Discrete Probability

1. The following graphs are given, all edges have unit resistance.

Calculate the effective resistance between s and t.
2. Let G be a countably infinite but locally finite connected graph with nominated vertex 0 . Let H be a connected subgraph of G containing 0 . Show that simple random walk, starting at 0 , is recurrent on H whenever it is recurrent on G, but the converse need not hold.
3. Nash-Williams Criterion. For a graph $G=(V, E)$ with distinguished vertex 0 , we say that $\Pi \subset E$ seperates 0 from ∞ if every infinite simple path from 0 must include an edge in Π (' Π is a cutset'). Prove that the following statement ist true:
If $\left(\Pi_{n}\right)_{n}$ is a sequence of pairwise disjoint finite cutsets in a locally finite network G, each of which separates 0 from ∞, then

$$
R_{\mathrm{eff}} \geq \sum_{n}\left(\sum_{e \in \Pi_{n}} r_{e}^{-1}\right)^{-1}
$$

In particular, G is recurrent if the right hand side is infinite.
4. Yet another proof of Pólya's theorem. Let $G: \mathbb{Z}^{d} \rightarrow[0, \infty]$ be the Green's function of simple random walk $\left(X_{n}\right)_{n}$ on the d-dimensional lattice \mathbb{L}^{d}. Prove that $G(0)<\infty$ if and only if $d \geq 3$ using Fourier transformation (a.k.a. characteristic functions). To this end, observe that if X is \mathbb{Z}^{d} valued, then the characteristic function $\varphi_{X}(k):=\mathbb{E}\left(e^{i k X}\right)$ is $(2 \pi)^{d}$-periodic.
(a) Derive first the Fourier transform of X_{1} (random walk after 1 step).
(b) Deduce the Fourier transform of $X_{n}=X_{1} * X_{1} * \cdots * X_{1}$.
(c) Calculate $G(0)=\sum_{n=0}^{\infty} \mathbb{P}\left(X_{n}=0\right)$ via Fourier inversion by integrating over k in the domain $[-\pi, \pi)^{d}$, and verify that the result is finite iff $d \geq 3$.
5. Show that the simple random walk on \mathbb{Z} with drift (going one step to the right or left with probabilities $p \neq \frac{1}{2}$ and $\left.1-p\right)$ is transient.
6. (a) Show that recurrent Markov chains on a countable state space have a stationary (not necessarily normalizable) measure.
(b) Show that an irreducible Markov chain on a countable state space has a stationary distribution iff it is positive recurrent.

Suggestion: We have now completed the treatment of random walks and electrical networks. I suggest that you read Sections 2.1-2.5 in the book of Lyons and Peres, who present the material in a different yet enlighting manner.
The book can be found online on http://mypage.iu.edu/~rdlyons/prbtree/prbtree.html.

