Discrete Probability

1. Show that any measurable event can be approximated by events depending on finitely many edges in the following sense: for any $A \in \mathcal{F}$ (the sigma-algebra of events), there exists as sequence of events $\left(B_{n}\right)$ such that B_{n} depends only on the state of edges in a box of radius n, and $P_{p}\left(A \Delta B_{n}\right) \xrightarrow{n \rightarrow \infty} 0$.
2. Show that $p_{c}(\mathbb{Z})=1$. Show that $p_{c}(\mathbb{Z} \times\{0, \ldots, n\})=1$ for any $n \in \mathbb{N}$.
3. (a) Verify that the Harris-/FKG-inequallity holds for decreasing events, too.
(b) If A and B are increasing events, then

$$
\{A \circ B\}=\left\{\omega \mid \exists K \subseteq \mathcal{E}: \omega_{K} \in \mathcal{A}, \omega_{\mathcal{E} \backslash K} \in B\right\}
$$

where $\left(\omega_{K}\right)_{e}= \begin{cases}\omega_{e} & \text { if } e \in K, \\ 0 & \text { otherwise. }\end{cases}$
(c) Show that $(A \circ B) \circ C=A \circ(B \circ C)$.
4. Proof of the BK-inequality for increasing events. Consider two increasing events A and B that depend on the edges in $E=\left\{e_{1}, \ldots, e_{n}\right\}$ only. Consider the duplicated set $\left\{e_{1}, \ldots, e_{n}, e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right\}$ and the product measure \mathbb{P} where each coordinate is a $\operatorname{Bernoulli}(p)$ variable. For $j \leq n$, set $\omega^{j}=\left(\omega_{e_{1}}, \ldots, \omega_{e_{j-1}}, \omega_{e_{j}^{\prime}}, \ldots, \omega_{e_{n}^{\prime}}\right)$ and

$$
\tilde{A}^{j}=\left\{\tilde{\omega}: \omega^{j} \in A\right\} \text { and } \tilde{B}=\left\{\tilde{\omega}: \omega^{n+1} \in B\right\}, \quad j \in\{1, \ldots, n+1\} .
$$

(a) Show that $\mathbb{P}\left(\tilde{A}^{1} \circ \tilde{B}\right)=P_{p}(A) P_{p}(B)$ and $\mathbb{P}\left(\tilde{A}^{n+1} \circ \tilde{B}\right)=P_{p}(A \circ B)$.
(b) Show next that $j \mapsto \mathbb{P}\left(\tilde{A}^{j} \circ \tilde{B}\right)$ is decreasing in j by constructing a measure-preserving injection $\tilde{\omega} \mapsto s(\tilde{\omega})$ from $\tilde{A}^{j+1} \circ \tilde{B}$ to $\tilde{A}^{j} \circ \tilde{B}$. Let $\tilde{\omega}$ be a configuration in $\tilde{A}^{j+1} \circ \tilde{B}$. Let K and J be "witnesses" of \tilde{A}^{j+1} and \tilde{B}, respectively, for $\tilde{\omega}$. If there exists K not containing e_{j}, then simply set $s(\omega)=\omega$. Otherwise (K contains e_{j}) obtain $s(\tilde{\omega})$ by exchanging e_{j} and e_{j}^{\prime}. Check that s is one-to-one and that $\mathbb{P}(\tilde{\omega})=P_{p}(s(\tilde{\omega}))$.
(c) Deduce the BK-inequality.
5. Denote by $\Lambda_{n}=[-n, n]^{d} \cap \mathbb{Z}^{d}$ the box of radius n around the origin. Suppose that the edges of this box are open with probability $p \in[0,1]$ and closed otherwise, independently of each other. We interpret the box as a porous stone that is put in water, where only the open edges transport water. Denote by X_{n} the fraction of vertices of the box that get wet. Show

$$
E_{p}\left(X_{n}\right) \rightarrow \theta(p) \quad \text { as } n \rightarrow \infty
$$

