Prof. Dr. D. Rost

Übung zur Vorlesung "Lineare Algebra und analytische Geometrie II (Unterrichtsfach)"

1. a) Sei

$$S_{\varphi} = \begin{pmatrix} \cos \varphi & \sin \varphi \\ \sin \varphi & -\cos \varphi \end{pmatrix}, \qquad D_{\varphi} = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$$

Man bestimme unter Verwendung der Additionstheoreme

$$\cos(\varphi \pm \psi) = \cos\varphi \cos\psi \mp \sin\varphi \sin\psi$$

$$\sin(\varphi \pm \psi) = \sin\varphi \cos\psi \pm \cos\varphi \sin\psi$$

die Matrizen $D_{\varphi} \cdot D_{\psi}$ und $S_{\varphi} \cdot S_{\psi}$ sowie $D_{\varphi} \cdot S_{\psi}$ und $S_{\varphi} \cdot D_{\psi}$ für $\varphi, \psi \in \mathbb{R}$.

- b) Man interpretiere die Ergebnisse von a) geometrisch.
- 2. Im euklidischen (\mathbb{R}^2, \circ) seien $v = \begin{pmatrix} 5 \\ 5 \end{pmatrix}$ und $w = \begin{pmatrix} 1 \\ -7 \end{pmatrix}$ gegeben.
 - a) Man bestimme alle orthogonalen Abbildungen $f: \mathbb{R}^2 \to \mathbb{R}^2$ mit f(v) = w und gebe die Matrizen $A \in \mathbb{R}^{2 \times 2}$ mit $f = \ell_A$ an.
 - b) Welche geometrische Bedeutung besitzen die in a) ermittelten Abbildungen?
- 3. Staatsexamensaufgabe Herbst 2008

Es sei $v_1, v_2, v_3 \in \mathbb{R}^3$ eine Orthonormalbasis. Zeigen Sie, dass es genau eine Drehung $\varphi : \mathbb{R}^3 \to \mathbb{R}^3$ gibt mit

$$\varphi(v_1) = v_2$$
 und $\varphi(v_2) = v_3$.

Bestimmen Sie den Cosinus des Drehwinkels von φ .

Hinweis: Zeigen Sie zuerst, dass für die orthogonale Abbildung $\varphi: \mathbb{R}^3 \to \mathbb{R}^3$ $\varphi(v_3) = \pm v_1$ gelten muss. Zeigen Sie weiterhin, dass $\varphi(v_3) = v_1$ gilt, da es sich bei φ um eine Spiegelung handelt. Den Cosinus des Drehwinkels erhalten Sie mit Hilfe der "Spur-Formel".

4. (Staatsexamensaufgabe Herbst 1990). Der Endomorphismus f des euklidischen \mathbb{R}^2 (versehen mit dem Standardskalarprodukt \circ) habe die Eigenschaft

$$f(x) \circ y = \det(x, y)$$
 für alle $x, y \in \mathbb{R}^2$

Man beweise, daß f eine Drehung des \mathbb{R}^2 ist, und berechne den Drehwinkel. Hinweis: Mit Hilfe von $f(x) \circ y = \det(x, y)$ können Sie f(x) eindeutig bestimmen.

Abgabe bis Freitag, den 10. Juli 2015, 16¹⁵ Uhr (Kästen vor der Bibliothek).