Discrete Probability

1. Prove

$$
\frac{2|k|^{2}}{\pi^{2}} \leq \sum_{j=1}^{d}\left(1-\cos \left(k_{j}\right)\right) \leq \frac{|k|^{2}}{2}
$$

for every $k=\left(k_{1}, \ldots, k_{d}\right) \in[-\pi, \pi)^{d}$.
2. Prove rigorously that

$$
\chi(p) \geq \frac{1}{2 d\left(p_{c}-p\right)}
$$

i.e., $\gamma \leq 1$. To this end, consider the functions $\tau_{p}^{n}(x, y):=P_{p}\left(x \longleftrightarrow y\right.$ in $\left.\Lambda_{n}\right)$ (with $\Lambda_{n}=\{-n, \ldots, n\}^{d}$) and

$$
\chi^{n}(p):=\max _{x \in \Lambda_{n}} \sum_{y \in \Lambda_{n}} \tau_{p}^{n}(x, y) .
$$

Prove that the functions $p \mapsto 1 / \chi^{n}(p)$ are equicontinuous and $\chi^{n}(p) \rightarrow \chi(p)$ for every $p \in[0,1]$. Deduce that $p \mapsto 1 / \chi(p)$ is continuous and, in particular, $\chi\left(p_{c}\right)=0$.
3. For $p<p_{c}$ and $k \in[-\pi, \pi)^{d}$, prove that

$$
\hat{\tau}_{p}(k) \geq 0
$$

For this purpose, it is most convenient to view $\tau_{p}(x, y)\left(=\tau_{p}(y-x)\right)$ as an operator and prove that it is of positive type, that is,

$$
\sum_{x, y \in \mathbb{Z}^{d}} \bar{f}(x) \tau(x, y) f(y) \geq 0
$$

for any summable function $f: \mathbb{Z}^{d} \rightarrow \mathbb{C}$ (where $\bar{f}(x)$ is the complex conjugate of $f(x)$). Then the claim follows from Bochner's theorem.
4. Let $p<p_{c}$. Prove that the triangle diagram is maximal at the origin:

$$
\Delta_{p}(0)=\max _{x \in \mathbb{Z}^{d}} \Delta_{p}(x)
$$

More generally, show that $\tau_{p}^{* s}(x) \leq \tau_{p}^{* s}(0)$ and $\left(D * D * \tau_{p}^{* s}\right)(x) \leq\left(D * D * \tau_{p}^{* s}\right)(0)$ for every $x \in \mathbb{Z}^{d}$ and $s \geq 1$, where $D(x)=\mathbb{1}_{\{|x|=1\}}$. Conclude that these bounds also hold for $p=p_{c}$.

