and in different terms
by Stephen Kleene in [24]. Building on work of Yuri Ershov [12, 13, 14], Ulrich
Berger [2, 3] generalized and established density within domain theory, drawing as a
corollary that it holds for the hierarchy of the partial continuous functionals over all finite
types, and thus recovering the Kleene–Kreisel continuous functionals as equivalence
classes of the abstractly total elements in the hierarchy.

1See section 6.
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Helmut Schwichtenberg and collaborators have carried Berger’s argument from the
top (abstract domains with totality) down to the bottom (concrete Scott information sys-
tems induced by algebra constructors) numerous times in the past, starting with [42] and
following up with [43, 19, 20, 44]. The present work builds on these latter approaches.
We capture the concept of termination by a totality predicate G: at base types ι , an ideal
x is total if it contains a total token; at type ρ Ñ σ , an ideal f is total when it preserves
totality, that is, when

@
x:ρ
pGρpxq Ñ Gσ p f xqq ,

where b P f x for a token b PTokσ if and only if xU,by P f , for some formal neighborhood
U P Conρ with U Ď x. The density property for a type, the latter being understood as a
space governed by the Scott topology, alleviates the omnipresent partiality by stating
that every open set in the space nurtures total points, in other words, that total points are
dense in the space. We formulate this here by saying that ρ is dense when

@
UPConρ

D
x:ρ

`

Gρpxq^U Ď x
˘

. (D)

Namely, we are given a neighborhood U , comprising finite information, and we are
supposed to come up with an ideal x as a witness, a set of tokens which is in principle
infinite. It is reasonable to suspect that the element of infinity in x must be inessential
as far as an actual process of “totalization” of U is concerned—whatever this process
might be—and that there’s nothing inherently infinitary about it. Indeed, the question
that we claim to answer here in the positive is: can we devise a totalization process
which will feature an explicitly finitary core, that is,

can we provide a witness for density which will be obviously finitary?

Our strategy can be summarized as follows: (a) define a notion of “total neighborhood”;
(b) establish a “finite density theorem”, that is, that every neighborhood extends to such
a total neighborhood; (c) show that a total neighborhood extends to a total ideal in a
straightforward way.

We begin in section 2 with a necessary preamble on domains over nonflat base types
represented by information systems. In section 3 we pave the road to the definition of
“finite totality”, by discussing elementary facts concerning not necessarily consistent
finite sets. In section 4 we define finite totality, prove finite density with Theorem 4.7,
and characterize finite totality in a noninductive way in Theorem 4.9. In section 5 we
establish density with Theorem 5.10, and we list some of its direct consequences, among
them the “separation property” in Proposition 5.14. We end in section 6 with comments
on the literature and future work.

2 Nonflat domains via coherent information systems
We concentrate on a type system supporting arrow types over inductive base types.2 We
use ξ as a dummy type variable. Write ÝÑρ Ñ σ to mean ρ1 Ñ ¨¨ ¨ Ñ ρr Ñ σ for some
r ě 0 associated to the right; in case r “ 0 the vector is empty.

• For every vector
ÝÑ
ξ of length r, the expression

ÝÑ
ξ Ñ ξ is a constructor type (of

arity r).
2In this section we omit proofs and details, for which the reader may consult [44, Part 3] and [46, Part I].

In relation to the former, in particular, note that we will be working within the nonparametric and finitary
fragment of the system.
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B. A. Karádais, “Nonflatness and totality”, draft of 21 Oct 2016, 2:02 p.m.

• If κ1, . . . ,κk are constructor types for k ą 0 and one of them nullary, then
µξ pκ1, . . . ,κkq is a type. We think of such types as inductively defined base
types or algebras.

• If ρ,σ are types then ρ Ñ σ is a type; these are the usual higher types.

Note that constructor types only serve to build base types, and are not themselves
admitted as types. Examples of base types are

• the unit type U :“ µξ pξ q with a single nullary constructor,

• the type of boolean values B :“ µξ pξ ,ξ q, with constructors for the truth tt :B
and the falsity ff :B,

• the type of natural numbers N :“ µξ pξ ,ξ Ñ ξ q, with constructors for the zero
0 :N and the successor S :NÑN,

• the type of (extended) derivations D :“ µξ pξ ,ξ ,ξ Ñ ξ ,ξ Ñ ξ Ñ ξ q, with con-
structors for an axiom 0 :D, another axiom 1 :D, a one-premise rule S :DÑD,
and a two-premise rule B : DÑ DÑ D (this algebra is simple yet nontrivial
enough to provide us with examples as we go along).

We will write ι to denote an arbitrary base type and ρ , σ to denote arbitrary types in
general.

A (Scott) information system [45, 47] is a triple pTok,Con,$q, where Tok is a
countable set of tokens, Con is a collection of finite sets of tokens which we call
consistent sets or (formal) neighborhoods, and$ is a subset of ConˆTok, the entailment.
These are subject to the axioms

tau P Con,
U ĎV ^V P ConÑU P Con,
U P Con^a PU ÑU $ a,

U $V ^V $ cÑU $ c,

U $ bÑUYtbu P Con,

where U $ V stands for U $ b for all b P V . From the latter follows vacuously that
U $H for all U , while H P Con follows from the first two axioms. We may refer to
the fifth axiom as propagation (of consistency through entailment).

For finite sets of tokens Γ which are not necessarily consistent we write Fin, so
ConĎ Fin. An information system is called coherent when in addition to the above it
satisfies

@
a,a1PU

ta,a1u P ConÑU P Con (1)

for all U P Fin. By the coherence and the second axiom above, it follows that the
consistency of a token set is equivalent to the consistency of its pairs. Drawing on
this property, we often write a— b for ta,bu P Con, and even U —V for UYV P Con
(which is also often written U ÒV ). In the following we restrict our attention to coherent
systems.

Given two coherent information systems ρ and σ , we form their function space
ρ Ñ σ : define its tokens by xU,by P Tok if U P Conρ and b P Tokσ , its consistency
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by xU,by — xU 1,b1y if U —ρ U 1 implies b —σ b1, and its entailment by W $ xU,by if
WU $σ b, where

b PWU :“ D
U 1PConρ

`

xU 1,by PW ^U $ρ U 1
˘

.

The last operation is called neighborhood application. We will revisit it in some depth in
section 3.3 where we will also show that it is monotone in both arguments, that is, that
U $U 1 implies WU $WU 1 and that W $W 1 implies WU $WU 1, for all appropriate
U,U 1,W,W 1.

Fact 2.1. The function space of two coherent systems is itself a coherent information
system.

An ideal (or element) of an information system ρ is a possibly infinite token set
xĎ Tok, such that U P Con for every U Ď f x (consistency), and U $ b for some U Ď f x
implies b P x (deductive closure). If x is an ideal of ρ , we write x : ρ or x P Ideρ . Note
that there is an empty ideal Kρ “H for every ρ .

By a (Scott–Ershov) domain we mean here a countably based directed complete
partial order with a least element, which is additionally algebraic and bounded complete.
A domain is coherent [37], if every set of compacts has a least upper bound exactly
when each of its pairs has a least upper bound. Write b PU if and only if U $ b (it is
H :“H).

Fact 2.2 (Representation theorem). Let ρ “ pTokρ ,Conρ ,$ρq be a coherent infor-
mation system. Then pIdeρ ,Ď,Hq is a coherent domain with compacts given by
tU |U P Conρu. Conversely, every coherent domain can be represented by a coherent
information system.

An approximable mapping between two information systems ρ and σ is a relation
r Ď Conρ ˆConσ that generalizes entailment in the following sense: xH,Hy P r; if
xU,V1y,xU,V2y P r then xU,V1YV2y P r; and if U $ρ U 1, xU 1,V 1y P r, and V 1 $σ V ,
then xU,V y P r. One can show [45] that there is a bijective correspondence between the
approximable mappings from ρ to σ and the ideals of the function space ρ Ñ σ , and
moreover establish the categorical equivalence between domains with Scott continuous
functions and information systems with approximable mappings. The equivalence is
preserved if we restrict ourselves to the coherent case on both sides [22].

The Scott topology on Ideρ is given by the collection t∇U |U P Conρu, where ∇U
is the set tx : ρ |U Ď xu of all ideals above U . A set U Ď Ideρ of ideals is Scott open
when it is closed under supersets (Alexandrov condition) and for every x P U there
is a U Ď x such that U P U (Scott condition). One can furthermore show that an
ideal-mapping f sending ideals from Ideρ to ideals in Ideσ is Scott continuous when
it is monotone and satisfies the principle of finite support (also called approximation
principle) for all x : ρ , that is,

@
bPTokσ

pb P f pxq Ñ D
UPConρ

pU Ď x^b P f pUqqq. (FS)

Finally, it can be shown that the ideals IdeρÑσ and the Scott continuous ideal-mappings
Ideρ Ñ Ideσ are in a bijective correspondence, a fact that justifies the nondiscriminating
notation f : ρ Ñ σ .

Now we proceed to assign an information system to each type. Every higher type is
naturally assigned a function space, so it suffices to discuss the information systems for
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base types, that is, for algebras. Let ι be an algebra, with at least one nullary constructor
if it is to be nontrivial. We add to it an extra nullary pseudoconstructor ˚ι (or just ˚) to
denote partiality.

• If C is an r-ary constructor and ai P Tokι for i“ 1, . . . ,r then Ca1 ¨ ¨ ¨ar P Tokι .3

For its head constructor write hdpCa1 ¨ ¨ ¨arq “C; for its i-th component token
write apiq, that is, pCa1 ¨ ¨ ¨arqpiq “ ai for i“ 1, . . . ,r.

• It is a—ι ˚ and ˚ —ι a for all a P Tokι . Furthermore, if C is an r-ary constructor
and ai —ι bi for i“ 1, . . . ,r then Ca1 ¨ ¨ ¨ar —ι Cb1 ¨ ¨ ¨br. Finally, it is U P Conι if
a—ι a1 for all a,a1 PU .

• It is U $ι ˚ for all U P Conι . Furthermore, if C is an r-ary constructor, every
Ui P Conι is inhabited and Ui $ι bi for i “ 1, . . . ,r, then U $ι Cb1 ¨ ¨ ¨br for
all U P Conι which are sufficient for C on U1, . . . , Ur, in the sense that for each
i“ 1, . . . ,r and each ai PUi there exists an a PU such that hdpaq “C and apiq “ ai.
Finally, if U $ι b, then also UYt˚u $ι b.

Note that the definition of Conι incorporates (1), so it follows that H$ι t˚u. Write
U „ V for U $ V ^V $U . Concerning the notion of sufficiency, note that (a) it is
U „ι CU1 ¨ ¨ ¨Ur, whenever U is sufficient for C on U1, . . . , Ur, where the constructor
application is defined by

CU1 ¨ ¨ ¨Ur :“ tCa1 ¨ ¨ ¨ar | a1 PU1, . . . ,ar PUru,

and (b) in case C is a proper constructor, U is sufficient for C on U1, . . . , Ur if and only
if UYt˚u is, if and only if Uzt˚u is. More generally, every neighborhood U which is
nontrivial (meaning U ι H) is equivalent to one of the form CU1 ¨ ¨ ¨Ur: if

Uzt˚u “ tCa11 ¨ ¨ ¨ar1, . . . ,Ca1m ¨ ¨ ¨armu,

we gather all i-th component tokens into a neighborhood, the i-th component neighbor-
hood Upiq :“ tai1, . . . ,aimu of U , and let Ui :“Upiq for every i“ 1, . . . ,r. Finally, the
finite set CU1 ¨ ¨ ¨Ur is consistent if every Ui is consistent.

Fact 2.3. Let ι be an algebra given by constructors. The triple pTokι ,Conι ,$ιq is a
coherent information system.

3 Finite sets
Recall that the first step in our strategy is to decide on a reasonable definition of “finite
totality”, one that will already embody the totalization mechanism for density on the one
hand, and that will be susceptible to a canonical extension to a total ideal on the other.
To this end it turns out that we need for finite token sets an operation akin to application,
but defined using consistency rather than entailment. The examination of the behavior
of this operation leads us to consider “transitive elements”, that is, elements that witness
local transitivity within a not necessarily transitive relation. This is how we come to
spend some space discussing not necessarily consistent finite sets in some generality,
while we postpone the actual definition of total neighborhoods until section 4.

3Throughout the text we adopt the polish notation for tokens for typographical convenience.

5
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3.1 Entailment and consistency for finite sets
There is the trivial syntactical reason to look at finite sets in general and not just at
the consistent ones: the latter presuppose the former by definition—in particular, the
thematization of finite sets is unavoidable in implementation endeavors like [20]. But
finite sets may play a natural and important role within purely semantical arguments
as well—to mention a naive example, think of the subtokens a1, . . . ,ar of a base-type
token a“Ca1 ¨ ¨ ¨ar. In this section we will hardly cover anything more than what we
will need later, with the possible exception of Lemma 3.2, which we included for the
sake of some points in §3.3.

As we already mentioned, we write Finρ instead of P f pTokρq, so Γ P Finρ

means that Γ is a finite set of tokens, not necessarily consistent. If Θ “

txU j,b jy | j “ 1, . . . , lu P FinρÑσ , write LpΘq for
Ť

j U j P Finρ (notice that this is a
flattening), and RpΘq for

Ť

jtb ju P Finσ . Furthermore, if U P Conρ and ∆ P Finσ , write
xU,∆y for txU,by | b P ∆u P FinρÑσ (note that xU,Hσ y “HρÑσ ).

Lemma 3.1. Let Θ ,Θ 1 P FinρÑσ . It is LpΘ YΘ 1q “ LpΘqYLpΘ 1q and RpΘ YΘ 1q “

RpΘqYRpΘ 1q. Furthermore, if Θ ĎΘ 1 then it is LpΘq Ď LpΘ 1q as well as RpΘq Ď
RpΘ 1q.

A neighborhood in Γ P Finρ is a subset U Ď Γ , which happens to be consistent;
write U P ConΓ . The empty set and the singletons of Γ are always in ConΓ . Say that Γ

entails Γ 1 (as a finite set), and write Γ $F
ρ Γ 1, when

@
U 1PCon

Γ 1

D
UPConΓ

U $ρ U 1.

This is obviously a direct generalization of the notion U $ρ U 1 for neighborhoods, and
a bit more sophisticated than the notion “Γ $ρ Γ 1 if and only if for every a1 P Γ 1 there
is some U P ConΓ such that U $ρ a1” (equivalently, “if and only if Γ $F

ρ a1 for all
a1 P Γ 1”); contrary to the case of consistent sets, although Γ $F

ρ Γ 1 implies Γ $F
ρ a for

all a P Γ 1, the converse is not true in general, since for example tB00,B11u $F
D B0˚ and

tB00,B11u $F
D B˚1, but tB00,B11u &F

D tB0˚,B˚1u.
Similarly, say that Γ and Γ 1 are consistent (as finite sets), and write Γ —F

ρ Γ 1, when

@
UPConΓ

@
U 1PCon1

Γ

U —ρ U 1.

Again, this is a generalization of consistency between neighborhoods which proves more
important for generally non-consistent finite sets than the simple notion “Γ —ρ Γ 1 if and
only if ta,a1u PConρ for all a PΓ and a1 PΓ 1” (which we may nevertheless occasionally
use); and again, it is obvious that Γ —F

ρ Γ 1 implies Γ —ρ Γ 1, but the converse does not
hold in general. Note that in the case of —F

ρ we generally don’t have reflexivity; in fact,
it is trivial that Γ —F

ρ Γ if and only if Γ P Conρ . An example of consistency between
inconsistent finite sets is tB0˚,B1˚u —F

D tB˚0,B˚1u.
Reflexivity of consistency is the only property that the triple pFinρ ,—

F
ρ ,$

F
ρ q lacks

in order to constitute a Scott information system.

Lemma 3.2. The entailment between finite sets is reflexive and transitive and the
consistency between finite sets is symmetric and propagates through entailment, that is,

1. @ΓPFinΓ $F Γ ,
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2. @Γ ,∆ ,ΘPFinpΓ $
F ∆ ^∆ $F Θ Ñ Γ $F Θq,

3. @Γ ,∆PFinpΓ —
F ∆ Ñ ∆ —F Γ q,

4. @Γ ,∆ ,ΘPFinpΓ —
F ∆ ^∆ $F Θ Ñ Γ —F Θq.

Proof. We just show the propagation property. Let Γ ,∆ ,Θ P Fin be such that Γ —F ∆

and ∆ $F Θ . Consider U P ConΓ and W P ConΘ ; by the assumptions, there exists a
V P Con∆ with V $W and U —V ; by propagation on Con we get U —W .

3.2 Maximal and transitive neighborhoods
Think of some finite set Γ of type ρ and suppose that we wish to assign σ -values bi to
neighborhoods Ui of ConΓ (for some i P I) in a way that the finite set txUi,biy | i P Iu
at type ρ Ñ σ will be consistent. Some reflection shows that it suffices to pair the
“maximal” neighborhoods of Γ with the given values of σ , but we can actually do better
than that: we can relax the requirement of maximality by requiring instead that we
assign the given arbitrary values already to those neighborhoods which are, so to speak,
maximal enough or “almost maximal”, in the sense that they are below exactly one
maximal in Γ ; these are exactly the “transitive neighborhoods” in Γ .

Call U P ConΓ a maximal neighborhood in Γ , and write U P Conmax
Γ

, when it is
maximal with respect to the entailment relation, that is, when

@
U 1PConΓ

pU 1 $ρ U ÑU $ρ U 1q.

Call U (consistency) transitive in Γ , and write U P Conctr
Γ

, when it satisfies the property

@
U1,U2PConΓ

pU1 —ρ U —ρ U2 ÑU1 —ρ U2q.

We can reformulate this by introducing the notation rU for the consistency closure of
U , that is, for the set ta P Tokρ |U —ρ au (it is clear that, while it encompasses the
deductive closure, the consistency closure of a neighborhood is not in general an ideal,
because consistency may fail); then U is transitive in Γ when rUXΓ P Conρ .

More generally, call U P Conρ transitive for Γ or just Γ -transitive (in ρ), and
write U P Conctr

ρ|Γ
, if, again, U1 —ρ U —ρ U2 implies U1 —ρ U2 for all U1,U2 P ConΓ ;

obviously, ConΓ Ď Conρ|Γ .
It is clear that every maximal in a finite set is also transitive in it. It is also immediate

that consistency between neighborhoods, restricted to Conctr
Γ

(but not to Conctr
ρ|Γ

!),
becomes an equivalence relation. Still trivially, but importantly, we have the following.

Lemma 3.3 (Upward closedness of transitivity). Let ρ be a type and Γ P Finρ . For any
U,U 1 P Conρ , if U P Conctr

ρ|Γ
and U 1 $ρ U, then U 1 P Conctr

ρ|Γ
.

Proof. Let U1,U2 P ConΓ be such that U1 —ρ U 1 —ρ U2. By propagation it is U1 —ρ

U —ρ U2, so U1 —ρ U2.

It is often handy to check for extremality (that is, maximality or transitivity) on the
level of tokens.

Lemma 3.4 (Extremality through tokens). Let ρ be an arbitrary type, Γ P Finρ , and
U P ConΓ .
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1. It is U P Conmax
Γ

if and only if U —ρ a implies U $ρ a for a P Γ .

2. It is U P Conctr
ρ|Γ

if and only if a1 —ρ U —ρ a2 implies a1 —ρ a2 for a1,a2 P Γ .

Proof. For 1. From left to right, assume that U is maximal, and let a P Γ be such that
U —ρ a. Then UYtau $ρ U , and by the maximality of U we get U „ρ UYtau, which
gives us U $ρ a. For the other way around, let U 1 P ConΓ be such that U 1 $ρ U ; then
U —ρ U 1, and by the assumption we get that U $ρ U 1, so U is indeed maximal.

For 2. From left to right, assume that U is transitive for Γ , and let a1,a2 P Γ be such
that U —ρ ai for both i. Then U —ρ taiu, and by the transitivity of U we get a1 —ρ a2.
For the other way around, let U1,U2 PConΓ be such that U —ρ Ui, for both i, and ai PUi;
then a1 —ρ a2 by the assumption, so U1 —ρ U2, and U is indeed Γ -transitive.

The lemma makes the significance of extremality in a finite set quite apparent. In
particular, it is good to know that two maximals in a finite set are either equivalent or
inconsistent (a fact that we can put even more bluntly like this: if U is maximal and
deductively closed in Γ , then for each a P Γ it is either a PU or a —ρ U).

Lemma 3.5. Let ρ be any type. For all Γ P Finρ and U P Conmax
Γ

, if U 1 P Conρ is such
that U 1 $ρ U then U 1 P Conmax

ΓYU 1 .

Proof. Let a P Γ YU 1 be such that a—ρ U 1; since U 1 $ρ U , it is a—ρ U . In case a R Γ

it is a PU 1; in case a P Γ , it is U $ρ a by Lemma 3.4.1; in both cases it follows that
U 1 $ρ a, so U 1 is maximal in Γ YU 1 by Lemma 3.4.1.

Lemma 3.6 (Maximal extensions). Let ρ be a type and Γ P Finρ .

1. For any U P ConΓ , it is U P Conctr
Γ

if and only if there is exactly one Û P Conmax
Γ

,
up to equientailment, such that Û $ρ U.

2. For any U P Conρ , it is U P Conctr
ρ|Γ

if and only if, whenever there exist U0 P ConΓ

with U —ρ U0, there exists a Û P Conmax
Γ

such that U —ρ U0 implies Û $ρ U0 for
all U0 P ConΓ .

Proof. For 1, from left to right, assume that U P Conctr
Γ

and let U1,U2 P Conmax
Γ

be such
that Ui $ρ U for both i“ 1,2. By the propagation of consistency, it is U1 —ρ U —ρ U2;
by the assumption it is U1 —ρ U2; by the maximality of U1 and U2, it follows from
Lemma 3.4.1 that U1 „ρ U2.

For the other direction, assume that U is such that any two maximal neighborhoods
in Γ that entail it are equivalent, and let U1,U2 P ConΓ be such that U1 —ρ U —ρ U2.
Then for any two Um

1 ,Um
2 P Conmax

Γ
, with Um

i $ρ UYUi, by the assumption, we must
have Um

1 „ρ Um
2 ; it follows that U1 —ρ U2, by the propagation of consistency.

For 2, let U P Conρ . Assume that U P Conctr
ρ|Γ

and U —ρ Ui for some Ui P ConΓ ,
where i ą 0. Gather all these Ui in the neighborhood U0 :“

Ť

i Ui; it is of course
U0 P ConΓ . Then there is at least one maximal Û P Conmax

Γ
such that Û $ρ U0 $ρ Ui

for all i.
Conversely, assume that U satisfies

D
U0PConΓ

U —ρ U0 Ñ D
ÛPConmax

Γ

@
U0PConΓ

pU —ρ U0 Ñ Û $ρ U0q,

and let U1,U2 P ConΓ be such that U1 —ρ U —ρ U2. From the assumption we get a
maximal Û P Conmax

Γ
with Û $ρ Ui for each i, so U1 —ρ U2.
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We will say the maximal extension of U in Γ , if U P Conctr
Γ

, for the unique (up
to equivalence) maximal neighborhood entailing U ; this we denote by Û , as in the
statement of the above Lemma. But note that in the case of transitive neighborhoods
outside Γ uniqueness is not guaranteed: an example with two maximals at type D
provide the finite set Γ “ tS˚,S0,S1u and the neighborhood U “ tSS˚u.

3.3 Upper and middle application
The notion of application f x of some higher-type term f to some input term x, both
appropriately typed, is interpreted as “the information that we hold on x suffices to
draw the information f x on the output, given the information that we have on f ”. In
section 2, in the definition of neighborhood application, we saw that when we bring this
notion down to the finite level it is entailment that we read into “suffices”, but for our
purposes it will come in handy to consider a different version of application between
neighborhoods, where we replace entailment by consistency.

Let Θ P FinρÑσ and U P Conρ . The (upper) application Θ ¨U gathers all values
b P Tokσ whose arguments Ub fall under U :

b PΘ ¨U :“ D
UbPConρ

`

xUb,by PΘ ^U $ρ Ub
˘

.

Note that this trivially generalizes the neighborhood application of section 2; from now
on we will always write W ¨U instead of WU . The middle application Θ ¨U is defined
by

b PΘ ¨U :“ D
UbPConρ

`

xUb,by PΘ ^U —ρ Ub
˘

.

It follows immediately from the definition that the middle application yields at least as
much information as the upper one does, namely Θ ¨U ĎΘ ¨U .

In the case of a consistent left argument, we can make the following easy observa-
tions.

Lemma 3.7. Let ρ , σ be arbitrary types, W P ConρÑσ , U P Conρ and b P Tokσ .

1. It is W $ρÑσ xU,by if and only if W ¨U $σ b.

2. It is W —ρÑσ xU,by if and only if W ¨U —σ b.

Note that in 3.7.2 the finite set W ¨U may not be consistent, but we still did not
write W ¨U —F

σ b; here we’re just saying that every pair tbW ,bu will be consistent, for
bW PW ¨U .

Lemma 3.8 (Application). Let ρ , σ be arbitrary types.

1. Application is consistently defined, that is, if W P ConρÑσ and U P Conρ , then
W ¨U P Conσ .

2. Application is monotone in the right argument, in particular, if Θ P FinρÑσ and
U,U 1 P Conρ , with U $ρ U 1, then Θ ¨U 1 ĎΘ ¨U.

3. Application is monotone in the left argument, that is, if Θ ,Θ 1 P FinρÑσ with
Θ $F

ρÑσ Θ 1 and U P Conρ , then Θ ¨U $F
σ Θ 1 ¨U.

9



B. A. Karádais, “Nonflatness and totality”, draft of 21 Oct 2016, 2:02 p.m.

Proof. For 1, let W P ConρÑσ and U P Conρ , and consider b1,b2 PW ¨U . By the
definition, there must be xU1,b1y,xU2,b2y PW , such that U $ρ U1YU2; it follows that
U1 —ρ U2, so the consistency of W ensures that b1 —σ b2.

For 2, let Θ P FinρÑσ and U,U 1 P Conρ , and assume that U $ρ U 1. Consider a
b P V ; by the definition there exists a Ub P LpΘq with xUb,by PΘ and U 1 $ρ Ub; the
assumption immediately gives U $ρ Ub, so b PΘ ¨U as well.

For 3, let Θ ,Θ 1 P ConρÑσ and U P Conρ , and assume that Θ $F
ρÑσ Θ 1. Consider

a V 1 P Con
Θ 1¨U ; for each b1 P V 1 there is a Ub1 P Conρ such that xUb1 ,b1y P Θ 1 and

U $ρ Ub1 ; the set W 1 :“ txUb1 ,b1y PΘ | b1 PV 1^U $ρ Ub1u is consistent in Θ 1. By
the assumption there exists some W P ConΘ such that W $ρÑσ W 1. Since for each
xUb1 ,b1y PW 1 it is W ¨Ub1 $σ b1, by 2 we get W ¨U $σ W ¨Ub1 , hence W ¨U $σ b1, that
is, W ¨U $σ V 1 and since W ¨U P Con

Θ ¨U , we’re done.

The following gives us conservative extensions of a neighborhood by way of extend-
ing its set of arguments.

Lemma 3.9. Let W P ConρÑσ and Γ P Finρ such that LpW q Ď Γ . Then

W „ρÑσ

ď

UPConΓ

xU,W ¨Uy.

Proof. From left to right, let U P ConΓ and b PW ¨U . There exists a Ub P ConLpΘq with
xUb,by PW and U $ρ Ub. Then xUb,by $ρÑσ xU,by. The other way around is obvious,
since W Ď

Ť

UPConΓ
xU,W ¨Uy.4

Turning our attention to middle application, the first thing we want to know is how
it fares compared to Lemma 3.8.

Lemma 3.10 (Middle application). Let ρ , σ be arbitrary types.

1. Middle application is consistently defined for transitive right arguments, that is, if
W P ConρÑσ and U P Conctr

ρ|LpWq, then W ¨U P Conσ .

2. Middle application is antimonotone in the right argument, in particular, if Θ P

FinρÑσ and U,U 1 P Conρ with U $ρ U 1, then Θ ¨U ĎΘ ¨U 1.

3. Middle application between neighborhoods is monotone in the left argument for
transitive right arguments, that is, if W,W 1 P ConρÑσ are such that W $ρÑσ W 1

and U P Conctr
ρ|LpWqYLpW 1q

, then W ¨U $σ W 1 ¨U.

Proof. To show 1, let U P Conctr
ρ|LpWq and b1,b2 PW ¨U . Then there exist U1,U2 with

xUi,biy PW and Ui —ρ U . The transitivity of U implies U1 —ρ U2, and the consistency
of W ensures that b1 —σ b2.

For 2, assume U and U 1 such that U $ρ U 1, and let b PΘ ¨U . There is some Ub such
that xUb,by PΘ and Ub —ρ U . By propagation we get Ub —ρ U 1, so b PΘ ¨U 1.

For 3. By 1, the assumption that U P Conctr
ρ|LpWqYLpW 1q

ensures that the result of both
middle applications is a neighborhood (in general, if Γ Ď Γ 1 then Conctr

ρ|Γ 1 Ď Conctr
ρ|Γ

).
Let b1 PW 1 ¨U . By the definition of middle application, there exists a xU 1,b1y PW 1, such
that U 1 —ρ U . Since W $ρÑσ W 1, there is a subneighborhood txUi,biy | i“ 1, . . . ,mu Ď
W , such that for all i“ 1, . . . ,m it is U 1 $ρ Ui and tbi | i“ 1, . . . ,mu $σ b1; by propaga-
tion it follows that U —ρ Ui for all i. This means that bi PW ¨U for all i, so W ¨U $σ b1,
and we’re done.

4The proof in fact shows that the equientailment is linear (U entails b linearly when tau $ b for some
a P U).

10
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Lemma 3.11. Let Θ P FinρÑσ .

1. For all U,U 1 P Conctr
LpΘq, if U —ρ U 1 then Θ ¨U “Θ ¨U 1.

2. For all U P Conctr
LpΘq, it is Θ ¨U “Θ ¨Û .

3. For all U P Conmax
LpΘq and U 1 P Conρ , if U —ρ U 1 then Θ ¨U ĎΘ ¨U 1.

Proof. For the first statement, assume that U —ρ U 1 and let b P RpΘq. It is b PΘ ¨U
if and only if there is some Ub with xUb,by PΘ and U —ρ Ub. Since U is transitive in
LpΘq, we get U 1 —ρ Ub by the assumption, so b PΘ ¨U 1. The converse is similar.

For the second statement, let U P Conctr
LpΘq. By the definition of middle application,

if b PΘ ¨U , then there is some Ub with xUb,by PΘ , such that Ub —ρ U ; since U is
transitive, by the maximality of its maximal extension it follows that Û $ρ Ub, so the
definition of application gives us b PΘ ¨Û . For the other way around, if b PΘ ¨Û , then
there is a Ub with xUb,by PΘ , such that Û $ρ Ub; then U —ρ Ub by propagation, so
b PΘ ¨U , by the definition of middle application.

For the third statement, let U be maximal in LpΘq and U 1 some neighborhood with
U —ρ U 1. For every b PΘ ¨U , by the definition of middle application, there is some
Ub with xUb,by PΘ , such that U —ρ Ub, which by maximality means that U $ρ Ub; by
propagation we get U 1 —ρ Ub, so b PΘ ¨U 1, and we’re done.

We close the section with a hint on how extremality evolves over types.

Lemma 3.12. Let Θ P FinρÑσ and W P ConΘ . It is W P Conctr
Θ

if one of the following
holds.

1. For all U P Conctr
LpΘq it is W ¨U P Conctr

Θ ¨U .

2. For all U P Conmax
LpΘq it is W ¨U P Conctr

Θ ¨U .

Proof. For the first criterion, let xUi,biy PΘ be such that xUi,biy —ρÑσ W for i“ 1,2,
and assume that U1 —ρ U2. Consider a U P Conctr

LpΘq with U —ρ U1YU2; then bi PΘ ¨U
for each i. From xUi,biy —ρÑσ W , by Lemma 3.10.1, we get bi —σ W ¨U for both i, so
by the assumption we get b1 —σ b2.

To get the second criterion, it suffices to show that

@
UPConmax

LpΘq

W ¨U P Conctr
Θ ¨U Ñ @

UPConctr
LpΘq

W ¨U P Conctr
Θ ¨U .

Assume that W is such that W ¨U P Conctr
Θ ¨U , for all U P Conmax

LpΘq, and let U P Conctr
LpΘq.

Consider the maximal extension Û of U . On the one hand it is Û P Conmax
LpΘq, so

W ¨Û P Conctr
Θ ¨Û by the assumption. On the other hand it is Û P Conctr

LpΘq with Û —ρ U ,
so Θ ¨Û “Θ ¨U and W ¨Û “W ¨U , by Lemma 3.11.1. It follows that W ¨U P Conctr

Θ ¨U ,
so we can apply the previous criterion and we’re done.

4 Totality of neighborhoods
In this section we take the first two steps of the strategy that we outlined in the introduc-
tion. A total object of type ρ Ñ σ is represented by a possibly infinite token set which
(a) is an ideal, that is, consistent and deductively closed, (b) admits all totals of type

11
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ρ as arguments—a property we think of as “omniception”, for lack of a less pompous
but as grammatically smooth synonym for admission or acceptance of all—, and (c)
responds to every total argument with a total value at type σ . To bring the notion down
to the finite level we dispose of half of the demand (a), namely, that the set of tokens be
deductively closed, and we reinterpret “admittance” and “response” in (b) and (c) in
terms of consistency rather than entailment. The first move, which is clearly dictated
by the demand of finiteness, in some sense causes the reaction of the second move:
what we lose by denying deductive closure we have to regain with the wider and more
tolerant scope of consistency.

4.1 Finite density
At type ρ , call side extension of a neighborhood U any neighborhood U 1 which is
consistent to U . We give a name to this rather mundane notion just to point to its
intended use: trivially, if U 1 is a side extension of U , then U 1YU is an extension of U ,
and this is exactly how we will work towards finding total extensions of neighborhoods.

Lemma 4.1. Let ρ and σ be types. For every W P ConρÑσ , the finite set
Ť

UPConctr
LpWq

xU,pW ¨Uq1y, where V 1 denotes a fixed side extension of V P Conσ , is a

side extension of W.

Proof. To show the consistency of the finite set, let xUi,biy be such that Ui P Conctr
LpWq

and bi P pW ¨Uiq
1, for i “ 1,2. If U1 —ρ U2, then W ¨U1 “W ¨U2 by Lemma 3.11.1,

hence pW ¨U1q
1 “ pW ¨U2q

1, and b1 —σ b2.
To show the side extension, let xU,by PW and xU 1,b1y be such that U 1 P Conctr

LpWq
and b1 P pW ¨Uq1. If U —ρ U 1 then by the definition of middle application it is b PW ¨U .
But W ¨U —σ pW ¨Uq1 by assumption, so b—σ b1.

As we mentioned in section 1, a total token at a base type ι is a token a P Tokι

which consists exclusively of proper constructors; write a P Tokg
ι . It is Ca1 ¨ ¨ ¨ar P Tokg

ι

if and only if C is a proper constructor of arity r and ai P Tokg
ι for all i “ 1, . . . ,r. So

SB˚0 R Tokg
D but SB10 P Tokg

D. Define total neighborhoods inductively over types:

U P Cong
ι :“ D

aPTokg
ι

U $ι a,

W P Cong
ρÑσ :“ @

PPCong
ρ

W ¨P P Cong
σ .

On the other hand, define weakly omniceptive finite sets explicitly by

Γ P Finwo
ρ :“ @

PPCong
ρ

D
UPPConctr

Γ

P—ρ UP.

At a type ρ Ñ σ call Θ a (strongly) omniceptive finite set, and write Θ P Fino
ρÑσ , if

Θ P Finwo
ρÑσ ^ @

UPConmax
LpΘq

pU P Cong
ρ ^Θ ¨U P Fino

σ ^xU,Θ ¨Uy ĎΘq,

which intuitively says that, beyond weak omniception, Θ must meet certain requirements
of finite totality, preservation of omniception, and closure under middle application for
each of its left maximals. By convention, we set Fino

ι :“ Finwo
ι for arbitrary base types.

12
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Call a type ρ finitely dense if every neighborhood U at ρ has a total side extension,
and finitely omniceptive if every finite set has an omniceptive extension. Moreover, call
it finitely total-transitive if every total neighborhood U is transitive (in ρ). The latter
just means that U1 —ρ U —ρ U2 implies U1 —ρ U2 for all U1,U2 P Conρ , and we write
U P Conctr

ρ . Here’s a lemma to set the intuition straight.

Lemma 4.2 (Compactness of transitivity). Let ρ be a type. A neighborhood is transitive
in ρ if and only if it is transitive for every finite set of ρ .

Proof. For the less trivial direction, let U P Conρ be such that U P Conctr
ρ|Γ

for every
Γ P Finρ , and let U1,U2 P Conρ be such that U1 —ρ U —ρ U2. Set Γ :“U1YU YU2;
then it is U1 —ρ U2 by Γ -transitivity.

To start off the main argument we need two elementary definitions. The size }a}
of a base-type token a P Tokι counts the proper constructors of the token: }˚} “ 0 and
}Ca1 ¨ ¨ ¨ar} “ 1`}a1}` ¨ ¨ ¨ ` }ar}. The supremum or eigentoken suppUq of a base-
type neighborhood U P Conι is defined by suppHιq “ ˚ι and suppta1, . . . ,amuq “

suptp¨ ¨ ¨suptpa1,a2q ¨ ¨ ¨ ,amq, where suptpa,˚q “ a and suptpCa1 ¨ ¨ ¨ar,Cb1 ¨ ¨ ¨brq “

Csuptpa1,b1q ¨ ¨ ¨sup
tpar,brq.

Proposition 4.3. Every base type is finitely total-transitive, finitely dense, and finitely
omniceptive.

Proof. Let ι be any base type with a distinguished nullary constructor 0. For the
transitivity of total neighborhoods, let P P Cong

ι and U1,U2 P Conι be such that Ui —ι P
for each i. Then P $ι Ui, for both i “ 1,2, since, as is easy to see, total tokens are
maximal at base types, so U1 —ι U2.

We turn to finite density by firstly considering tokens: the trivial token ˚ is consistent
to 0, and if ag

1, . . . ,a
g
r are total tokens consistent to a1, . . . ,ar respectively, then Cag

1 ¨ ¨ ¨a
g
r

is a total token consistent to Ca1 ¨ ¨ ¨ar, for an r-ary constructor C. Then if U P Conι , the
neighborhood Ug :“ suppUqg is obviously a total neighborhood consistent to (above,
even) U .

Now for the finite omniception. If Γ is trivial (that is, if it carries no proper
information), then set Γ o :“ t˚u. If not, let m :“ maxt}suppUq} |U P ConΓ u, and
set Γ o :“ ta P Tokι | }a} ď mu. Again, it is easy to convince ourselves that this is a
sufficient choice by construction.

Proposition 4.4 (Finite total-transitivity). Let ρ and σ be finitely total-transitive types.
If ρ is finitely dense then ρ Ñ σ is finitely total-transitive.

Proof. Let T P Cong
ρÑσ and W1,W2 P ConρÑσ , with W1 —ρÑσ T —ρÑσ W2. Consider

pairs xUi,biy PWi, i“ 1,2, and assume that U1 —ρ U2. By the finite density at ρ , there
exists a P P Cong

ρ , such that P—ρ U1YU2. By the assumptions at ρ and Lemma 3.10.1
we get b1 —σ T ¨P—σ b2. But T ¨P is total, so the assumption at σ gives b1 —σ b2.

Proposition 4.5 (Finite density). Let ρ and σ be types. If ρ is finitely omniceptive and
σ finitely dense and finitely total-transitive, then ρ Ñ σ is finitely dense.

Proof. Let W P ConρÑσ be any neighborhood. By finite omniception at ρ we get a
Γ P Fino

ρ with LpW q Ď Γ . Consider the neighborhood W o :“
Ť

UPConΓ
xU,W ¨Uy; by

Lemma 3.9 it is W „ρÑσ W o. Now set

W g :“
ď

UPConctr
LpWoq

xU,pW o ¨Uqgy,

13
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with the help of density at σ ; note that LpW gq “ LpW oq “ Γ . This is a side extension of
W o (therefore of W as well) by Lemma 4.1.

To show that it is total, let P P Cong
ρ . Since LpW gq is omniceptive (in fact, that it

is weakly omniceptive is enough), there is some UP P Conctr
Γ

such that P—ρ UP. It is
xUP,pW o ¨UPqgy ĎW g by construction, and W g ¨P“ pW o ¨UPqg, since, by transitivity
of total neighborhoods at σ , the value W o ¨P is independent from the choice of UP.

Proposition 4.6 (Finite omniception). Let ρ and σ be finitely total-transitive types. If
ρ is finitely dense and σ finitely omniceptive, then ρ Ñ σ is finitely omniceptive.

Proof. Let Θ P FinρÑσ be any finite set. Extend it as follows:

Θ
o :“Θ Y

ď

UPConmax
LpΘq

xUg,pΘ ¨Uqoy,

with the use of finite density at ρ and finite omniception at σ .
If we show that this is weakly omniceptive, then it will be omniceptive immediately

by construction (based on Lemma 3.5). Let T P Cong
ρÑσ . For every U P Conmax

LpΘq it is
T ¨Ug P Cong

σ , and since pΘ ¨Uqo is omniceptive, there will be some V T ¨Ug
P Conctr

pΘ ¨Uqo ,
such that T ¨Ug —σ V T ¨Ug

p‹q. Fix these side extensions and set

W T :“
ď

UPConmax
LpΘoq

xUg,V T ¨Ug
y.

It is W T Ď Θ o by construction. Moreover, it is T —ρÑσ W T : let xU,by P T and
xU 1,b1y PW T be such that U —ρ U 1; it is b P T ¨U 1 and b1 P V T ¨U 1

, so b —σ b1 by p‹q.
Since T is total, W T is a neighborhood by transitivity of total neighborhoods, which we
get for ρ Ñ σ by Proposition 4.4. Finally, it is transitive in Θ o by Lemma 3.12.2, since
for every U P Conmax

LpΘq it is by construction W T ¨U “V T ¨U , which is transitive in Θ ¨U
by omniception.

Theorem 4.7. Every type is finitely omniceptive, finitely total-transitive, and, in partic-
ular, finitely dense.

Proof. We get this by mutual induction over types from Propositions 4.3, 4.4, 4.5, and
4.6.

4.2 Totality of transitive neighborhoods
There is plenty of evidence to suggest that total neighborhoods at ρ are to Conρ what
transitive neighborhoods in Γ are to ConΓ . For one, Theorem 4.7 shows that total
neighborhoods are transitive. Furthermore, an immediate corollary of total transitivity is
that consistency, restricted to the total neighborhoods, becomes an equivalence relation,
that is,

@
P1,P2,P3PCong

ρ

`

P1 —ρ P2 —ρ P3 Ñ P1 —ρ P3
˘

.

Here are further examples of using total transitivity, which include some more evidence
to this effect.

Lemma 4.8. Let ρ and σ be types. Let Θ P FinρÑσ , P,P1 P Cong
ρ , and U,U 1 P Conρ .

14
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1. For every UP P ConLpΘq with P —ρ UP, it is Θ ¨P Ď Θ ¨UP. Moreover, it is
Θ ¨P“Θ ¨UP whenever UP P Conmax

LpΘq.

2. If P—ρ P1 then Θ ¨P“Θ ¨P1.

3. If U P Cong
ρ and U 1 $ρ U, then U 1 P Cong

ρ .

4. If T P Cong
ρÑσ and U P Conctr

LpT q then T ¨U P Cong
σ .

Proof. For 1, let b P Θ ¨P. Then, by the definition of middle application, there is
some U with xU,by PΘ , such that U —ρ P. From U —ρ P—ρ UP we get U —ρ UP by
Theorem 4.7, so the definition of middle application yields that b PΘ ¨UP. Moreover, if
UP is actually maximal in LpΘq, then by Lemma 3.11.3 we immediately get Θ ¨UP Ď

Θ ¨P.
For 2, assume that P—ρ P1 and let b PΘ ¨P. By the definition of middle application,

there is some U with xU,by PΘ , such that U —ρ P. By Theorem 4.7 and the assumption
it is U —ρ P1, so b PΘ ¨P1.

For 3. At a base type ι if U P Cong
ι , then there exists a total token a such that

U $ι a. The transitivity of entailment yields what we need. At a higher type ρ Ñ σ , let
W P Cong

ρÑσ and W 1 $ρÑσ W . Let further P P Cong
ρ . By Theorem 4.7, P is transitive

for LpW q, so by the left monotonicity of middle application on transitive arguments
(Lemma 3.10.3), we have W 1 ¨P$σ W ¨P, and by the totality of W we get W ¨P P Cong

σ ,
so the induction hypothesis at σ finishes the job.

For 4. By Theorem 4.7 there exists some PU P Cong
ρ with PU —ρ U . By 1 it

is T ¨PU Ď T ¨U , where T ¨U is consistent by Lemma 3.10.1. It follows by 3 that
T ¨U P Cong

σ .

Note in particular that Lemma 4.8.3 is analogous to Lemma 3.3 (both of them actually
anticipate Lemma 5.2).

We now show that the correspondence between transitivity and finite totality is
complete.

Theorem 4.9 (Explicit finite totality). At every type, a neighborhood is total if and only
if it is transitive.

Proof by induction over types. The rightward direction we have of course from Theo-
rem 4.7. For the other direction, we have to show that, at each type, every transitive
neighborhood must be total.

At a base type ι , assume that U P Conctr
ι . Obviously, it is U ι t˚u, so there will be

a constructor C and tokens a1, . . . ,ar P Tokι such that U „ι Ca1 ¨ ¨ ¨ar. By Lemma 3.4.2,
since U is transitive, for any two tokens b1,b2 P Tokι we will have b1 —ι U —ι b2 imply
b1 —ι b2. Then for i“ 1, . . . ,r it is

b1i —ι ai —ι b2i ñCa1 ¨ ¨ ¨b1i ¨ ¨ ¨ar —ι U —ι Ca1 ¨ ¨ ¨b2i ¨ ¨ ¨ar
ctr
ñCa1 ¨ ¨ ¨b1i ¨ ¨ ¨ar —ι Ca1 ¨ ¨ ¨b2i ¨ ¨ ¨ar

ñ b1i —ι b2i,

which by induction hypothesis yields ai P Tokg
ι . It follows that Ca1 ¨ ¨ ¨ar itself is a total

token, so U is a total neighborhood.
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At type ρ Ñ σ , assume that W P Conctr
ρÑσ , and let P P Cong

ρ . For any b1,b2 P Tokσ

it is

b1 —σ W ¨P—σ b2 ô xP,b1y —ρÑσ W —ρÑσ xP,b2y

ctr
ñ xP,b1y —ρÑσ xP,b2y

ñ b1 —σ b2,

which means that W ¨P is transitive in σ , so by the induction hypothesis at σ we get
W ¨P PCong

σ , and by the definition of finite totality it is W PCong
ρÑσ , as we wanted.

The theorem indicates that our notion of finite totality is a robust one, and indeed, we
will see in the next section that it is very well suited to our purposes. Interestingly,
we will also see that its equivalence to transitivity is peculiar to the finitary level: in
Proposition 5.12 the respective correspondence for ideals is shown to be tilted.

5 Elevating totality to ideals
The last step in our strategy is to find a canonical extension of a total neighborhood to a
total ideal. The natural candidate would be the deductive closure of a neighborhood, but
again, closure under entailment proves to be too strict for our purposes. Instead, based
on the transitivity of total neighborhoods, we will use closure under consistency.

5.1 Density
The notion of continuity that we employ in our setting implies that if we’re given an
estimate V on a value f pxq then we can find an adequate estimate UV on the argument x
of f ; let us highlight this elementary fact as we will need it later on.

Lemma 5.1 (Finite support). Let f : ρ Ñσ and x : ρ . For every V PConσ with V Ď f pxq
there exists a UV P Conρ such that xUV ,V y Ď f .

Proof. From (FS) it follows directly that if b P f pxq then there exists a Ub Ď x such
that xUb,by P f due to the deductive closure of f . Assuming then that V is such that
V Ď f pxq, it is xUV ,V y Ď f for UV :“

Ť

bPV Ub, again by the deductive closure of f .

An ideal x : ρ is a total ideal, for which we write Gρpxq or x P Gρ , if it conforms to
the following inductive clauses.

Gιpxq :“ D
UPCong

ι

U Ď x ,

GρÑσ p f q :“ @
x:ρ
pGρpxq Ñ Gσ p f xqq .

Totality of ideals is upwards closed.

Lemma 5.2 (Extension lemma). At type ρ , if x,y : ρ are such that Gρpxq and xĎ y then
Gρpyq.

Proof. At a base type ι , let Gιpxq and y : ι be two ideals with xĎ y. Then there is a total
token a P Tokg

ι , such that a P x, so also a P y. At a higher type ρ Ñ σ , let GρÑσ p f q,
g : ρ Ñ σ , and assume that f Ď g. We want to show that g is also total, so consider
an arbitrary x with Gρpxq. By the totality of f we have that Gσ p f xq, and since it is
straightforward to see that f xĎ gx, we get Gσ pgxq by the induction hypothesis at σ .
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B. A. Karádais, “Nonflatness and totality”, draft of 21 Oct 2016, 2:02 p.m.

The main argument starts with the following obvious observation.

Lemma 5.3. At every type, if a neighborhood is transitive then its consistency closure
is an ideal (and the converse holds as well).

Proof. Let ρ be a type and U P Conctr
ρ . By transitivity, every two tokens in the consis-

tency closure of U will be consistent, and the consistency closure is already deductively
closed: U 1 Ď rU means U —ρ U 1 by definition, so if U 1 $ρ a, then propagation yields
U —ρ a, hence a P rU as well. The converse is also direct to show.

By Theorem 4.9, it is an immediate consequence of the previous that the consistency
closure of every total neighborhood is an ideal, so it suffices to show that, for a given
P P Cong

ρ , it must be GρprPq. Consider the following statements for an arbitrary type ρ .

@
ΓPFino

ρ

@
xPGρ

D
UxPConctr

Γ

Ux —ρ x, (O)

@
U,U 1PConρ

@
xPGρ

pU 1 —ρ U —ρ xÑ D
U0PConρ

pU $ρ U0 Ď x^U 1 —ρ U0qq, (W)

@
PPCong

ρ

rP P Gρ , (C)

@
UPConρ

D
xPGρ

U Ď x. (D)

The first one is an expression of infinitary omniception, as it states that an omniceptive
finite set accepts each total ideal by being consistent to it with one of its transitive
neighborhoods. The second expresses inconsistency preserving witnessing of the consis-
tency between a total ideal and a neighborhood; the claimed witness is stronger than the
neighborhood itself, since it lies below both the total ideal and the neighborhood, and in
a sense to be made clearer after Lemma 5.8 below, it provides the missing feature from
omniception that we need to achieve totality on the level of ideals. The third one is the
crux of our strategy, as it says that the consistency closure of a total neighborhood is a
total ideal, and the fourth one, of course, is density.

Proposition 5.4 (Conditional density). Let ρ be a type. If (C) holds in ρ then also (D)
holds in ρ .

Proof. Let U be any neighborhood at type ρ . By Theorem 4.7 there exists a total
neighborhood PU such that U —ρ PU . Then U Ď ĂPU by definition, whereas ĂPU P Gρ

by (C). We set x :“ ĂPU and we are done.

Lemma 5.5. Every base type satisfies (O), (W), (C), and (D).

Proof. Let ι be some base type. To show (O), consider an omniceptive finite set Γ and
a total ideal x. By the totality of x there’s some P P Cong

ι such that PĎ x, and by the
omniception of Γ there is some UP P Conctr

Γ
such that UP —ι P. Set Ux :“UP. Then

for every U Ď x it is Ux —ι P—ι U , which implies Ux —ι U by the total transitivity of ι

(Proposition 4.3), so Ux —ι x.5

To show (W), let U and U 1 be neighborhoods and x be a total ideal, such that
U 1 —ι U —ι x. By the totality of x there exists a total neighborhood P such that PĎ x.

5Notice again that we only needed weak omniception from Γ . Furthermore, observe that in the flat setting
this argument would fail due to the requirement of finiteness of Γ .
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It is of course P—ι U , which, since total tokens are maximal at base types, implies that
P$ι U . This in turn implies that U Ď x by the deductive closure of x, so we may set
U0 :“U , which trivially meets the stated requirements.

To show (C), let P be some total neighborhood. Then there’s some total token
a P Tokι with P $ a; a fortiori it is P —ι a, so a P rP by the definition of consistency
closure. Since by Lemma 5.3 the set rP is an ideal, we conclude that it is in fact total.

Finally, that every base type is dense we get from Proposition 5.4, since (C) already
holds.

Proposition 5.6 (Omniception). Let ρ and σ be types. If (C) holds in ρ and (O) holds
in σ then (O) holds in ρ Ñ σ .

Proof. Let Θ P Fino
ρÑσ and f P GρÑσ . By the finite omniception of Θ we know that

each U P Conmax
LpΘq is a total neighborhood, so by (C) at ρ we have rU P Gρ . By the

totality of f we have that f prUq P Gσ , so there will be some V f p rUq P Conctr
Θ ¨U such that

V f p rUq —σ f prUq, because Θ ¨U is omniceptive by the finite omniception of Θ and (O)
at σ . Based on these, we may set

W f :“
ď

UPConmax
LpΘq

xU,V f p rUqy.

It is W f P Conctr
Θ

by Lemma 3.12.2. Furthermore, let xU0,b0y PW and xU,by P f
be such that U —ρ U0; then U ĎĂU0 (remember that U0 is a total neighborhood) and
consequently U ĎĂU0 by the propagation of consistency; by the monotonicity of f we
get f pUq Ď f pĂU0q, so since b P f pUq it must also be b P f pĂU0q; but f pĂU0q —σ V f pĂU0q

and b0 PV f pĂU0q, so b—σ b0, as we wanted.

Proposition 5.7 (Witnessing). Let ρ and σ be types. If (D) holds in ρ and (W) holds
in σ then (W) holds in ρ Ñ σ .

Proof. Let f P GρÑσ and W,W 1 P ConρÑσ be such that W 1 —ρÑσ W —ρÑσ f . For
i “ 1, . . . ,m, let U 1i P ConLpW 1q and Ui P ConLpWq run through all witnessing pairs of
inconsistency between W 1 and W , that is, cover all the cases where

U 1i —ρ Ui^W 1 ¨U 1i —σ W ¨Ui.

By (D) at ρ , for each i there exists an xi PGρ such that U 1i YUi Ď xi. By the consistency
of (upper) application, for every such xi it is W ¨Ui—σ f pxiq, and by (W) at σ there exists
some Vi0 P Conσ such that W ¨Ui $σ Vi0 Ď f pxiq and W 1 ¨U 1i —σ Vi0. By Lemma 5.1,
there exists some UVi0 Ď xi for every i such that xUVi0 ,Vi0y Ď f . Letting Ui0 :“UVi0 Y

U 1i YUi, by the deductive closure of f it follows that xUi0,Vi0y Ď f . Since by the
hypotheses at σ for every i it is

xUi,W ¨Uiy $ρÑσ xUi0,Vi0y Ď f ^xU 1i ,W
1 ¨U 1i y —ρÑσ xUi0,Vi0y,

it follows that

W $ρÑσ

m
ď

i“1

xUi0,Vi0y Ď f ^W 1 —ρÑσ

m
ď

i“1

xUi0,Vi0y,

so we may set W0 :“
Ťm

i“1xUi0,Vi0y and we’re done.
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We may generalize the property (W) to account for inconsistency preserving wit-
nesses of the consistencies between a total ideal and neighborhoods in a finite set.

Lemma 5.8. At a type ρ , the statement (W) is equivalent to the following: Let Γ P Finρ

and x P Gρ ; for all U P ConΓ with U —ρ x there exists a neighborhood NU,Γ ,x P Conρ

such that
U $ρ NU,Γ ,x Ď x^ @

U 1PConΓ

pU 1 —ρ U ÑU 1 —ρ NU,Γ ,xq. (W’)

Proof. Let Γ be a finite set, U some neighborhood of Γ and x a total ideal. Assume that
(W) holds, and furthermore that U1, . . . ,Um P ConΓ are all neighborhoods in Γ such
that Ui —ρ U for i“ 1, . . . ,m. Then for each such i there is a neighborhood U0i P Conρ

such that Ui —ρ U0i and U $ρ U0i Ď x. Setting NU,Γ ,x :“
Ťm

i“1 U0i we’re done. In the
other way around, let U and U 1 be two neighborhoods and x a total ideal, such that
U 1 —ρ U —ρ x, and assume that (W’) holds for all finite sets Γ , neighborhoods U Ď Γ

and total ideals x. Setting U0 :“ NU,UYU 1,x we’re done.

So if Γ accepts a total ideal x at all, even if with a nontransitive neighborhood U , then it
could be safely side extended to include a common part NU,Γ ,x of U and x; enriched in
this way Γ would now accept x in the strong sense of inclusion. This is exactly what we
need to exploit by taking the consistency closure of a higher-type total neighborhood,
provided its list of arguments is omniceptive. But let us get to the details without further
ado.

Proposition 5.9 (Closure). Let ρ and σ be types. If (O) and (W) hold in ρ and (C)
holds in σ then (C) holds in ρ Ñ σ .

Proof. Let T P Cong
ρÑσ and x P Gρ . We show that rT pxq P Gσ . Based on Lemma 3.9,

we may assume that LpT q P Fino
ρ without harming generality. By (O) at ρ there exists a

Ux P Conctr
LpT q such that Ux —ρ x. By Lemma 4.8.4 it is T ¨Ux P Cong

σ , and by (C) at σ it

is ČT ¨Ux PGσ . So in order to show that rT pxq PGσ , it suffices to show that ČT ¨Ux Ď rT pxq
and invoke Lemma 5.2.

Let then b P Tokσ be such that b P ČT ¨Ux. This means that b —σ T ¨Ux. By
Lemma 3.7.2 we have xUx,by —ρÑσ T . By (W) at ρ and Lemma 5.8, there exists
a neighborhood Ux

0 :“ NUx,LpT q,x P Conρ such that

Ux $ρ Ux
0 Ď x^ @

U 1PConLpT q

pU 1 —ρ Ux ÑU 1 —ρ Ux
0 q;

it is xUx
0 ,by—ρÑσ T , because for every xU 1,b1y P T with U 1—ρ Ux

0 it has to be U 1—ρ Ux

from the above, therefore b —σ b1 follows by xUx,by —ρÑσ T . We have found a
Ub :“Ux

0 P Conρ such that xUb,by —ρÑσ T and Ub Ď x; but this means by definition
that b P rT pxq, and we’re done.

Theorem 5.10 (Density). Every type satisfies (O), (W), and (C), and in particular,
every type is dense.

Proof. It follows by a mutual induction over types by Lemma 5.5 and Propositions 5.4,
5.6, 5.7, and 5.9.

As a closing remark, we should note that the witness which we provide is actually
the maximal total extension of a given neighborhood, in the sense that if, for a type ρ ,
U P Conρ is some neighborhood, Ug P Cong

ρ is the witness provided by Theorem 4.7,
and x P Gρ is such that U Ď x, then xĎ ĂUg.
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5.2 Nontotality of transitive ideals
In the same way as we did with finite totality and transitivity in Theorem 4.9, we would
like to know if we can connect totality and transitivity on the level of ideals, and possibly
obtain an explicit characterization of totality in terms of consistency. We see now that
this is not as straightforward as one might expect, and the problem seems to lie in
nonflatness.

This becomes clear if we draw from the expositions [3, 5, 6], where various explicit
characterizations of abstract totality are mentioned (note the qualifier). The most
relevant characterization for us there is that an element x is abstractly total if and only
if it is almost maximal (which is classically equivalent to its having a unique maximal
extension [6]). In our setting, this means that y1 Ě xĎ y2 implies y1 — y2 for all y1 and
y2. At the same time, we call x transitive if y1 — x — y2 implies y1 — y2 for all y1,y2.
We immediately see the following.

Lemma 5.11. At every type, an ideal is almost maximal if and only if it is transitive.

Proof. That transitivity implies almost maximality is clear. To see the converse let x be
almost maximal and y1 — x— y2. Then xĎ yiY x for each i and we get y1Y x— y2Y x
by almost maximality, which yields y1 — y2.

For the following we express the transitivity of x through tokens, similarly to
Lemma 3.4.

Proposition 5.12 (Total-transitivity). At any type, total ideals are transitive, but not the
other way around.

Proof. At a base type ι , let a1, a2 be tokens and x a total ideal, such that a1 —ι x—ι a2.
There exists a total neighborhood P with PĎ x, so the assumption yields a1 —ι P—ι a2,
which implies a1 —ι a2 by the finite total transitivity of ι (Proposition 4.3).

At a higher type ρ Ñ σ , let xU1,b1y, xU2,b2y be tokens and f be a total ideal,
such that xU1,b1y —ρÑσ f —ρÑσ xU2,b2y. Assume furthermore that U1 —ρ U2. By
Theorem 5.10 there exists a total ideal x : ρ such that U1YU2 Ď x. Since f is itself total,
the ideal f pxq : σ must also be total, and by the induction hypothesis at σ it must also be
transitive. Now, applying all terms of the assumption to x we obtain b1 —σ f pxq —σ b2,
which then yields b1 —σ b2.

For the converse, a counterexample is the transitive nontotal ideal 8 “

tSm˚ | mě 0u of type N.

So, somewhat paradoxically, total ideals are abstractly total but there exist abstractly
total ideals which are not total. This is of course explained by the fact that abstract
totality abstracts totality as this manifests in hierarchies over flat base types, where no
infinities like8 can arise. On another note, the fact that totality and transitivity coincide
on the finite level seems to suggest that density in nonflat-based hierarchies is indeed
cleanest explained by explicitly finitary witnesses.

5.3 Noncontinuity of totalization
The witness for density that we have provided in the previous is a mapping of the sort
tot : Conρ Ñ ρ .6 It is easy to see that this is not a “continuous” mapping—that is, it

6Such mixed typings of terms appear often and naturally in considerations within information systems,
and should be accounted for in a theory of partial computable functionals together with their approximations
as in [20].
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does not extend to an ideal of type ρ Ñ ρ—since it can not be expected to preserve
consistency: consider the neighborhoods tS˚u and tSS˚u at typeN; these are consistent
to each other, but

totptS˚uq Q S0 —N SS0 P totptSS˚uq .

This counterexample is general enough to convince us that this shortcoming is not
particular to our witness.

Lemma 5.13. There is no consistency-preserving mapping t : ConN Ñ N such that
U Ď tpUq and tpUq P GN for all U P ConN.

Proof. If such a mapping existed it should be tpU1q —N tpU2q for any two neighborhoods
U1,U2 Ď8. Fixing such a U1 with tpU1q “ tSn0u for some n and setting U2 :“ tSn`1˚u

we get tpU1q —N tpU1q, a contradiction.

5.4 Separation
One of Berger’s key insights in [2], which permeates all subsequent approaches that our
work is based upon (including our own), was that the notion of totality can be clarified
if density is viewed together with an accompanying notion of “separation” (also called
“codensity”): intuitively, a type ρ is considered to feature the separation property, if any
two open sets of conflicting information can be told apart by a total “predicate” of type
ρ ÑB. His argument proceeded by mutual induction for both properties of density and
separation over all finite types. What we did instead in our mutual inductive arguments
above was in effect to replace the notion of “separation of neighborhoods by infinite
total ideals” by notions of “acceptance of total ideals by finite sets”. In our exposition
separation follows as a simple corollary of density.

Following [44], call a type ρ separating if

@
U,U 1PConρ

pU —ρ U 1Ñ D
fPGρÑB

xU,tty P f Q xU 1,ffyq,

and finitely separating if

@
U,U 1PConρ

pU —ρ U 1Ñ D
TPCong

ρÑB

xU,tty —ρÑB T —ρÑB xU 1,ffyq.

Proposition 5.14 (Separation). Every type is finitely separating, and consequently
separating.

Proof. If U and U 1 are inconsistent a ρ , then the finite set txU,tty,xU 1,ffyu is a
neighborhood at ρ ÑB, and by Theorem 4.7 there will exist some T P Cong

ρÑB which

side extends it. Consequently, by Theorem 5.10 the total ideal rT will extend it.

6 Notes
We gave a new proof of the Kreisel density theorem for finite types interpreted over
nonflat inductive base types given as algebras by constructors. We introduced a notion
of totality for neighborhoods and connected it to the usual notion of totality for ideals:
given a neighborhood one may first totalize it in an explicitly finitary way to obtain a
total neighborhood, which then extends trivially to a total ideal by means of consistency;
the resulting ideal, though generated by a compact element, is the maximal totalization
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of the given neighborhood. Additionally, we saw that traditional characterizations
of totality inspired from the flat setting, although in a sense reflected on the level of
neighborhoods, do not carry over to the nonflat setting for ideals. Here we gather notes
on the above, on related literature, and on future work.

The density theorem in the literature

As already pointed out in the introduction, the density problem was addressed for the
first time by Kreisel [25] and also Kleene [24]. In his phd thesis [2], Ulrich Berger
recast and solved the density problem within domain theory, generalizing results of Yuri
Ershov [13, 14] and paralleling work of Dag Normann [30]—see [3, 46] for an account
in english. A proof which does not thematize separation is given by Dag Normann
in [33], while a modern approach from a viewpoint of an all-encompassing theory of
higher-type computability can be found in the recent volume [26] by John Longley
and Dag Normann. The density theorem is a fundamental result with several deep and
far-reaching applications, like the choice theorem [25, 3, 42], Kreisel’s representation
theorem [25, 29, 32], a generalized Kreisel–Lacombe–Shoenfield theorem [3], Nor-
mann’s theorem [34, 35, 38], and Escardó’s theory of exhaustive search [15, 16], as well
as extensions and generalizations, for example to dependent and universe domains [4],
to Scott’s equilogical spaces [1], or even to an account of totality independently of
density [31]—see also [5, 33, 6, 36]. It would be natural to seek among these studies for
ones that would benefit from the possibility of explicitly finitary totalization. Existence
of such cases would further justify the extension of the results presented here to richer
type systems, starting with the one adopted in [44], and possibly moving on to the type
systems covered in [4].

Related work

The problem of finding a proof of density theorem “by compacts” occurred to the author
back in the early 2011, and since then tackling it has primarily provided an incentive to
develop the theory of nonflat information systems for semantics (see [23] for examples
of collateral results). A partial result in the direction of finite witnesses for density
was presented in [21], where, in contrast to the present approach, it was shown that
one may first prove a version of finite separation at every type and then use this as
a lemma to prove density (a version of our Proposition 5.7 also appears there); that
approach provided a satisfactory finitary explanation of separation but not of totalization.
Meanwhile, an alternative bottom-up approach to the density theorem, which grew
independently but turned out to be similar in spirit to ours, was carried out by Davide
Rinaldi in [39]. Rinaldi offers a nonflat semantics which is topological rather than
domain-theoretic: he uses certain formal topologies [41], for which he proves that they
are equivalent to unary information systems; these are information systems where in
addition neighborhoods always have eigentokens, that is, for every U P Con there exists
some a P Tok such that U „ tau. In our setting this is true of base types, but not of higher
types. To adapt Rinaldi’s semantics in a way that clearly matches broader categories of
information systems than just the unary ones, and look at a formal-topological proof
of density by compacts anew, would not only be instructive, but it could also provide a
more elegant proof.
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B. A. Karádais, “Nonflatness and totality”, draft of 21 Oct 2016, 2:02 p.m.

Towards a common study of totality and cototality

Recently, “cototal ideals”, that is, total ideals together with infinities like 8 at type
N, have been used to model stream-like objects at base types arising from initial
algebras, offering an alternative to versions of semantics simultaneously based on initial
algebras and final coalgebras [40, 18, 17]; for this line of work, rooted in [7, 8, 11],
see [9, 44, 27, 28, 10]. In view of the mismatch between transitivity and totality in a
nonflat setting which we described in section 5.2, it looks like a refinement is possible,
where totality should feature an increased degree of finiteness and should be studied
hand in hand with an appropriate notion of cototality: beside more or less obvious
differences of the two at base types (based on the proof of Lemma 5.13, for example,
one could expect continuous “cototalizations” to exist), their interplay at higher types
remains terra incognita at the time of this writing.
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[15] Martı́n H. Escardó. Infinite sets that admit fast exhaustive search. In Proceedings of the 22Nd Annual
IEEE Symposium on Logic in Computer Science, LICS ’07, pages 443–452, Washington, DC, USA,
2007. IEEE Computer Society.
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