Discrete Probability

1. A transition matrix P is symmetric if $P(x, y)=P(y, x)$ for all $x, y \in S$.

Show that if P is symmetric, then the uniform distribution on S is stationary for P.
2. Prove Lemma 1.8 from the lecture: Let P be a transition matrix.
(a) Show that all eigenvalues λ satisfy $|\lambda| \leq 1$.
(b) Show that all real eigenvalues of the lazy chain $(P+I) / 2$ are nonnegative.
(c) Let P be irreducible. Show that $\mathcal{T}(x):=\left\{n \in \mathbb{N}_{0} \mid P^{n}(x, x)>0\right\} \subset 2 \mathbb{Z}$ iff -1 is an eigenvalue of P.
(d) More generally, let P be irreducible and $z \in \mathbb{C}$ a k th root of unity. Show that $\mathcal{T}(x) \subset k \mathbb{Z}$ if and only if z is an eigenvalue of P.
3. Prove Lemma 1.10 from the lecture: For any $n \in \mathbb{N}$,

$$
\left\|P^{n}(x, \cdot)-\pi(\cdot)\right\|_{T V} \leq \max _{y \in S}\left(1-\frac{P^{n}(x, y)}{\pi(y)}\right), \quad x \in S
$$

and thus $d(n) \leq s(n)$ (where the seperation distance $s(n)$ is defined as the maximum of the right hand side).
4. Prove Lemma 1.11 from the lecture: Let P be a transition matrix of an irreducible and reversible Markov chain. Show that for a function $f: S \rightarrow \mathbb{R}$,

$$
\mathbb{V}_{\pi}\left(P^{n} f\right) \leq \lambda_{\star}^{2 n} \mathbb{V}_{\pi}(f)
$$

where $\lambda_{\star}:=\max \{|\lambda|: \lambda$ is eigenvalue of $P, \lambda \neq 1\}$.
5. Complete the proof of Lemma 1.13 from the lecture by showing that the measure $q \in$ $\mathcal{M}_{1}(S \times S)$ is a coupling of the measures $\mu, \nu \in \mathcal{M}_{1}(S)$, where

$$
q(x, x)=\mu(x) \wedge \nu(x), \quad x \in S,
$$

and for $x \neq y$,

$$
q(x, y)= \begin{cases}0 & \text { if } q(x, x)=\mu(x) \text { or } q(y, y)=\nu(y) \\ \frac{(\mu(x)-\nu(x))(\nu(y)-\mu(y))}{1-\sum_{z} q(z, z)} & \text { elsewhere. }\end{cases}
$$

6. Prove Theorem 1.6 from the lecture ("Ergodic theorem for Markov chains"):

Let $\left(X_{n}\right)_{n \in \mathbb{N}_{0}}$ be an irreducible Markov chain on the state space S starting in $x \in S$ with stationary distribution π, let $f: S \rightarrow \mathbb{R}$ be an \mathbb{R}-valued function and

$$
S_{n}:=\sum_{k=0}^{n-1} f\left(X_{k}\right) .
$$

Define $\tau_{x, 0}^{+}:=0$ and, recursively,

$$
\tau_{x, k}^{+}:=\min \left\{n>\tau_{x, k-1}^{+} \mid X_{n}=x\right\}
$$

(a) Show that $\lim _{n \rightarrow \infty} \frac{S_{\tau_{x, n}^{+}}^{+}}{n}=\mathbb{E}_{\pi}(f) \mathbb{E}\left(\tau_{x, 1}^{+}\right)$.
(b) Show that $\lim _{n \rightarrow \infty} \frac{\tau_{x, n}^{+}}{n}=\mathbb{E}\left(\tau_{x, 1}^{+}\right)$a.s.
(c) Conclude that $\lim _{n \rightarrow \infty} \frac{S_{n}}{n}=\mathbb{E}_{\pi}(f)$ a.s.. What would be the generalization to arbitrary starting distributions?

