Discrete Probability

Note: Parts of Exercise 1 return in different form on the next exercise sheet.

1. The correlation length. Fix $d \geq 2$ and set $e_{1}=(1,0, \ldots, 0)$.
(a) Prove that, for any $p \in[0,1], n, m \geq 0$,

$$
P_{p}\left(0 \longleftrightarrow(m+n) e_{1}\right) \geq P_{p}\left(0 \longleftrightarrow m e_{1}\right) \cdot P_{p}\left(0 \longleftrightarrow n e_{1}\right) .
$$

(b) Deduce that $\xi(p)=\left(\lim _{n \rightarrow \infty}-\frac{1}{n} \log P\left(0 \longleftrightarrow n e_{1}\right)^{-1}\right.$ exists (the "correlation length"), and furthermore $P_{p}\left(0 \longleftrightarrow n e_{1}\right) \leq \exp \{-n / \xi(p)\}$.
(c) Assuming $0 \longleftrightarrow \partial \Lambda_{n+m}$, show that there exists $x \in \partial \Lambda_{n}$ such that $\{0 \longleftrightarrow x\} \circ$ $\left\{x \longleftrightarrow x+\partial \Lambda_{m}\right\}$. Deduce that for all n, m,

$$
P_{p}\left(0 \longleftrightarrow \partial \Lambda_{n+m}\right) \leq\left|\partial \Lambda_{n}\right| P_{p}\left(0 \longleftrightarrow \partial \Lambda_{n}\right) P_{p}\left(0 \longleftrightarrow \partial \Lambda_{m}\right)
$$

Further, show that $P_{p}\left(0 \longleftrightarrow \partial \Lambda_{n}\right) \geq \frac{e^{-n / \xi(p)}}{2^{d} d(2 n+1)^{d-1}}$.
(d) Show that for every $n \in \mathbb{N}, x \in \partial \Lambda_{n}$,

$$
\xi(p) \geq \frac{n}{-\log P_{p}\left(0 \stackrel{\Lambda_{n}}{\longleftrightarrow} x\right)}
$$

Deduce that $\lim _{p \not p_{c}} \xi(p)=\infty$, and show that $p \mapsto \xi(p)$ is continuous on $\left[0, p_{c}\right)$.
(e) Prove that, for any $x \in \partial \Lambda_{n}$,

$$
P_{p}\left(0 \longleftrightarrow 2 n e_{1}\right) \geq P_{p}(0 \longleftrightarrow x)^{2}
$$

Deduce that

$$
P_{p}(0 \longleftrightarrow x) \geq \frac{c}{\|x\|_{\infty}^{2 d(d-1)}} \exp \left\{-\|x\|_{\infty} / \xi_{p}\right\}
$$

(f) Finally, deduce that for any $x \in \mathbb{Z}^{d}$,

$$
P_{p_{c}}(0 \longleftrightarrow x) \geq \frac{c}{\|x\|_{\infty}^{2 d(d-1)}}
$$

This shows an algebraic lower bound for connection probabilities at p_{c}, and is in contrast to the exponential decay when $p<p_{c}$. Much more precise estimates are known for $x=n e_{1}$. These "Ornstein-Zernike-estimates" state that there exists $c=c(p)>0$ such that

$$
P_{p}\left(0 \longleftrightarrow n e_{1}\right)=\frac{c}{n^{(d-1) / 2}} \exp (n / \xi(p))(1+o(1))
$$

2. Percolation on the binary tree. Denote by \mathcal{T} the infinite tree where every vertex has exactly three neighbors. Aim of this exercise is to show that $p_{c}(\mathcal{T})=1 / 2$.
(a) Show $p_{c} \geq 1 / 2$ using a path-counting argument.
(b) Observe the following: For any finite connected subgraph G of \mathcal{T}, denote by e_{G} the number of edges inside G, and by b_{G} the number of boundary edges (an edge b is a boundary edge if one of its endpoints belongs to G, and the other does not). Then $e_{G}=b_{G}-3$.
Write $1-\theta(p)$ as a sum over certain finite graphs and show that, for $p \in[0,1]$,

$$
1-\theta(p)=\left(\frac{1-p}{p}\right)^{3}(1-\theta(1-p))
$$

(c) Show that, for $p>1 / 2$,

$$
\theta(p)=1-\left(\frac{1-p}{p}\right)^{3}
$$

and conclude that this holds as well for $p=1 / 2$.
(d) Finally, consider supercritical percolation on \mathcal{T} with $1 / 2<p<1$. How many infinite components are there? Prove your answer.

