Prof. Dr. Sebastian Hensel Dr. Leopold Zoller

Topology

Problem Set 11

- 1. (20 POINTS) Let X be a path-connected space. Recall that the cone CX over X is defined as $X \times I/(X \times \{1\})$. We identify X with the subspace of CX at height 0.
 - (a) Show that CX is contractible.
 - (b) Show that $H_1(CX, X) = 0$ and that the boundary map $H_n(CX, X) \to H_{n-1}(X)$ is an isomorphism for all $n \ge 2$.
 - (c) There is an homeomorphism $C\Delta^{n-1} \cong \Delta^n$ defined by

$$[(t_0,\ldots,t_{n-1}),t]\mapsto (t,(1-t)t_0,\ldots,(1-t)t_{n-1}).$$

Thus we obtain a map $\phi: C_{n-1}(X) \to C_n(CX)$ by associating to $\sigma: \Delta^{n-1} \to X$ the composition $\Delta^n \cong C\Delta^{n-1} \to CX$ with the last map being the obvious map induced by σ . Show that $\sigma \mapsto (-1)^n \phi(\sigma)$ defines a chain map $C_{n-1}(X) \to C_n(CX, X)$ which induces an isomorphism $H_{n-1}(X) \to H_n(CX, X)$ inverse (up to sign) to the boundary map from above.

We also define the suspension of X to be $SX := X \times [-1, 1]/$ where the equivalence relation is generated by $(x, 1) \sim (y, 1)$ and $(x, -1) \sim (y, -1)$ for all $x, y \in X$. Note that CX is naturally a subspace of SX. We also denote by C^-X the subspace of SX of points with real coordinate ≤ 0 .

(d) We define $\psi: C_{n-1}(X) \to C_n(C^-X)$ analogous to ϕ (invert the real coordinate). Show that $\sigma \mapsto (-1)^n(\phi(\sigma) - \psi(\sigma))$ defines a chain map $C_{n-1}(X) \to C_n(SX)$ and that the resulting diagram

$$H_n(SX) \longrightarrow H_n(SX, C^-X)$$

$$\uparrow \qquad \uparrow$$

$$H_{n-1}(X) \longrightarrow H_n(CX, X)$$

commutes. Conclude that the left vertical map is an isomorphism.

- (e) Deduce that the map $SX \to SX$, $(x,t) \mapsto (x,-t)$ induces multiplication by (-1) on $H_n(SX)$ for $n \ge 1$.
- 2. (10 Points) Show that $S(S^n)$ is homeomorphic to S^{n+1} . Deduce that reflection along a hyperplane in \mathbb{R}^{n+1} induces multiplication by -1 on $H_n(S^n)$. Conclude that $-\operatorname{id}_{S^n}$ is homotopic to id_{S^n} if and only if n is odd.
- 3. (10 Points) Compute $H_n(\Sigma_2)$ for all n.

Hint: You might find Exercises 2 and 5b from sheet 10 helpful at some point. Also recall that in the latter we (should have) computed $H_1(T^2) = \mathbb{Z}^2$, $H_2(T^2) = \mathbb{Z}$, and $H_n(T^2) = 0$ for $n \ge 3$.

Please hand in your solutions on January 14 at the end of the lecture.