Discrete Probability

Critical exponents for percolation on the binary tree. The purpose of this exercise sheet is to calculate that on the 3-regular tree \mathcal{T} (a.k.a. binary tree) we have that $p_{c}=p_{T}=1 / 2$, and the critical exponents take on their mean-field values $\beta=\gamma=\rho=1$ and $\delta=\Delta=2$, where

$$
\begin{aligned}
\chi(p) & \simeq\left(p_{c}-p\right)^{-\gamma} & & \text { as } p \nearrow p_{c}, \\
\theta(p) & \simeq\left(p-p_{c}\right)^{\beta} & & \text { as } p \searrow p_{c}, \\
P_{p_{c}}(|\mathcal{C}(0)| \geq n) & \simeq n^{-1 / \delta}, & & \text { as } n \rightarrow \infty, \\
P_{p_{c}}(\exists x \in \mathcal{C}(0): \operatorname{dist}(0, x)=n) & \simeq n^{-1 / \rho}, & & \text { as } n \rightarrow \infty,
\end{aligned}
$$

and the gap exponent $\Delta>0$ is defined by,

$$
\frac{E_{p}\left[|\mathcal{C}(0)|^{k+1}\right]}{E_{p}\left[|\mathcal{C}(0)|^{k}\right]} \simeq\left(p_{c}-p\right)^{-\Delta} \quad \text { as } p \nearrow p_{c} \text { for } k=1,2,3, \ldots
$$

with the unwritten assumption that Δ is independent of k.

1. Recall from Sheet 8, Exercise 2 that the binary tree, $p_{c}=1 / 2$ and

$$
\theta(p)= \begin{cases}0 & \text { if } p<1 / 2 \\ 1-\left(\frac{1-p}{p}\right)^{3} & \text { if } p \geq 1 / 2\end{cases}
$$

Derive that $\beta=1$ for \mathcal{T}.
2. Now we address the critical exponent γ. For $x \neq o$, we write $\mathcal{C}_{\mathrm{BP}}(x)$ for the forward cluster of x in \mathcal{T}, i.e., those vertices $y \in \mathcal{T}$ that are connected to x and for which the unique path from x to y only moves away from the root o. Then,

$$
|\mathcal{C}(o)|=1+\sum_{e \sim o} I_{o, e}\left|\mathcal{C}_{\mathrm{BP}}(e)\right|,
$$

where the sum is over all neighbors e of $o,\left(I_{0, e}\right)_{e \sim o}$ are three independent $\operatorname{Bernoullli}(p)$ variables, and $\left(\left|\mathcal{C}_{\mathrm{BP}}(e)\right|\right)_{e \sim o}$ is an i.i.d. sequence independent of $\left(I_{o, e}\right)_{e \sim o}$.
Derive the identity $E_{p}\left|\mathcal{C}_{\mathrm{BP}}(x)\right|=1+2 p E_{p}\left|\mathcal{C}_{\mathrm{BP}}(x)\right|$ and conclude

$$
E_{p}\left|\mathcal{C}_{\mathrm{BP}}(x)\right|=\frac{1}{1-2 p}
$$

for $p<1 / 2$. Derive further an expression for $\mathbb{E}_{p}(|\mathcal{C}(o)|)$ and verify that $p_{T}=1 / 2$. Conlcude $\rho=1$.
3. Next we address the arm exponent ρ. Define

$$
\theta_{n}=P_{p_{c}}\left(\exists v \in \mathcal{C}_{\mathrm{BP}}(x) \text { such that } \operatorname{dist}(x, v)=n\right)
$$

and proof the recursion relation

$$
1-\theta_{n}=\left(1-p_{c} \theta_{n-1}\right)^{2} .
$$

Show that $\theta(n)=4 / n(1+O(1 / n))$ and conclude that $\rho=1$.
4. Calculate $E\left(\left|\mathcal{C}_{\mathrm{BP}}(x)\right|^{k}\right)$ and derive $\Delta=2$.

Remark. You may verify that the same critical exponents are true for the r-regular tree \mathcal{T}_{r}, where $p_{c}\left(\mathcal{T}_{r}\right)=p_{T}\left(\mathcal{T}_{r}\right)=1 /(r-1)$.

