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Abstract

Working within Bishop-style constructive mathematics, we show
that positive-valued, uniformly continuous, convex functions defined
on convex and compact subsets of Rn have positive infimum. This
gives rise to a separation theorem for convex sets. Based on these
results, we show that the fundamental theorem of asset pricing is
constructively equivalent to Markov’s principle. The philosophical
background behind all this is a constructively valid convex version of
Brouwer’s fan theorem. The emerging comprehensive yet concise over-
all picture of assets, infima of functions, separation of convex sets, and
the fan theorem indicates that mathematics in convex environments
has some innate constructive nature.
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1 Introduction

When mathematics is employed to solve real world problems—for instance in
a decision-making process—the derived results should be directly applicable.
But there is an issue: mathematics as we normally practice it is based on the
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law of excluded middle (LEM), which says that either a statement is true or
its negation is true. This rule allows for proving the existence of an object by
merely showing that the assumption of non-existence of that object is false.
In view of applicability, deriving the existence of objects with such indirect
proof methods has the disadvantage that the proof does not tell us how to
find the object, as it only rejects non-existence. This is where constructive
mathematics, which is crudely characterized by not using LEM—or in other
words which is based on intuitionistic rather than classical logic—becomes
important. A constructive existence proof of an object always comes with an
algorithm to compute it. Of course, proving results constructively is often
more challenging than proving the same results with LEM as an admitted
proof tool. For a mathematical theorem the question arises whether there
is a constructive proof of that result, and if not, how far away it is from
being constructive. Constructive reverse mathematics (CRM) addresses this
question.

CRM as we apply it in this survey classifies theorems by logical axioms, that
is fragments of LEM1. Given a theorem, the idea is to find such an axiom
which is sufficient and necessary to prove it constructively. This answers
the question how far away the theorem is from being constructive. The
information obtained is also important from an applied point of view, because
if a theorem is not constructive, we would like to discover a constructive
version of it, typically by requiring some additional initial information. The
constructive version of the fundamental theorem of asset pricing which we
derive at the end of Section 4 is an example for this.

Whereas a fair amount of mathematics has been investigated from a con-
structive point of view, this is not yet the case for the field of financial
mathematics. One reason for this is that constructive mathematics is con-
sidered a foundational or even philosophical issue and thus far away from
highly applied disciplines like finance. However, there are strong arguments
for carefully looking into the proofs of applied theorems, since constructive
proofs are close to algorithms for constructing the desired objects.

As an initial case study we chose to investigate the fundamental theorem of
asset pricing, which says that in absence of arbitrage trading strategies there
exists a martingale measure. This theorem is the backbone of mathematical
finance. Since it is normally proved by means of highly non-constructive
separation results we first assumed that it is far away from being constructive.

1Another view of CRM is to take function existence axioms and induction axioms into
account as well. This is more refined. In a first approach to calibrate theorems of finance,
we chose the ‘simple’ variant.
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However, it turns out to be equivalent to Markov’s principle, which is the
double-negation-elimination for purely existential formulas,

¬¬∃nA(n) → ∃nA(n) , (1)

where A(n) is quantifier-free for each n ∈ N. This principle amounts to
unbounded search and is considered acceptable from a computational point
of view. This equivalence was shown in [4] and is the content of Section 4.
The proofs therein are quite easy. However, this is possible only since the
required mathematical background was outsourced to Section 3.

The equivalence between the fundamental theorem of asset pricing and Markovs
principle is based on the observation that positive-valued, uniformly contin-
uous, convex functions defined on convex and compact subsets of Rn have
positive infimum. This as well as a crucial consequence—a separation theo-
rem for convex sets—was published in [3] and is worked out in Section 3.

In Section 5, which is based on [5], all theses results are traced back to a
novel constructively valid version of Brouwer’s fan theorem. We introduce
co-convexity as a property of subsets B of {0, 1}∗, the set of finite binary
sequences, and prove that co-convex bars are uniform. Moreover, we estab-
lish a canonical correspondence between detachable subsets B of {0, 1}∗ and
uniformly continuous functions f defined on the unit interval such that B is
a bar if and only if the corresponding function f is positive-valued, B is a
uniform bar if and only if f has positive infimum, and B is co-convex if and
only if f satisfies a weak convexity condition.

2 Bishop-style constructive mathematics

Constructive mathematics in the tradition of Errett Bishop [6, 7] is charac-
terised by not using the law of excluded middle as a proof tool. As a major
consequence, properties of the real number line R like the limited principle
of omniscience

LPO ∀x, y ∈ R (x < y ∨ x > y ∨ x = y),

the lesser limited principle of omniscience

LLPO ∀x, y ∈ R (x ≤ y ∨ x ≥ y),

and Markov’s principle(the following formulation of Markov’s principle in
terms of real numbers is equivalent to the formulation (1))

MP ∀x ∈ R (¬ (x = 0) ⇒ |x| > 0)
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are no longer provable propositions but rather considered additional axioms.
Many properties of the reals still hold constructively.

Lemma 1. For all real numbers x, y, z,

1. x = 0 ⇔ |x| = 0

2. x ≥ y ⇔ ¬ (x < y)

3. x = y ⇔ ¬¬ (x = y)

4. x < y ⇒ x < z ∨ z < y

5. |x| · |y| > 0 ⇔ |x| > 0 ∧ |y| > 0

6. |x| > 0 ⇔ x > 0 ∨ x < 0

If R is replaced with Q in the statement of LPO, then the resulting proposi-
tion can be proved constructively. Fix an inhabited subset S of R (inhabited
means that there exists s with s ∈ S) and x ∈ R. The real number x is a
lower bound of S if

∀s ∈ S (x ≤ s)

and the infimum of S if it is a lower bound of S and

∀ε > 0 ∃s ∈ S (s < x+ ε) .

In this case we write x = inf S. The notions upper bound, supremum, and
x = supS are defined analogously. We cannot assume that every inhabited
set with a lower bound has an infimum. However, under some additional con-
ditions, this is the case. See [9, Corollary 2.1.19] for a proof of the following
criterion.

Lemma 2. Let S be an inhabited set of real numbers which has a lower
bound. Assume further that for all p, q ∈ Q with p < q either p is a lower
bound of S or else there exists s ∈ S with s < q. Then S has an infimum.

Set N = {0, 1, 2, . . .}, N+ = {1, 2, . . .}, and R+ = {x ∈ R | x > 0}. For
X ⊆ R, a function h : X → R is weakly increasing if

∀s, t ∈ X (s < t ⇒ f(s) ≤ f(t))

and strictly increasing if

∀s, t ∈ X (s < t ⇒ f(s) < f(t)) .

The properties weakly decreasing and strictly decreasing are defined analo-
gously.
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Lemma 3. For every weakly increasing function h : N→ {0, 1} with h(0) =
0 the set

S =
{

3−k | h(k) = 0
}

has an infimum. If inf S > 0, there exists k such that

1. h(k) = 0

2. h(k + 1) = 1

3. inf S = 3−k.

Moreover,
h(n) = 1 ⇔ inf S ≥ 3−n+1 ⇔ inf S > 3−n

for all n.

Proof. We apply Lemma 2. Note that 1 ∈ S and that 0 is a lower bound of
S. Fix p, q ∈ Q with p < q. If p ≤ 0, p is a lower bound of S. Now assume
that 0 < p. Then there exists k with 2−k < p. If h(k) = 0, there exist s ∈ S
(choose s = 2−k) with s < q. If h(k) = 1, we can compute the minimum s0
of S. If p < s0, p is a lower bound of S; if s0 < q, there exists s ∈ S (choose
s = s0) with s < q.

If inf S > 0, there exists l such that 3−l < inf S. Therefore, h(l) = 1. Let k
be the largest number such that h(k) = 0.

Assume that h(n) = 1. Let l be the largest natural number with h(l) = 0.
Then l ≤ n− 1 and thus inf S = 3−l ≥ 3−n+1.

Assume that inf S > 3−n. Then there exists k with (1), (2), and (3). We
obtain k < n and therefore h(n) = 1.

Let X be a metric space with metric d. Fix ε > 0 and sets D ⊆ C ⊆ X.
D is an ε-approximation of C if for every c ∈ C there exists d ∈ D with
d(c, d) < ε. The set C is

• totally bounded if for every ε > 0 there exist elements x1, . . . , xm of C
such that {x1, . . . , xm} is an ε-approximation of C

• complete if every Cauchy sequence in C has a limit in C

• closed in X if every sequence in C which converges in X also converges
in C

• compact if it is totally bounded and complete
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• located if it is inhabited and if for every x ∈ X the distance

d(x,C) = inf {d(x, c) | c ∈ C}

exists.

If X is complete, a subset C of X is closed in X if and only if it is complete.
Note further that totally bounded sets are inhabited. Totally boundedness
is another crucial criterion for the existence of suprema and infima, see [9,
Proposition 2.2.5].

Lemma 4. If C ⊆ R is totally bounded, then inf C and supC exist.

Lemma 5. Suppose that C is a located subset of X. Then the function

f : X → R, x 7→ d(x,C)

is uniformly continuous.

Proof. Fix x, y ∈ X. For every c ∈ C we have

d(x, c) ≤ d(x, y) + d(y, c).

We obtain
d(x,C) ≤ d(x, y) + d(y, c).

and therefore
d(x,C) ≤ d(x, y) + d(y, C).

This implies
f(x)− f(y) ≤ d(x, y).

We learn from [9, Proposition 2.2.6] that totally boundedness is preserved by
uniformly continuous functions.

Lemma 6. If C ⊆ X is totally bounded and f : C → Y is uniformly
continuous, where Y is also a metric space. Then

{f(x) | x ∈ C}

is totally bounded.

The following combination of Lemma 4 and Lemma 6 is used frequently.
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Lemma 7. If C ⊆ X is totally bounded and f : C → R is uniformly contin-
uous, then the infimum of f ,

inf f = inf {f(x) | x ∈ C}

and the supremum of f ,

sup f = sup {f(x) | x ∈ C}

exist.

We refer to [7, Chapter 4, Proposition 4.4] for a proof of the following result.

Lemma 8. A totally bounded subset C of a metric space X is located.

A subset C of a linear space Z is convex if λx+ (1−λ)y ∈ C for all x, y ∈ C
and λ ∈ [0, 1]. The following lemma is of great importance in Section 3.

Lemma 9. Let Y be an inhabited convex subset of a Hilbert space H and
x ∈ H such that d = d(x, Y ) exists. Then there exists a unique a in the
closure Y of Y such that ‖a− x‖ = d. Furthermore, for all c ∈ Y we have

〈a− x, c− a〉 ≥ 0

and therefore
〈a− x, c− x〉 ≥ d2.

Proof. Fix a sequence (cl) in Y such that ‖cl − x‖ → d. Since

‖cm − cl‖ 2 = ‖(cm − x)− (cl − x)‖ 2 =

2 ‖cm − x‖ 2 + 2 ‖cl − x‖ 2 − 4 ‖cm + cl
2

− x‖ 2︸ ︷︷ ︸
≥4d2

≤

2
(
‖cm − x‖ 2 − d2

)
+ 2

(
‖cl − x‖ 2 − d2

)
,

(cl) is a Cauchy sequence and therefore converges to an a ∈ Y . Since
‖cl − x‖ → ‖a− x‖ , we obtain ‖a− x‖ = d. Now fix b ∈ Y with ‖b− x‖ =
d. Then

‖a− b‖ 2 = ‖(a− x)− (b− x)‖ 2 =

2 ‖a− x‖ 2 + 2 ‖b− x‖ 2 − 4 ‖a+ b

2
− x‖ 2︸ ︷︷ ︸

≥4d2

≤ 0 ,

thus a = b.
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Fix c ∈ Y and λ ∈ (0, 1). Since

‖a− x‖ 2 ≤ ‖(1− λ)a+ λc− x‖ 2 = ‖(a− x) + λ(c− a)‖ 2 =

‖a− x‖ 2 + λ2 ‖c− a‖ 2 + 2λ〈a− x, c− a〉,
we obtain

0 ≤ λ ‖c− a‖ 2 + 2〈a− x, c− a〉 .
Since λ can be arbitrarily small, we can conclude that

〈a− x, c− a〉 ≥ 0 .

This also implies that

〈a− x, c− x〉 = 〈a− x, c− a〉+ 〈a− x, a− x〉 ≥ d2 .

For x, y ∈ Rn, we define the scalar product 〈x, y〉 =
∑n

i=1 xi · yi, the norm

‖x‖ =
√
〈x, x〉, and the metric d(x, y) = ‖y − x‖ .

Vectors x1, . . . , xn ∈ Rn are linearly independent if for all λ ∈ Rn the impli-
cation

n∑
i=1

|λi| > 0 ⇒ ‖
n∑

i=1

λixi‖ > 0

is valid. Such vectors span located subsets [9, Lemma 4.1.2].

Lemma 10. If x1, . . . , xm ∈ Rn are linearly independent, then the set{
m∑
i=1

ξixi | ξ ∈ Rm

}
is closed in Rn and located.

3 Convexity and constructive infima

Fix n ∈ N+. In this section, the variable i denotes elements of {1, . . . , n}. A
function f : C → R, where C is a convex subset of Rn, is called quasi-convex
if

f(λx+ (1− λ)y) ≤ max (f(x), f(y))

for all λ ∈ [0, 1] and x, y ∈ C. Hence, in particular, any convex function
f : C → R — a function is convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for all λ ∈ [0, 1] and x, y ∈ C— is quasi-convex.
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Theorem 1. If C ⊆ Rn is compact and convex and

f : C → R+

is quasi-convex and uniformly continuous, then inf f > 0.

In order to prove Theorem 1, we start with some technical lemmas. For a
subset C of Rn and t ∈ R we define

Ct
i = {x ∈ C | xi = t} .

Lemma 11. Fix a convex subset C of Rn and t ∈ R. Suppose further that
there are y, z ∈ C with yi < t < zi. Then there exists λ ∈ ]0, 1[ such that

λy + (1− λ)z ∈ Ct
i .

Proof. Set λ = zi−t
zi−yi .

We call Ct
i admissible if there exist y, z ∈ C with yi < t < zi.

Lemma 12. Let n > 1. Fix a subset C of Rn and suppose that Ct
i is convex

and compact. Then there exists a convex compact subset Ĉ of Rn−1 and a
uniformly continuous bijection

g : Ĉ → Ct
i

which is affine in the sense that

g(λx+ (1− λ)y) = λg(x) + (1− λ)g(y)

for all λ ∈ [0, 1] and x, y ∈ Ĉ.

Proof. We can assume that i = 1. Set

Ĉ =
{

(x2, . . . , xn) ∈ Rn−1 | (t, x2, . . . , xn) ∈ Ct
1

}
and

g(x2, . . . , xn) = (t, x2, . . . , xn) .

The next lemma is crucial for the proof of Theorem 1, and of interest on its
own.

Lemma 13. If C ⊆ Rn is convex and compact and Ct
i is admissible, then Ct

i

is convex and compact.
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Proof. Let C ⊆ Rn be convex and compact and let Ct
i be admissible. Without

loss of generality, we may assume that t = 0 and i = 1. There exist y, z ∈ C
with y1 < 0 < z1. Define

M = C0
1 , L = {x ∈ C | x1 ≤ 0} , R = {x ∈ C | x1 ≥ 0} .

We show that the sets L, R andM are convex and compact. It is clear that
these sets are convex and complete. By applying Lemma 6 repeatedly, we
show that they are totally bounded as well.
We start with the case of R. Set

κ : R → R, s 7→ max(−s, 0)

and

f : Rn → Rn, x 7→ z1
z1 + κ(x1)

x+
κ(x1)

z1 + κ(x1)
z

and note that

• f is uniformly continuous

• f maps C onto R.

In order to prove the latter, we proceed step by step and show that

1. f(C) ⊆ C

2. f(C) ⊆ R

3. f(C) = R.

The property (1) follows from the convexity of C. In order to show (2), fix
x ∈ C. We show that the assumption that the first component of f(x) is
negative is contradictory. So assume that

z1
z1 + κ(x1)

x1 +
κ(x1)

z1 + κ(x1)
z1 < 0.

Then x1 < 0 and therefore κ(x1) = −x1. We obtain

z1 · x1 − x1 · z1 < 0,

a contradiction. The property (3) follows from the fact that f leaves the
elements of R unchanged. So we have shown that R is totally bounded.
Analogously, we can show that L is totally bounded. Next, we show that

M = f(L),
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which implies that M is totally bounded as well. To this end, fix x ∈ L.
Then κ(x1) = −x1 and therefore

z1
z1 + κ(x1)

x1 +
κ(x1)

z1 + κ(x1)
z1 = 0,

which implies that f(x) ∈M.

The following Lemma 14 basically already proves Theorem 1.

Lemma 14. Fix a convex compact subset C of Rn and suppose that

f : C → R+

is quasi-convex and uniformly continuous. Assume further that

inf
{
f(x) | x ∈ Ct

i

}
> 0

for every admissible Ct
i . Then inf f > 0.

Proof. Note that inf f exists by Lemma 7. We define a sequence (xm) in C
and a binary sequence (λm) such that

• λm+1 = 0 ⇒ λm = 0 and f(xm+1) < min
(
2−(m+1), f(xm)

)
• λm+1 = 1 ⇒ inf f > 0 and xm+1 = xm

for every m. Note that under these conditions the sequence (f(xm)) is weakly
decreasing.

Let x0 be an arbitrary element of C and set λ0 = 0. Assume that xm and
λm have already been defined.

case 1 If λm = 1, set xm+1 = xm and λm+1 = 1.

case 2 If λm = 0 and 0 < inf f , set xm+1 = xm and λm+1 = 1.

case 3 If λm = 0 and

inf f < min
(
2−(m+1), f(xm)

)
,

choose xm+1 in C with

f(xm+1) < min
(
2−(m+1), f(xm)

)
and set λm+1 = 0.

We show that the sequence (xm) converges.
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It is sufficient to show that for each component i the sequence (xmi )m∈N is
a Cauchy sequence. We consider the case i = 1. Fix ε > 0. Let D be the
image of C under the projection onto the first component, i.e.

D = {x1 | x ∈ C} .

Note that D is a totally bounded interval. Denote its infimum by a and its
supremum by b.

case 1 If b− a < ε, then
∣∣xk1 − xl1∣∣ ≤ ε for all k, l.

case 2 If b − a > 0, there exists a finite ε
2
-approximation F of ]a, b[. Note

that for every t with a < t < b the set Ct1 is admissible. Hence, we can choose
an l0 such that

f(x) > 2−l0

for all t ∈ F and all x ∈ Ct1. Fix k, l ≥ l0. We show that
∣∣xk1 − xl1∣∣ ≤ ε.

case 2.1 If λl0 = 1, then xk = xl.

case 2.2 If λl0 = 0, then f(xk) < 2−l0 and f(xl) < 2−l0 . Suppose that
xk1 − xl1 > ε. Then there exists t ∈ F with xk1 < t < xl1. According to
Lemma 11 there is µ ∈ ]0, 1[ such that µxk + (1 − µ)xl ∈ Ct

1, and by quasi-
convexity of f we obtain

f(µxk + (1− µ)xl) ≤ max
(
f(xk), f(xl)

)
< 2−l0

which contradicts the construction of l0. Therefore, xk1−xl1 ≤ ε, and similarly
also xl1 − xk1 ≤ ε.

Let x ∈ C be the limit of the sequence (xm). There exists l such that

f(x) > 2−l

and a k such that

d(x, y) < 2−k ⇒ |f(x)− f(y)| < 2−(l+1)

for all y ∈ C. Finally, pick N > l such that

d(x, xN) < 2−k.

Then f(xN) ≥ 2−N , therefore λN = 1, which implies that inf f > 0.

Proof of Theorem 1. We use induction over the dimension n.

If n = 1, then every admissible set Ct
1 equals {t}, so inf f > 0 follows from

Lemma 14.
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Now fix n > 1 and assume the assertion of Theorem 1 holds for n − 1.
Furthermore, let C be a convex compact subset of Rn, and suppose that

f : C → R+

is convex and uniformly continuous. Fix an admissible subset Ct
i of C. By

Lemma 13, Ct
i is convex and compact. Using Lemma 12 construct the convex

compact set Ĉ ⊆ Rn−1 and the uniformly continuous affine bijection

g : Ĉ → Ct
i .

Then F : Ĉ → R+ given by F = f ◦ g is quasi-convex and uniformly contin-
uous. The induction hypothesis now implies that

inf
{
f(x) | x ∈ Ci

t

}
= inf

{
F (x) | x ∈ Ĉ

}
> 0 .

Thus, inf f > 0 follows from Lemma 14.

Theorem 2. Let C and Y be subsets of Rn and suppose that

1. C is convex and compact

2. Y is convex, complete, and located

3. d(c, y) > 0 for all c ∈ C and y ∈ Y .

Then there exist p ∈ Rn and reals α, β such that

〈p, c〉 < α < β < 〈p, y〉

for all c ∈ C and y ∈ Y . In particular, the sets C and Y are strictly separated
by the hyperplane

H = {x ∈ Rn | 〈p, x〉 = γ} ,

with γ = 1
2
(α + β).

Proof. By Lemma 5, the function

f : C → R, c 7→ d(c, Y )

is uniformly continuous. Since Y is closed, Lemma 9 implies that for every
c ∈ C there is a unique y ∈ Y with

f(c) = d(c, y).
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Therefore, f is positive-valued and also convex, as we can see as follows. Fix
c1, c2 ∈ C and λ ∈ [0, 1]. There are y0, y1, y2 ∈ Y such that

f(c1) = d(c1, y1) , f(c2) = d(c2, y2) ,

and
f(λc1 + (1− λ)c2) = d(λc1 + (1− λ)c2, y0) .

We obtain

f(λc1 + (1− λ)c2) = d(λc1 + (1− λ)c2, y0)

≤ d(λc1 + (1− λ)c2, λy1 + (1− λ)y2)

≤ λd(c1, y1) + (1− λ)d(c2, y2)

= λf(c1) + (1− λ)f(c2) .

By Theorem 1, inf f > 0. The set

Z = {y − c | x ∈ C, y ∈ Y }

is inhabited and convex. Since we have

inf { ‖y − c‖ | x ∈ C, y ∈ Y } = inf f ,

we can conclude that δ = d(0, Z) exists and is positive. By Lemma 9, there
exists p ∈ Rn such that

〈p, y〉 ≥ δ2 + 〈p, c〉

for all y ∈ Y and c ∈ C. By Lemma 7, η = sup {〈p, c〉 | c ∈ C} exists. Setting

α =
δ2

3
+ η and β =

δ2

2
+ η ,

we obtain
〈p, c〉 < α < β < 〈p, y〉

for all c ∈ C and y ∈ Y .

4 The fundamental theorem of asset pricing

Fix m,n ∈ N+. Set In = {1, . . . , n}. In this section, the variable i always
stands for an element of Im and the variable j always stands for an element
of In. The linear space of real matrices A with m rows and n columns is
denoted by Rm×n. For such an A, we denote its entry at row i and column
j by aij. For l ∈ N+ and B ∈ Rn×l, we denote the matrix product of A and
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B (which is an element of Rm×l) by A · B. Let C be the convex hull of the
unit vectors of Rn.

Our market consists of m assets. Their value at time 0 (present) is known.
Their value at time 1 (future) is unknown. There are n possible developments
and we know the prices in each of the n cases. Define a matrix A ∈ Rm×n as
follows: the value of the entry aij is the price development (price at time 1
minus price at time 0) of asset i in case j. Set

P =
{
p ∈ Rn |

∑m
j=1 pj = 1 and 0 < pj for all j

}
.

A vector p ∈ P is a martingale measure if A · p = 0. Under a martingale
measure the average profit is zero, that is todays price of the assets is rea-
sonable in the sense of being the expected value of the assets tomorrow. For
x ∈ Rn we define

x > 0 :⇔ ∀j (xj ≥ 0) ∧ ∃j (xj > 0) .

A vector ξ ∈ Rm is an arbitrage trading strategy if ξ · A > 0.
Note that every ξ ∈ Rm corresponds to a trading strategy, where ξi denotes
the number of shares of asset i that the trader buys. Hence, the payoff at
time 1 over all possible future scenarios is ξ · A. Thus arbitrage strategies
are trading strategies which correspond to riskless gains, since they never
produce any losses, and even a strict gain for at least one possible future
scenario.
The fundamental theorem of asset pricing says that the absence of an arbi-
trage trading strategy is equivalent to the existence of a martingale measure.

FTAP Fix an Rm×n-matrix A with linearly independent rows. Then

¬∃ξ ∈ Rm (ξ · A > 0) ⇔ ∃p ∈ P (A · p = 0) .

Note that “⇐” is clear: assume there exist both p in P with A · p = 0 and ξ
in Rm with ξ ·A > 0. Then from A · p = 0 we can conclude that ξ ·A · p = 0
and from ξ · A > 0 and p ∈ P we can conclude that ξ · A · p > 0. This is a
contradiction.

Theorem 3.
FTAP⇔ MP

Proof. Fix an Rm×n-matrix A such that

¬∃ξ ∈ Rm (ξ · A > 0) .
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Let Y be the linear subspace of Rn which is generated by the rows of A.
This set is convex. Since we have assumed that the rows of A are linearly
independent, we can conclude from Lemma 10 that Y is convex, closed, and
located. The set C is convex and compact. By MP, we obtain

∀c ∈ C, y ∈ Y (d(c, y) > 0) .

By Theorem 2, there exists a vector p ∈ Rn and reals α, β such that

∀y ∈ Y, c ∈ C (〈p, c〉 > α > β > 〈p, y〉) .

This implies that A · p = 0 and that all components of p are positive. We
can assume further that p1 + . . .+ pn = 1.

In order to prove the converse direction, fix a real number a with ¬(a = 0).
Apply FTAP to the matrix

A = (|a| ,−1).

Note that A has linearly independent rows. The no-arbitrage condition is
satisfied: assume that there exists ξ ∈ R with

(ξ · |a| ,−ξ) > 0. (2)

We obtain that ξ ·|a| ≥ 0 and ξ ≤ 0, which implies that ξ = 0, a contradiction
to (2). Now FTAP yields the existence of a p ∈ P with

p1 · |a| = p2.

This implies that |a| > 0.

Note that we obtain the following constructively valid version of FTAP, see
[4, Corollary 3].

Theorem 4. Fix an Rm×n-matrix A with linearly independent rows. Then

∀c ∈ C, ξ ∈ Rm (d(c, ξ · A) > 0 ⇒ ∃p ∈ P (A · p = 0)) .

This theorem says that we can construct a martingale measure if we exclude
the existence of arbitrage strategies in a stricter way.
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5 Brouwer’s fan theorem and convexity

We write {0, 1}∗ for the set of all finite binary sequences u, v, w. Let ø be
the empty sequence and let {0, 1}N be the set of all infinite binary sequences
α, β, γ. For every u let |u| be the length of u, that is |ø| = 0 and for u =
(u0, . . . , un−1) we have |u| = n. For v = (v0, . . . , vm−1), the concatenation
u ∗ v of u and v is defined by

u ∗ v = (u0, . . . , un−1, v0, . . . , vm−1).

The restriction αn of α to n bits is given by

αn = (α0, . . . , αn−1).

Thus |αn| = n and α0 = ø. For u with n ≤ |u|, the restriction un is defined
analogously. A subset B of {0, 1}∗ is closed under extension if u∗v ∈ B for all
u ∈ B and for all v. A sequence α hits B if there exists n such that αn ∈ B.
B is a bar if every α hits B. B is a uniform bar if there exists N such that
for every α there exists n ≤ N such that αn ∈ B. Often one requires B to
be detachable, that is for every u the statement u ∈ B is decidable. Now we
are ready to introduce Brouwer’s fan theorem for detachable bars.

FAN Every detachable bar is a uniform bar.

In Bishop’s constructive mathematics, FAN is neither provable nor falsifiable,
see [8, Section 3 of Chapter 5]. In their seminal paper [11], Julian and
Richman established a correspondence between FAN and functions on [0, 1]
as follows.

Proposition 1. For every detachable subset B of {0, 1}∗ there exists a uni-
formly continuous function f : [0, 1]→ [0,∞[ such that

1. B is a bar ⇔ f is positive-valued

2. B is a uniform bar ⇔ f has positive infimum.

Conversely, for every uniformly continuous function f : [0, 1]→ [0,∞[ there
exists a detachable subset B of {0, 1}∗ such that (1) and (2) hold.

Consequently, FAN is equivalent to the statement that every uniformly con-
tinuous, positive-valued function defined on the unit interval has positive
infimum. Now, in view of Theorem 1, the question arises whether there is
a constructively valid ‘convex’ version of the fan theorem. To this end, we
define

u < v :⇔ |u| = |v| ∧ ∃k < |u| (uk = vk ∧ uk = 0 ∧ vk = 1)
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and
u ≤ v :⇔ u = v ∨ u < v.

A subset B of {0, 1}∗ is co-convex if for every α which hits B there exists n
such that either

{v | v ≤ αn} ⊆ B or {v | αn ≤ v} ⊆ B .

Note that, for detachable B, co-convexity follows from the convexity of the
complement of B, where C ⊆ {0, 1}∗ is convex if for all u, v, w we have

u ≤ v ≤ w ∧ u,w ∈ C ⇒ v ∈ C.

Define the upper closure B′ of B by

B′ = {u | ∃k ≤ |u| (uk ∈ B)} .

Note that B is a (detachable) bar if and only if B′ is a (detachable) bar and
B is a uniform bar if and only B′ is a uniform bar. Therefore, we may assume
that bars are closed under extension.

Theorem 5. Every co-convex bar is a uniform bar.

Proof. Fix a co-convex bar B. Since the upper closure of B is also co-convex,
we can assume that B is closed under extension. Define

C = {u | ∃n ∀w ∈ {0, 1}n (u ∗ w ∈ B)} .

Note that B ⊆ C and that C is closed under extension as well. Moreover, B
is a uniform bar if and only if there exists n such that {0, 1}n ⊆ C.
First, we show that

∀u∃i ∈ {0, 1} (u ∗ i ∈ C) . (3)

Fix u. For
β = u ∗ 1 ∗ 0 ∗ 0 ∗ 0 ∗ . . .

there exist an l such that either{
v | v ≤ βl

}
⊆ B,

or {
v | βl ≤ v

}
⊆ B.

Since B is closed under extension, we can assume that l > |u| + 1. Let
m = l − |u| − 1. If

{
v | v ≤ βl

}
⊆ B, we can conclude that

u ∗ 0 ∗ w ∈ B
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for every w of length m, which implies that u ∗ 0 ∈ C. If
{
v | βl ≤ v

}
⊆ B,

we obtain
u ∗ 1 ∗ w ∈ B

for every w of length m, which implies that u ∗ 1 ∈ C. This concludes the
proof of (3).

By countable choice, there exists a function F : {0, 1}∗ → {0, 1} such that

∀u (u ∗ F (u) ∈ C) .

Define α by
αn = 1− F (αn).

Next, we show by induction on n that

∀n∀u ∈ {0, 1}n (u 6= αn⇒ u ∈ C) . (4)

If n = 0, the statement clearly holds, since in this case the statement u 6= αn
is false. Now fix some n such that (4) holds. Moreover, fix w ∈ {0, 1}n+1

such that w 6= α(n+ 1).

case 1. wn 6= αn. Then wn ∈ C and therefore w ∈ C.

case 2. w = αn ∗ (1− αn) = αn ∗ F (αn). This implies w ∈ C. So we have
established (4).

There exists n such that αn ∈ B. Applying (4) to this n, we can conclude
that every u of length n is an element of C, thus B is a uniform bar.

Remark. Note that we do not need to require that the co-convex bar in The-
orem 5 is detachable.

In order to include convexity in the list of Proposition 1, we introduce a
notion of weakly convex functions. Let S be a subset of R. A function
f : S → R is weakly convex if for all t ∈ S with f(t) > 0 there exists ε > 0
such that either

∀s ∈ S (s ≤ t ⇒ f(s) ≥ ε)

or
∀s ∈ S (t ≤ s ⇒ f(s) ≥ ε) .

Remark. Fix a dense subset D of [0, 1]. A uniformly continuous function
f : [0, 1] → R is weakly convex if and only its restriction to D is weakly
convex.

The following generalisation of Proposition 1 links Theorem 1 with Theorem
5.
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Theorem 6. For every detachable subset B of {0, 1}∗ which is closed under
extension there exists a uniformly continuous function f : [0, 1] → R such
that

1. B is a bar ⇔ f is positive-valued

2. B is a uniform bar ⇔ inf f > 0

3. B is co-convex ⇔ f is weakly convex.

Conversely, for every uniformly continuous function f : [0, 1] → R there
exists a detachable subset B of {0, 1}∗ which is closed under extension such
that (1), (2), and (3) hold.

We split the proof of Theorem 6 into two parts.

Part I: Construction of a function f for given B

Fix a detachable subset B of {0, 1}∗ which is closed under extension. We can
assume that ø /∈ B. (Otherwise, let f be the constant function t 7→ 1.) First,
we define a function g : [0, 1] → R which satisfies the properties (1) and (2)
of Theorem 6. Then, we introduce a refined version f of g which satisfies all
properties of Theorem 6. Define metrics

d1(s, t) = |s− t|, d2((x1, x2), (y1, y2)) = |x1 − y1|+ |x2 − y2|

on R and R2, respectively. The mapping

(α, β) 7→ inf
{

2−k | αk = βk
}

is a compact metric on {0, 1}N. See [8, Section 1 of Chapter 5] for an introduc-
tion to basic properties of this metric space. Define a uniformly continuous
function κ : {0, 1}N → [0, 1] by

κ(α) = 2 ·
∞∑
k=0

αk · 3−(k+1).

The next lemma immediately follows from the definition of κ.

Lemma 15. For all α, β and n, we have

• αn = βn ⇒ |κ(α)− κ(β)| ≤ 3−n

• αn = βn ∧ αn < βn ⇒ κ(α) + 3−(n+1) ≤ κ(β)
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• αn 6= βn ⇒ |κ(α)− κ(β)| ≥ 3−n

• αn < βn ⇒ κ(α) < κ(β).

Now define

ηB : {0, 1}N → [0, 1] , α 7→ inf
{

3−k | αk /∈ B
}
.

The following lemma is an immediate consequence of Lemma 3.

Lemma 16. The function ηB is well-defined—the infimum in the definition
of ηB always exists—and uniformly continuous. If ηB(α) > 0, there exists k
such that

1. αk /∈ B

2. α(k + 1) ∈ B

3. ηB(α) = 3−k.

Moreover,
αn ∈ B ⇔ ηB(α) ≥ 3−n+1 ⇔ ηB(α) > 3−n

for all α and n.

Set
C =

{
κ(α) | α ∈ {0, 1}N

}
and

K =
{

(κ(α), ηB(α)) | α ∈ {0, 1}N
}
.

Lemma 17. The sets C and K are compact.

Proof. Both sets are uniformly continuous images of the compact set {0, 1}N
and therefore totally bounded, by Lemma 6. Suppose that κ(αn) converges
to t and ηB(αn) converges to s. By Lemma 15, the sequence (αn) is Cauchy,
therefore it converges to a limit α. Then κ(αn) converges to κ(α) and ηB(αn)
converges to ηB(α). Therefore t = κ(α) and s = ηB(α). Thus we have shown
that both C and K are complete.

In the following, we will use Bishop’s lemma, see [7, Ch. 4, Lemma 3.8].

Lemma 18. Let A be a complete, located subset of a metric space X, and x
a point of X. Then there exists a point a in A such that d(x, a) > 0 entails
d(x,A) > 0.
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Define
g : [0, 1]→ [0,∞[ , t 7→ d2((t, 0), K).

Proposition 2. 1. B is a bar ⇔ g is positive-valued

2. B is a uniform bar ⇔ inf g > 0

Proof. Assume that B is a bar. Fix t ∈ [0, 1]. In view of Bishop’s lemma
and the compactness of K, it is sufficient to show that

d2((t, 0), (κ(α), ηB(α))) > 0

for each α. This follows from ηB(α) > 0.

Now assume that g is positive-valued. Fix α. Since

d2((κ(α), 0), K) = g(κ(α)) > 0,

we can conclude that

d2((κ(α), 0), (κ(α), ηB(α))) > 0.

Thus ηB(α) is positive which implies that α hits B.

The second equivalence follows from Lemma 16 and the fact that inf g =
inf ηB.

Set
−C = {t ∈ [0, 1] | d1(t, C) > 0} .

We would like to include the statement

• B is co-convex ⇔ g is weakly convex

into Proposition 2. Note, however, that g is positive on −C. Thus we
introduce a new function f by

f : [0, 1]→ R, t 7→ g(t)− d1(t, C).

The next lemma lists up a few properties of f and g.

Lemma 19. For all α, n, and t we have

• g(κ(α)) = f(κ(α)) ≤ ηB(α)

• f(κ(α)) > 3−n ⇒ αn ∈ B

• αn ∈ B ⇒ f(κ(α)) ≥ 3−n
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• d1(t, C) ≤ g(t).

Next, we clarify how f behaves on −C.

Lemma 20. The set −C is dense in [0, 1]. For every t ∈ −C there exist
unique elements a, a′ of C such that

1. t ∈ ]a, a′[ ⊆ −C.

2. d1(t, C) = min (d1(t, a), d1(t, a
′)) .

Moreover, setting γ = κ−1(a) and γ′ = κ−1(a′), we obtain

3. ∀n
(
γn ∈ B ∧ γ′n ∈ B ⇒ f(t) ≥ 3−n

)
4. if d1(t, a) < d1(t, a

′), then

γ hits B ⇔ f(t) > 0 ⇔ inf {f(s) | a ≤ s ≤ t} > 0

5. if d1(t, a
′) < d1(t, a), then

γ′ hits B ⇔ f(t) > 0 ⇔ inf {f(s) | t ≤ s ≤ a′} > 0.

Proof. Fix t ∈ [0, 1] and δ > 0. If d1(t, C) > 0, then t ∈ −C. Now assume
that there exists α such that d1(t, κ(α)) < δ/2. There exists u such that
d1(κ(α), tu) < δ/2 where

tu = 1
2
· κ(u ∗ 0 ∗ 1 ∗ 1 ∗ 1 ∗ . . .) + 1

2
· κ(u ∗ 1 ∗ 0 ∗ 0 ∗ 0 ∗ . . .).

Note that tu ∈ −C and that d1(t, tu) < δ. So −C is dense in [0, 1].

Fix t ∈ −C. Since for any α it is decidable whether κ(α) > t or κ(α) < t,
the sets C<t = {s ∈ C | s < t} and C>t = {s ∈ C | s > t} are compact. Let
a be the maximum of C<t and let a′ be the minimum of C>t. Clearly, a and
a′ fulfil (1) and (2).

In order to show (3), assume that γn ∈ B and γ′n ∈ B. Fix α. We show
that

d2((t, 0), (κ(α), ηB(α)))− d1(t, C) ≥ 3−n. (5)

First, assume that κ(α) < t. Then we have

d2((t, 0), (κ(α), ηB(α)))− d1(t, C) ≥ κ(γ)− κ(α) + ηB(α).

If αn = γn, then αn ∈ B and we can conclude that ηB(α) ≥ 3−n+1, by
Lemma 16. On the other hand, Lemma 15 implies that κ(γ) − κ(α) ≤ 3−n.
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This proves (5). If αn 6= γn, then κ(γ) − κ(α) ≥ 3−n, by Lemma 15. This
also proves (5). The case t < κ(α) can be treated similarily.

In order to show (4), set ι = d1(t, a
′)−d1(t, a) and suppose that γn ∈ B. Set

ε = min (ι, 3−n). Fix s with a ≤ s ≤ t. We show that f(s) ≥ ε. Note that
d1(s, C) = s− a. Fix α. We show that

d2((s, 0), (κ(α), ηB(α)))− (s− a) ≥ ε.

If a′ ≤ κ(α), we obtain

d2((s, 0), (κ(α), ηB(α)))− (s− a) ≥

κ(α)− s− (s− a) ≥ ι ≥ ε.

If κ(α) ≤ a, we obtain

d2((s, 0), (κ(α), ηB(α)))− (s− a) = s− κ(α) + ηB(α)− (s− a) =

ηB(α) + a− κ(α) ≥ 3−n ≥ ε,

where ηB(α) + a − κ(α) ≥ 3−n is derived by looking at the cases αn = γn
and αn 6= γn separately.

Now assume that f(t) > 0. We show that γ hits B. If f(t) > 0, then
g(t) > t− a. On the other hand, we have

g(t) ≤ d2((t, 0), (a, ηB(γ))) = t− a+ ηB(γ),

so ηB(γ) > 0. By Lemma 16, this implies that γ hits B.

The statement (5) is proved analogously to (4).

The next lemma is very easy to prove, we just formulate it to be able to refer
to it.

Lemma 21. For real numbers x < y < z and δ > 0 there exists a real
number y′ such that

• x < y′ < z

• d1(y, y′) < δ

• d1(x, y′) < d1(y
′, z) or d1(x, y

′) > d1(y
′, z).

For a function F defined on {0, 1}N, set

F (u) = F (u ∗ 0 ∗ 0 ∗ 0 ∗ . . .). (6)

Now we can show that f has all the desired properties.
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Proposition 3. 1. B is a bar ⇔ f is positive-valued

2. B is a uniform bar ⇔ inf f > 0

3. B is co-convex ⇔ f is weakly convex.

Proof. (1) “⇒”. Suppose that B is a bar and fix t. By Proposition 2, we
obtain g(t) > 0. If d1(t, C) < g(t), then f(t) > 0, by the definition of f . If
0 < d1(t, C), we can apply Lemma 20 to conclude that f(t) > 0.

(1) “⇐”. If f is positive-valued, then g is positive-valued as well and Propo-
sition 2 implies that B is a bar.

(2) “⇒”. If B is a uniform bar, Proposition 2 yields

ε := inf g > 0.

Moreover, there exists n such that {0, 1}n ⊆ B. Fix δ > 0 such that

|s− t| < δ ⇒ |f(s)− f(t)| < ε/2

for all s and t. Fix t. If d1(t, C) < δ, we can conclude that

f(t) ≥ ε/2

by the choice of ε and δ. If d1(t, C) > 0, Lemma 20 and {0, 1}n ⊆ B imply
that

f(t) ≥ 3−n.

So we have shown that inf f ≥ min (ε/2, 3−n) .

(2) “⇐”. If inf f > 0, then inf g > 0, and Proposition 2 implies that B is a
uniform bar.

(3) “⇒”. In view of Remark 5 and Lemma 20, it is sufficient to show that
the restriction of f to −C is weakly convex. Fix t ∈ −C and assume that
f(t) > 0. Choose a, a′, γ and γ′ according to Lemma 20. In view of Lemma
21 and the uniform continuity of f , we may assume without loss of generality
that either

d1(a, t) < d1(t, a
′) or d1(a, t) > d1(t, a

′).

Consider the first case. The second case can be treated analogously. By
Lemma 20, we obtain

ι = inf {f(s) | a ≤ s ≤ t} > 0.

In particular, f(κ(γ)) > 0, so γ hits B. There exists n such that either

{v | v ≤ γn} ⊆ B (7)
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or
{v | γn ≤ v} ⊆ B . (8)

Set ε = min (ι, 3−n) . In case (7), we show that

∀s ∈ −C (s ≤ t ⇒ f(s) ≥ ε) ,

as follows. Assume that there exists s ∈ −C with s ≤ t such that f(s) < ε.
Then, by the definition of ι, we obtain that s < a. Applying Lemma 20
again, we can choose α and α′ such that

s ∈ ]κ(α), κ(α′)[ ⊆ −C.

Then αn ≤ α′n ≤ γn. Thus both αn and α′n are in B. This implies
f(s) ≥ 3−n, which is a contradiction. In case (8), a similar argument yields

∀s ∈ −C (t ≤ s ⇒ f(s) ≥ ε) .

(3) “⇐”. Assume that f is weakly convex. Fix α and suppose that α hits
B. Then Lemma 19 implies that f(κ(α)) > 0. There exists n with αn ∈ B
such that

∀s
(
s ≤ κ(α) ⇒ f(s) > 3−n

)
or

∀s
(
κ(α) ≤ s ⇒ f(s) > 3−n

)
.

Assume the first case. Fix v with v ≤ αn. Then κ(v) ≤ κ(α). If v /∈ B,
then, by Lemma 16 and Lemma 19,

f(κ(v)) = g(κ(v)) ≤ ηB(v) ≤ 3−n.

This contradiction shows that

{v | v ≤ αn} ⊆ B.

Now, consider the second case. Fix v with αn < v. Then κ(α) ≤ κ(v). If
v /∈ B, then f(κ(v)) ≤ 3−n. This contradiction shows that

{v | αn ≤ v} ⊆ B.
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Part II: Construction of a set B for given f

Set

κ′ : {0, 1}N → [0, 1] , α 7→
∞∑
k=0

αk · 2−(k+1).

One cannot prove that κ′ is surjective, since this would imply LLPO. Note,
however, that every rational q ∈ [0, 1] is in the range of κ′. Moreover, we
make use of the following lemma, see [1, Lemma 1].

Lemma 22. Let S be a subset of [0, 1] such that

∀α ∃ε > 0∀t ∈ [0, 1] (|t− κ′(α)| < ε⇒ t ∈ S) .

Then S = [0, 1].

The next lemma is a typical application of Lemma 22.

Lemma 23. Fix a uniformly continuous function f : [0, 1]→ R and define

F : {0, 1}N → R, α 7→ f(κ′(α)).

Then

1. f is positive-valued ⇔ F is positive-valued

2. inf f > 0 ⇔ inf F > 0.

Proof. In (1), the direction “⇒” is clear. For “⇐”, apply Lemma 22 to the
set

S = {t ∈ [0, 1] | f(t) > 0} .

The equivalence (2) follows from the density of the image of κ′ in [0, 1] and
the uniform continuity of f .

In the following proposition, we use a similar construction as in [2].

Proposition 4. For every uniformly continuous function

f : [0, 1]→ R

there exists a detachable subset B of {0, 1}∗ which is closed under extension
such that

1. B is a bar ⇔ f is positive-valued

2. B is a uniform bar ⇔ inf f > 0
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3. B is co-convex ⇔ f is weakly convex.

Proof. Since the function

F : {0, 1}N → R, α 7→ f(κ′(α))

is uniformly continuous, there exists a strictly increasing function M : N→ N
such that

|F (α)− F (α(M(n)))| < 2−n

for all α and n, recalling the convention given in (6). Since M is strictly
increasing, for every k the statement

∃n (k = M(n))

is decidable. Therefore, for every u we can choose λu ∈ {0, 1} such that

λu = 0 ⇒ ∀n (|u| 6= M(n)) ∨ ∃n
(
|u| = M(n) ∧ F (u) < 2−n+2

)
λu = 1 ⇒ ∃n

(
|u| = M(n) ∧ F (u) > 2−n+1

)
.

The set
B = {u ∈ {0, 1}∗ | ∃l ≤ |u| (λul = 1)}

is detachable and closed under extension. Note that

F (α) ≥ 2−n+3 ⇒ α(M(n)) ∈ B (9)

and
α(M(n)) ∈ B ⇒ F (α) ≥ 2−n (10)

for all α and n. In view of Lemma 23, (9) and (10) yield (1) and (2).

In order to show (3), fix a co-convex set B. Moreover, fix t ∈ [0, 1] and assume
that f(t) > 0. By Remark 5, we may assume that t is a rational number,
which implies that there exists α such that κ′(α) = t. Now F (α) > 0 implies
that α hits B. Therefore, there exists n such that either

{v | v ≤ αn} ⊆ B

or
{v | αn ≤ v} ⊆ B.

In the first case, we show that

inf {f(s) | s ∈ [0, t]} ≥ min
(
2−n, F (α)

)
. (11)
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Assume that there exists s ≤ t such that f(s) < 2−n and f(s) < F (α). The
latter implies that s < t. Choose a β with the property that κ′(β) is close
enough to s such that

κ′(β) < κ′(α) (12)

and
F (β) = f(κ′(β)) < 2−n. (13)

Now (10) and (13) imply that βn /∈ B. On the other hand, (12) implies that
βn ≤ αn and therefore βn ∈ B. This is a contradiction, so we have shown
(11).

In the case
{v | αn ≤ v} ⊆ B

we can similarly show that

inf {f(s) | s ∈ [t, 1]} ≥ min
(
2−n, F (α)

)
.

Now assume that f is weakly convex. Fix an α which hits B. Then there
exists n with α(M(n)) ∈ B and (10) implies that f(κ′(α)) > 0. We choose
n large enough such that either

inf {f(t) | t ∈ [0, κ′(α)]} ≥ 2−n+3

or
inf {f(t) | t ∈ [κ′(α), 1]} ≥ 2−n+3.

By (9), we obtain
{v | v ≤ α(M(n))} ⊆ B

in the first case and
{v | α(M(n)) ≤ v} ⊆ B.

in the second. Therefore, B is co-convex.

Thus the proof of Theorem 6 is completed. We conclude this section with a
discussion about weakly convex functions.

Remark. Uniformly continuous, (quasi-)convex functions f : [0, 1]→ R are
weakly convex. To this end, we recall that f is convex if we have

f(λs+ (1− λ)t) ≤ λf(s) + (1− λ)f(t)

and quasiconvex if we have

f(λs+ (1− λ)t) ≤ max (f(s), f(t))
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for all s, t ∈ [0, 1] and all λ ∈ [0, 1]. Clearly, convexity implies quasi-
convexity. Now assume that f is quasi-convex. Fix t ∈ [0, 1] and assume
that f(t) > 0. Set ε = f(t)/2. The assumption that both

inf{f(s) | s ∈ [0, t]} < f(t) and inf{f(s) | s ∈ [t, 1]} < f(t)

is absurd, because in that case by uniform continuity there exists s < t < s′

such that f(s) < f(t) and f(s′) < f(t). Compute λ ∈ (0, 1) such that
t = λs + (1 − λ)s′, and note that quasi-convexity of f implies f(t) ≤
max (f(s), f(s′)) < f(t) which is absurd. Hence, either inf{f(s) | s ∈
[0, t]} > ε or inf{f(s) | s ∈ [t, 1]} > ε.

Pointwise continuous functions on [0, 1] which are weakly decreasing on [0, s]
and weakly increasing on [s, 1] for some s are weakly convex. See [10] for a
detailed discussion of various notions of convexity.

If f is weakly convex, then the set {t | f(t) ≤ 0} is convex. With classical
logic, the reverse implication holds as well, if f is continuous. This illustrates
that weak convexity is indeed a convexity property.
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[10] Lars Hörmander, Notions of Convexity. Birkhäuser (2007) 416pp.
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