Discrete Probability

1. Correlation length. Let $\xi(p)$ denote the correlation length. Using the relevant bounds on $P_{p}(0 \longleftrightarrow(n, 0, \ldots, 0))$ and $P_{p}\left(0 \longleftrightarrow \partial \Lambda_{n}\right)$ proven in the lecture, show the following:
(a) For any $x \in \mathbb{Z}^{d}$ and $p \leq p_{c}$, there is $c>0$ such that

$$
\frac{1}{c\|x\|_{\infty}^{4 d(d-1)}} \exp \left\{-\|x\|_{1} / \xi_{p}\right\} \leq P_{p}(0 \longleftrightarrow x) \leq \exp \left\{-\|x\|_{\infty} / \xi_{p}\right\}
$$

(b) Find an algebraic lower bound on $P_{p_{c}}\left(0 \longleftrightarrow \partial \Lambda_{n}\right)$ from the proof of Theorem 3.9, and deduce that $\xi\left(p_{c}\right)=\infty$.
(c) Show continuity of $p \mapsto \xi(p)$ by verifying that it is both upper and lower semicontinuous on ($0, p_{c}$) (as decreasing resp. increasing limit of continuous functions).
(d) Verify that $p \mapsto \xi(p)$ is increasing on $\left[0, p_{c}\right]$. Furthermore, show that it is strictly increasing on $\left[0, p_{c}\right]$.
2. An explicit value. For bond percolation on the square lattice \mathbb{Z}^{2}, show that

$$
\mathbb{P}_{1 / 2}((0,0) \leftrightarrow(1,0))=\frac{3}{4}
$$

3. One-arm probability in two dimensions. Consider site percolation on the triangular lattice \mathbb{T}, and let $\Lambda(n)$ denote the ball of radius n (in graph distance) centered at the origin. Use the RSW theorem to show that

$$
c n^{-\alpha} \leq P_{1 / 2}\left(0 \longleftrightarrow \partial \Lambda_{n}\right) \leq C n^{-\beta}, \quad n \geq 1
$$

for suitable constants $c, C, \alpha, \beta>0$.

