Der Zusammenhang zwischen linearen Abbildungen und Matrizen

Definitionen

In der Vorlesung haben wir zwei verschiedene Zusammenhänge zwischen

linearen Abbildungen und Matrizen

kennengelernt:

a) Jede Matrix $A \in \mathbb{R}^{m \times n}$ liefert eine lineare Abbildung $\ell_A : \mathbb{R}^n \to \mathbb{R}^m$ durch die Vorschrift $\ell_A(x) := A \cdot x$ für alle $x \in \mathbb{R}^n$. 1

Umgekehrt läßt sich jede gegebene lineare Abbildung $f: \mathbb{R}^n \to \mathbb{R}^m$ auf diese Art schreiben: Es gibt immer eine (eindeutig bestimmte) Matrix $A \in \mathbb{R}^{m \times n}$ mit $f = \ell_A$, also $f(x) = A \cdot x$ für alle $x \in \mathbb{R}^n$. Diese Matrix A heißt dann **Abbildungsmatrix** von f.

Zu beachten:

- Abbildungsmatrizen gibt es **nur** für lineare Abbildungen $\mathbb{R}^n \to \mathbb{R}^m$. Für lineare Abbildungen zwischen abstrakten Vektorräumen V und W ist es sinnlos, von "Abbildungsmatrix" oder " $f = \ell_A$ " zu reden!
- Die Spalten der Abbildungsmatrix sind die Bilder der kanonischen Basisvektoren e_1, \ldots, e_n : Denn $f(e_j) = A \cdot e_j$ ist die j-te Spalte von A.³
- b) Eine gegebene lineare Abbildung $f:V\to W$ zwischen zwei Vektorräumen⁴ liefert eine Matrix, sobald in den beiden beteiligten Vektorräumen jeweils eine Basis fixiert wird. Sei nämlich

$$v_1, \ldots, v_n$$
 eine Basis des "Quellraums" V und w_1, \ldots, w_m eine Basis des "Zielraums" W .

Man stellt nun jedes $f(v_j)$ (dies ist ein Element von W!) als Linearkombination von w_1, \ldots, w_m dar; die dabei auftretenden Koeffizienten bilden die j-te Spalte einer Matrix $M \in \mathbb{R}^{m \times n}$. Diese Matrix heißt darstellende Matrix von f bezüglich der Basen v_1, \ldots, v_n und w_1, \ldots, w_m .

Zu beachten:

- ullet Die Matrix M hängt davon ab, welche Basisvektoren in V bzw. W gewählt wurden (sogar die Reihenfolge der Basisvektoren ist wichtig).
- Wenn man die Matrix M kennt, weiß man, was die Abbildung f mit jedem beliebigen Vektor $v \in V$ anstellt: Denn v läßt sich als Linearkombination von v_1, \ldots, v_n schreiben, und was f mit jedem v_i macht, kann man an der Matrix M ablesen.

¹Dies ist Beispiel 7.3 c) in der Vorlesung.

²Das ist Satz 7.5 in der Vorlesung.

 $^{^3}$ Man mache sich das durch Berechnen des Matrixproduktes "Matrix mal e_j " klar!

⁴Das können Räume der Form \mathbb{R}^n sein, aber auch $\operatorname{Pol}_n(\mathbb{R})$ oder irgendwelche anderen Räume.

⁵In Formeln: Mit $M=(\alpha_{ij})$ gilt $f(v_j)=\sum_{i=1}^m\alpha_{ij}w_i$ für alle j. – Die gesamte Definition findet sich in der Vorlesung in 7.23.

⁶In Formeln: Mit $v = \sum_{j=1}^{n} a_j v_j$ ist $f(v) = \sum_{j=1}^{n} a_j f(v_j) = \sum_{j=1}^{n} \sum_{i=1}^{m} a_j \alpha_{ij} w_i = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} \alpha_{ij} a_j\right) w_i$.

• Wenn V=W ist (wir es also mit einem *Endomorphismus* zu tun haben), ist es möglich, im "Quellraum" und im "Zielraum" der linearen Abbildung $f:V\to V$ die gleiche Basis zu wählen. Dies wird auch so gut wie immer getan!

Im Falle einer linearen Abbildung $f:V\to V$ wählt man also meistens nur eine einzige Basis v_1,\ldots,v_n und betrachtet dann die darstellende Matrix von f bezüglich der Basis v_1,\ldots,v_n .

Abbildungsmatrizen vs. darstellende Matrizen

Ist $f: \mathbb{R}^n \to \mathbb{R}^m$, so besitzt f sowohl eine Abbildungsmatrix $A \in \mathbb{R}^{m \times n}$ (vgl. a) oben) als auch, wenn man sich in \mathbb{R}^n und \mathbb{R}^m jeweils für eine Basis entscheidet, eine darstellende Matrix $M \in \mathbb{R}^{m \times n}$ bezüglich der beiden gewählten Basen (vgl. b) oben). Wichtig ist nun:

Die Abbildungsmatrix A von f ist identisch mit

der darstellenden Matrix M von f bezüglich der kanonischen Basen e_1, \ldots, e_n bzw. e_1, \ldots, e_m .

Basiswechsel

Wir haben betont, daß die darstellende Matrix M einer linearen Abbildung $f:V\to M$ davon abhängt, welche Basen v_1,\ldots,v_n von V und w_1,\ldots,w_m von W gewählt wurden. Wie ändert sich nun die darstellende Matrix, wenn man andere Basen wählt? Im Fall $V=\mathbb{R}^n$, $W=\mathbb{R}^m$ liefert die Basiswechsel-Formel eine Antwort: Ist $f:\mathbb{R}^n\to\mathbb{R}^m$ linear, so gilt für

die darstellende Matrix M von f bezüglich der Basen b_1, \ldots, b_n von V und c_1, \ldots, c_m von W und

die darstellende Matrix M' von f bezüglich der Basen b'_1,\ldots,b'_n von V und c'_1,\ldots,c'_m von W die Beziehung

$$M' = C'^{-1} \cdot C \cdot M \cdot B^{-1} \cdot B'$$

wobei sich die invertierbaren quadratischen Matrizen B, C, B', C' durch Nebeneinanderschreiben der jeweiligen Basisvektoren ergeben: $C = (c_1 \ldots c_m) \in \mathbb{R}^{m \times m}$ usw.

⁷In Formeln ist dann $f(v_j) = \sum_{i=1}^m \alpha_{ij} v_i$ für alle j.

⁸Dies ist Bemerkung 7.25 in der Vorlesung.

⁹Folgerung 7.28 in der Vorlesung. Ein einfacherer Spezialfall, der die darstellende Matrix bezüglich *beliebiger* Basen von $V = \mathbb{R}^n$ und $W = \mathbb{R}^m$ berechnet, wenn die Abbildungsmatrix, d.h. die darstellende Matrix bezüglich der *kanonischen* Basen gegeben ist, findet sich direkt davor in Satz 7.27.

Zum Üben

Es sei V ein Vektorraum mit Basis v_1, v_2, v_3 . Über eine lineare Abbildung $f: V \to V$ sei bekannt, daß $f(v_1) = v_2, f(v_2) = v_2 + v_3$ und $f(v_3) = v_3$ gilt. (Übrigens gibt es genau eine solche lineare Abbildung; dies ist genau das **Prinzip der linearen Fortsetzung!**)

- a) Berechne die darstellende Matrix von f bezüglich der Basis v_1, \ldots, v_3 .
- b) Es sei nun konkret $V = \mathbb{R}^3$ und

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, v_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$$

Man berechne die Abbildungsmatrix A von f, also die darstellende Matrix von f bezüglich der kanonischen Basis e_1, e_2, e_3 von \mathbb{R}^3 .

Anleitung: Die gesuchte Abbildungsmatrix soll leisten: $A \cdot v_1 = v_2$, $A \cdot v_2 = v_2 + v_3$ und $A \cdot v_3 = v_3$. Dies kann man durch Nebeneinanderschreiben als Matrixgleichung lesen:

$$A \cdot (v_1 \ v_2 \ v_3) = (v_2 \ v_2 + v_3 \ v_3).$$

Man löse nun diese Gleichung nach A auf.

Alternatives Vorgehen (ebenfalls durchführen!): Wir bestimmen A als darstellende Matrix von f bezüglich e_1, \ldots, e_3 . Die Schwierigkeit dabei ist die Berechnung von $f(e_1)$, $f(e_2)$ und $f(e_3)$, denn uns sind nur $f(v_1)$, $f(v_2)$ und $f(v_3)$ bekannt.

Man stelle also zunächst jeden der kanonischen Basisvektoren e_i als Linearkombination von v_1, v_2, v_3 dar, um auf diese Art $f(e_i)$ berechnen zu können.