Discrete Probability

1. Branching processes. Let $\left(Z_{n}\right)_{n \in \mathbb{N}_{0}}$ be a branching process, where offspring is distributed according to an \mathbb{N}_{0}-valued random variable X. Assume $E(X)<\infty$.
(a) Show $E\left(Z_{n}\right)=E(X)^{n}$.
(b) If $E(X)<1$ then $P\left(Z_{n}>0\right) \leq E(X)^{n}$.
(c) If $E(X)<1$ then the total progreny T satisfies $E(T)=\frac{1}{1-E(X)}$.
(d) The process $Z_{n} / E(X)^{n}$ is a martingale.
2. CLT for number of edges. Prove that the number of edges in $G(n, \lambda / n)$ satisfies a central limit theorem with asymptotic mean and variance equal to $\lambda n / 2$.
3. Connectivity with given cluster size. Show

$$
P_{\lambda}(1 \nprec 2| | \mathcal{C}(1) \mid=\ell)=1-\frac{\ell-1}{n-1}, \quad 1 \leq \ell \leq n .
$$

4. Upper bound for mean cluster size. Show that for $v \in[n]$,

$$
E_{\lambda}(|\mathcal{C}(v)|)=1+(n-1) P_{\lambda}(1 \longleftrightarrow 2)
$$

Furthermore, if $\lambda<1$,

$$
E_{\lambda}(|\mathcal{C}(v)|) \leq \frac{1}{1-\lambda}
$$

5. Large deviations. The following large deviation bound is fairly standard in probability theory (see Thm. 2.19 in [Hof] or elsewhere):
Theorem. (Cramér's upper bound, Chernoff bound)
Let $\left(X_{i}\right)_{i \in \mathbb{N}}$ be an i.i.d. sequence of random variables. Then for all $a \geq E\left(X_{1}\right)$,

$$
\begin{gathered}
P\left(\sum_{i=1}^{n} X_{i} \geq n a\right) \leq e^{-n I(a)} \quad \text { if } a \geq E\left(X_{1}\right) \text { and } \\
P\left(\sum_{i=1}^{n} X_{i} \leq n a\right) \leq e^{-n I(a)} \quad \text { if } a \leq E\left(X_{1}\right)
\end{gathered}
$$

with "rate function"

$$
I(a)=\sup _{t \in \mathbb{R}}\left(t a-\log E\left(e^{t X_{1}}\right)\right) .
$$

Compute $I(a)=I_{\lambda}(a)$ for $\left(X_{i}\right)_{i \in \mathbb{N}}$ being independent Poisson random variables with parameter λ. Prove that $I_{\lambda}(a)>0$ for $a \neq \lambda$.
Furthermore, if $\left(X_{i}\right)_{i \in \mathbb{N}}$ are independent $\operatorname{Bernoulli}(p)$ random variables, verify that

$$
I(a)=a \log \left(\frac{a}{p}\right)+(1-a) \log \left(\frac{1-a}{1-p}\right)
$$

whenever $a \in(p, 1]$ (where we adapt the convention that $x \log x=0$ for $x=0$). Prove that, in this case, $I(a) \geq I_{\lambda}(a)$ from the previous example (with $\lambda=p$). This suggests that the upper tail of a binomial random variable is "thinner" than the one of a Poisson random variable.
6. Mean number of triangles. We say that the distince vertices (i, j, k) form an occupied triange when the edges $i j, j k$, and $k i$ are all occupied. Note that (i, j, k) is the same triangle as (i, k, j) and as any other permutation. Compute the expected number of occupied triangles in $G(n, \lambda / n)$.
7. Clustering coefficient. The clustering coefficient CC_{G} of a random graph G is defined as

$$
\mathrm{CC}_{G}=\frac{E\left(\Delta_{G}\right)}{E\left(W_{G}\right)}
$$

where

$$
\Delta_{G}=\sum_{i, j, k \in V} \mathbb{1}\{i j, j k, k i \text { occupied }\}, \quad W_{G}=\sum_{i, j, k \in V} \mathbb{1}\{i j, j k \text { occupied }\} .
$$

Thus (since we are not restricting to $i<j<k$ in Δ_{G} and $i<j$ in W_{G}), Δ_{G} is six times the number of triangles in G, and W_{G} is two times the number of wedges in G, and CC_{G} is the ratio of the number of expected closed triangles to the expected number of wedges. Compute CC_{G} for $G(n, \lambda / n)$.

