Discrete Probability

1. Let $X \sim \operatorname{BIN}(n, p)$ and $X^{*} \sim \operatorname{POI}(\lambda)$ with $\lambda=n p$. Prove that there is a coupling of X and X^{*} with the property

$$
P\left(X \neq X^{*}\right) \leq \frac{\lambda^{2}}{n} .
$$

2. Prove that Theorem 4.3 implies that $\left|\mathcal{C}_{\max }\right| / \log n$ converges to $1 / I_{\lambda}^{*}$ as $n \rightarrow \infty$ in probability whenever $\lambda<1$.
3. If not done already: Prove Exercise 5 from Sheet 12.

* Prove Cramér's upper bound using the exponential Chebyshev inequality.

4. Prove Theorem 4.2 from the lecture.

5. Total progeny of a Poisson branching process.

(a) * Prove the following Random walk hitting time theorem: Consider a random walk $S_{n}:=k+Y_{1}+\cdots+Y_{n}(k \in \mathbb{N}$ is the starting point) with i.i.d. integer-valued steps $\left(Y_{i}\right)_{i \geq 1}$ with the property $P\left(Y_{i} \geq-1\right)=1$. Then

$$
P\left(S_{n}=0 \text { for the first time }\right)=\frac{k}{n} P\left(S_{n}=0\right), \quad n \in \mathbb{N} .
$$

(b) For a branching process with i.i.d. offspring distributed like an \mathbb{N}-valued random variable X,

$$
P(T=n)=\frac{1}{n} P\left(X_{1}+\cdots+X_{n}=n-1\right), \quad n \in \mathbb{N},
$$

where $\left(X_{n}\right)_{n \geq 1}$ are i.i.d. copies of X and T is the total progeny.
(c) Derive a formula for $P(T=n)$ if the offspring is $\operatorname{Poisson}(\lambda)$-distributed.
6. A binomial number of binomial trials. Show that if $N \sim \operatorname{BIN}(n, p)$ and, conditionally on $N, M \sim \operatorname{BIN}(N, q)$, then $M \sim \operatorname{BIN}(n, p q)$.
7. Let X be an \mathbb{N}_{0}-valued random variable, and denote

$$
p_{k}=P(X=k), \quad k \in \mathbb{N}_{0} .
$$

Prove that the the conjugate pair

$$
p_{k}^{\prime}:=\eta^{k-1} p_{k}, \quad k \in \mathbb{N},
$$

is a probability distribution, where $\eta=G_{X}(\eta)$ is the extinction probability of a branching process with offspring distribution $\left(p_{k}\right)_{k \geq 0}$.

The importance of the last exercise is linked to the duality principle for branching processes: The branching process with offspring distribution $\left(p_{k}\right)_{k \in \mathbb{N}_{0}}$ conditioned on extinction, has the same distribution as the branching process with offspring distribution $\left(p_{k}^{\prime}\right)_{k \in \mathbb{N}_{0}}$.

