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Lecture 1 (October 15)

What is Topology? Very roughly: the study of spaces up to continuous
deformation. There are various ways to make this precise, and we will see
some later. To have an immediate (famous) picture in mind: a (usual)
coffee cup, and a (usual) donut are the same up to deformation (imagine
the cup made from not-yet-set clay, and you can form it into a ring without
breaking or tearing). Intuitively, a donut and a ball are different, as are two-
and three-dimensional space.
However, such negative results are much more subtle to make precise. In-
stead of describing a deformation, one needs to prove that none can possibly
exist.
This is where Algebraic Topology enters the picture. Very coarsely, algebraic
topology is concerned with attaching algebraic invariants (numbers, groups,
rings, polynomials...) to spaces. The rationale is that algebraic invariants
are more “rigid” and therefore much easier to distinguish. Spaces with
different invariants cannot be the same, and so this perspective can give
proofs that spaces are different. We will see this philosophy in play many
times in the future.

Part I: Basics of Point-set topology. We know (e.g. from analysis
courses) the following basic definitions:

Definition 0.1. A topology on a set X is a collection T of subsets of X
with the following properties:

(1) ∅, X ∈ T .
(2) If I is some set, and Ui ∈ T for all i, then ∪i∈IUi ∈ T .
(3) If U, V ∈ T then U ∩ V ∈ T .

We call the sets in T open sets. The pair (X, T ) is called a topological space.

Often we will abuse notation and simply say that X is a topological space,
suppressing the mention of T from the notation.

Definition 0.2. A map f : X → Y between topological spaces is continuous
if the preimage of every open set is open. A map is a homeomorphism if it
is continuous, bijective, and its inverse is also continuous.

Some examples of topological spaces:

(1) Rn with the “usual topology”: a set is open if it contains a positive
radius Euclidean ball around any of its points.
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(2) The subspace topology : If A ⊂ X is any subset, and T a topology on
X, then

TA = {A ∩ U | U ∈ T }
is a topology on A, called the subspace topology.

(3) Using the previous two examples, any subset of Rn is naturally a
topological space. It is good practice to think of “strange” subsets
as well. Here is one such:

X = {(x1, x2, x3) ∈ R3 | at least two xi are rational}

(the Nöbeling curve)
(4) The quotient topology : If X is a topological space, and q : X → Y

a surjective map, then we can define a topology on Y be declaring
U ⊂ Y to be open exactly if q−1(U) is open (in X). This makes q
automatically continuous.

(5) Using the previous two gives us more spaces. For example, we can
start with the n–sphere

Sn = {(x0, . . . , xn) ∈ Rn+1 |
∑

x2
i = 1}

and take the quotient by the equivalence relation x ∼ −x. The result
is the so-called real projective space RPn.

(6) The product topology : If X,Y are two topological spaces, then we
can put a topology on the Cartesian product X ×Y in the following
way: a set O ⊂ X × Y is open if for any (x, y) ∈ O there are open
sets U ⊂ X,V ⊂ Y with x ∈ U, y ∈ V and U × V ⊂ O.

(7) Combining the previous things gives us yet more spaces, e.g. the
n–torus Tn = (S1)n = S1×· · ·×S1, the n–fold product of the circle
with itself.

(8) Finally, there are topologies which seemingly have nothing to do with
“geometry”. E.g. we can define a topology on Z in the following way.
Define for a, b ∈ N, a 6= 0 the set:

S(a, b) = {an+ b | n ∈ Z}

and say thatO ⊂ Z is open, if for any x ∈ O there is some S(a, b) ⊂ O
with x ∈ S(a, b).

(This topology can be used to give a cute proof that there are
infinitely many primes. It won’t be important for the course, but
search for “Fürstenberg’s proof of the infinitude of primes” if you
want to find it)

To illustrate why it is sometimes hard to distinguish spaces (and to show
that continuous maps are really much more wild than one usually imagines)
we will prove the following

Theorem 0.3 (Peano curves). For any n, there is a continous, surjective
map

c : [0, 1]→ [0, 1]n
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Proof. By induction, it suffices to show the case n = 2. To do so, we will
use the Cantor set

C = {
∞∑
i=1

ai
1

3i
| ai ∈ {0, 2}}

It is often useful to think of a point x ∈ X both as a real number and a
sequence (ai) with values in {0, 2}.
This will be done in three steps:

(1) There is a surjective continous map C → C × C
(2) There is a surjective map C → [0, 1]
(3) Any continuous map C → [0, 1]2 extends to a continuous map defined

on [0, 1].

With these we are done: composing the map from (1) with the map from (2)
in both coordinates we get C → [0, 1]2 continuous and surjective. By (3) this
then extends to [0, 1]→ [0, 1]2 continuous (and obviously still surjective).
We use the following facts about the Cantor set:

• If (ai), (bi) are two sequences with values in {0, 2}, and ai = bi for
i ≤ n, then ∣∣∣∣∣

∞∑
i=1

ai
1

3i
−
∞∑
i=1

bi
1

3i

∣∣∣∣∣ ≤ 1

3n−1

• If (ai), (bi) are two sequences with values in {0, 2}, ai = bi for i ≤
n− 1, and an 6= bn, then∣∣∣∣∣

∞∑
i=1

ai
1

3i
−
∞∑
i=1

bi
1

3i

∣∣∣∣∣ ≥ 1

3n

Intuitively, these say that closeness in the Cantor set exactly corresponds to
having long common initial segments of the defining sequence.
Now we are ready to prove (1)–(3). For (1), we define the map f in terms
of sequences as

(a1, a2, . . .) 7→ (a1, a3, . . .)× (a2, a4, . . .)

This is clearly a bijection between C and C × C. To see that it is continu-
ous, simply observe that if (ai), (bi) have the same first 2n + 2 terms, then
both coordinates of f((ai)), f((bi)) have the same first n terms. By the two
observations above, that shows continuity.
For (2), we simply define the map

∞∑
i=1

ai
1

3i
7→

∞∑
i=1

ai/2
1

2i

Arguing as above, it is easy to see that this is continuous. It is surjective
since any number has a binary representative.
Finally, we prove (3). To this end, suppose we have a map f : C → [0, 1]2.
Given any number x ∈ [0, 1] − C, there is a unique maximal open interval
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Ix containing x which is disjoint from C. We call these complementary

intervals. Let Ix = (ax, bx). We then define f̃ on Ix by

f̃(x) =
x− bx
ax − bx

f(ax) +
x− ax
bx − ax

f(bx)

It is clear that this extends f . Showing continuity is a little bit tedious, but
not hard. Namely, suppose that xn → x is any convergent sequence in [0, 1].

If xn ∈ Ix for some x and all large n, then f̃(xn) → x, as f̃ is linear on Ix.

Similarly, if xn ∈ C for all large n then f̃(xn) = f(xn)→ f(x) by continuity
of f .
So, suppose that xn /∈ C for all n, and not eventually contained in some Iy.
For each i so that there is a y with xi ∈ Iy = (a, b), let zi be the endpoint of
the interval Iy so that |f(zi) − f(x)| is larger. By this choice, and the fact

that f̃ is linear on each interval Iz, it suffices to show that f(zi)→ f(x).
If every complementary interval contains only finitely many xi, then the
zi converge to x as well (as the lengths of the intervals in which xi, zi are
contained then converge to 0), and therefore f(zi)→ f(x).
In the other case, suppose that there is some complementary interval I
containing infinitely many xi. In that case, x needs to be a boundary point
of that interval. Now, we can break the sequence xi into two subsequences:
one of which is completely inside I (for which, as above, convergence is
clear), and another which is completely outside. The latter cannot visit a
complementary interval infinitely often (as x would then also have to be a
boundary point of that interval), and therefore convergence is also clear. �

I want to emphasise two things about this result:

(1) It is intuitively very surprising. One might expect that continuous
maps from [0, 1] (“curves”) should not be able to fill all of space,
as a dimension 1 space should be smaller than a higher dimensional
space.

(2) It shows that “seeing” dimension using topological tools is much
harder than in algebra (compare invariance of dimension in linear
algebra), or even for differentiable maps (a diffeomorphism would
have invertible differential).

Lecture 2 (October 16)

We continue to recall some basic notions in point-set topology (which you
probably know), but with the goal of distinguishing spaces. Our first triple
of spaces that we want to tell apart are

X = [0, 1], Y = [0, 1] ∪ [2, 3], Z = [0, 1] ∪ [2, 3] ∪ [4, 5]

What tells X and Y apart? We use

Definition 0.4. A space X is disconnected if there are nonempty open sets
U, V ⊂ X so that

X = U ∪ Y
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U ∩ Y = ∅.
Otherwise, X is said to be connected.

We recall from analysis

Theorem 0.5. The spaces (0, 1), [0, 1], [0, 1) (with the usual topology) are
connected.

On the other hand, the space Y is clearly disconnected (find the open sets!),
and thus X and Y are not homeomorphic.
How to tell Y and Z apart? Both are disconnected, but Z has “one more
connected piece”. One way to make this precise is with the notion of path
components.

Definition 0.6. A path in X is a continous map γ : [0, 1]→ X. We define
the concatenation of paths γ1, γ2 with γ1(1) = γ2(0) as

γ1 ∗ γ2(t) =

{
γ1(2t) if t ≤ 1/2

γ2(2t− 1) if t ≥ 1/2

We define the inverse of a path γ as

γ(t) = γ(1− t).

We will see later why the name “inverse” is justified. For now, recall

Definition 0.7. A space X is path-connected if for any two points x, y ∈ X
there is a path γ with γ(0) = x, γ(1) = y.

Lemma 0.8. If X is path-connected, then it is connected.

Proof. Suppose not, so there is a decomposition X = U∪V into disjoint open
sets. Take x ∈ U, y ∈ V , and a path γ between them. Then γ−1(U), γ−1(V )
are nonempty, disjoint open sets, whose union is [0, 1]. This contradicts
connectivity of [0, 1]. �

We will see later that the converse to the lemma is false. In fact, exactly the
same proof of the previous lemma also shows the following useful statement.

Lemma 0.9. Suppose that X is connected and that f : X → Y is continous.
Then f(X) ⊂ Y is connected.

Definition 0.10. Suppose that X is a space. Define an equivalence relation
∼ on X by declaring x ∼ y if there is a path γ with γ(0) = x, γ(1) = y. We
then put

π0(X) = X/ ∼ .

The set π0(X) is called the set of path-components of X.

In addition to associating a set π0 to every space, we will also associate maps
of the sets π0 to every continuous map in a reasonable. This idea is very
important (it is called functoriality) and we will see it in action many times
during this course. Here, it is very simple:
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Lemma 0.11. Suppose f : X → Y is a continous map. Then we have a
map

f∗ : π0(X)→ π0(Y )

by associating to the equivalence class of a point p the equivalence class of
the point f(p). This has the following properties:

a) id∗ = id
b) If f : X → Y and g : Y → Z are continuous, then

(gf)∗ = g∗f∗

Proof. Well-definedness follows from the observation that f ◦ γ is a path
connecting f(γ(0)) to f(γ(1)). Property a) is obvious, and property b) is
clear from the definition. �

The key point is now that as a formal consequence of the properties a), b)
of the lemma we get that homeomorphic spaces have the same π0 (up to set
bijection). This allows us to distinguish the spaces Y,Z from the beginning
of the class, as π0(Y ) has two elements, and π0(Z) has three elements (fill
in the details of why this is – it should be very quick).
We end with the standard example showing that connectivity does not imply
path-connectivity. The space is usually called “topologists sine curve” and
is built in two steps. First, we consider the following graph:

S = {(sin 1

x
, x) ∈ R2 | x ∈ [0,∞)}.

For later, observe that it is clearly path-connected, and therefore connected.
Next, we define

S+ = S ∪ {(y, 0) ∈ R2 | y ∈ [−1, 1].}
We claim that S+ is connected. This is actually a consequence of a useful
general lemma. To state it, we need yet another definition.

Definition 0.12. Let X be a topological space, and Y ⊂ X be a subset.
The closure of Y , usually denoted by Y , is defined to be the smallest (with
respect to inclusion) closed set containing Y .

Explicitly, one way to describe the closure is

Y =
⋂

Y⊂C,C closed

C.

There is another useful description of the closure.

Definition 0.13. A limit point of a subset Y of a topological space X is
a point x ∈ X with the following property: if U ⊂ X is any open set with
x ∈ U , then U ∩ Y 6= ∅.

Observe that this agrees with the notion of limit point we know from analysis
(for the usual topology on Rn).

Lemma 0.14. A closed set Y ⊂ X contains all of its limit points.
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Proof. We need to show that no point x /∈ Y is a limit point of Y . But that
is clear: X \Y is an open set which is disjoint from Y and contains any such
point. �

We can now give the promised description of the closure:

Lemma 0.15. The closure of Y is the union of Y and its limit points.

Proof. One inclusion is easy: if C ⊃ Y is a closed set, and x ∈ X is a limit
point of Y , then it clearly also is a limit point of C. Thus, by the previous
lemma, it is a point of C. Since this is true for any such C, it follows that
the closure contains Y and all of its limit points.
Next, we want to show that the union Z of Y and its limit points is itself
closed. That would show the lemma. To see this, take x ∈ X \ Z (i.e. x
is neither an element, nor a limit point of X). By definition, this means
that there is an open set U ⊂ X, x ∈ U , U ∩ X = ∅. In particular, any
other x′ ∈ U is also not a limit point of X, and not contained in X. Thus,
U ⊂ X \ Z. Since this was true for any x /∈ Z, we see that Z is indeed
closed. �

Back to the topologists sine curve. Using the description of the closure in
terms of limit points, it is easy to see that S+ is the closure of S. Connec-
tivity of S+ now follows from this useful lemma:

Lemma 0.16. Suppose that Y ⊂ X is connected. Then the closure Y is
also connected.

Proof. Suppose now, i.e. write

Y = U ∪ V
for nonempty disjoint open sets in Y (with the subspace topology). Now, Y
is assumed to be connected, and therefore up to possibly swapping labels,
we have U ∩ Y = Y , V ∩ Y = ∅.
Next, observe that since U is closed in Y (it is the complement of the open
V ), and therefore by the definition of the subspace topology, there is a closed
set C ⊂ X so that

U = C ∩ Y .
In particular, C ⊃ Y (as U contains Y ), and so C ⊃ Y . But then U = Y ,
showing V = ∅. �

Finally, it is not hard to see that S+ is not path-connected: it is impossible
to join a point in S to a point outside S with a path. The details were
discussed in the problem session.

Lecture 3 (October 22)

We will continue with our review of basic terms in order to distinguish some
examples of spaces. This time, we will look at

X = Z, Y = Q, Z = Cantor.
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All of them have infinitely many path-components, but their local structure
is very different.

Definition 0.17. A point x ∈ X in a topological space is isolated, if {x} is
open.

This is particularly intuitive for the subspace topology: a point z ∈ Z ⊂ X
is isolated, if there is an open set of X intersecting Z just in z. We observe
easily that every point of Z is isolated, but no point of Q (or the Cantor set)
is. This is a useful property, so it has a name:

Definition 0.18. A space X is perfect if no point is isolated.

How can we distinguish the rationals from the Cantor set?

Definition 0.19. A space X is compact if for any collection Ui, i ∈ I of
open sets so that X = ∪i∈IUi, there is a finite number of indices i1, . . . , in
so that

X = Ui1 ∪ · · · ∪ Uin .

In Rn with the usual topology, compactness is easy to test:

Theorem 0.20 (Heine-Borel). A subset X ⊂ Rn (with the subspace topol-
ogy) is compact if and only if it is closed and bounded (with respect to the
usual topology and any norm).

In more general spaces, compactness is much more delicate. On the problem
set, you will prove the following very useful lemma:

Lemma 0.21. A closed subset of a compact space is compact.

The converse of this is not true. To see why, we build a space by gluing two
unit intervals, except at 0. To make this precise, first define

Y = {(y, i) | y ∈ [0, 1], i ∈ {0, 1}},
and then define the quotient

X = Y/ ∼
where (y, i) ∼ (y, 1− i) for all y 6= 01

Explicitly, we can identify X (as a set) with {01,= 02}∪ (0, 1]. Open neigh-
bourhoods of points x ∈ (0, 1) ⊂ X look like usual intervals (o − ε, o + ε).
Neighbourhoods of 0i look like {0i}∪ (0, ε). Make sure you understand why
– this is how the quotient topology works. In particular, note that any
neighbouhood of 01 and any neighbourhood of 02 intersect.
Now, (again by how the quotient topology works), the map [0, 1] → X
induced by

x 7→ (x, 0)

1I will often describe an equivalence relation by the “interesting” relations. To be for-
mally correct, one should always say “∼ is the equivalence relation generated by the fol-
lowing...”
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is continuous, and therefore has compact image (see problem set). Thus,
{01} ∪ (0, 1] is compact – but it is not closed, as its complement is {02}.
What goes wrong here? The problem is the pair of points {01, 02} which
cannot be separated by open sets. Recall

Definition 0.22. A space X is Hausdorff if for any x, y ∈ X, x 6= y, there
are open sets U, V ⊂ X with U ∩ V = ∅ and x ∈ U, y ∈ V .

Also on the problem set you will show:

Lemma 0.23. If X is Hausdorff, and C ⊂ X is compact, then C is closed.

Before moving on, we will briefly discuss how these basic topological notions
interact with our basic constuctions, in particular products and quotients.

• The quotient of a compact space is compact. This follows since
images of compact spaces under continuous maps are compact.
• The quotient of a Hausdorff space is usually not Hausdorff. We have

seen this above.
• The product of two compact spaces is compact. This is not hard,

and if you have not seen it before you should try to prove it.
Also true, and much harder is the fact that any product of compact

spaces is compact. For this to be true, we need to carefully define
the product topology on an infinite product. Namely, if Xi, i ∈ I is
any collection of topological spaces, define a basic open set to be a
set of the form ∏

Ui ⊂
∏

Xi,

where Ui ⊂ Xi is open for all i, and Ui 6= Xi for only finitely many
i. Then, call a set O ⊂

∏
Xi open if for any o ∈ O there is a basic

open set B so that o ∈ B ⊂ O. Note that for the product of two
spaces this is the same topology we defined above.

Theorem 0.24 (Tychonoff). The product of compact spaces is com-
pact.

The proof is a bit tricky. Since we do not use infinite products in
this course, I won’t be giving a proof. If you are interested, there is a
readable account in the book “Topology and Geometry” by Bredon.
• Products of Hausdorff spaces are Hausdorff. This is easy, even in

the general case: if (xi), (yi) are distinct points of the product, then
there is an index j with xj 6= yj . Using Hausdorff in Xj yields open
sets Uj , Vj ⊂ Xj which are disjoint and so that xj ∈ Uj , yj ∈ Vj .
Put Uk = Vk = Xk for all k 6= j. Then U =

∏
Ui, V =

∏
Vi are the

desired open sets.

Part II: Homotopy. We now begin with a discussion of one of the most
imporant notions in (algebraic) topology. The basic definition is very simple:
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Definition 0.25. Let X,Y be topological spaces, and f, g : X → Y be
continuous maps. A homotopy between f, g is a continuous map

H : X × [0, 1]→ Y

so that H(x, 0) = f(x), H(x, 1) = g(x) for all x ∈ X. If such a H exists,
we say that f, g are homotopic. If A ⊂ X is a subset, then the homotopy is
called relative to A (often simply: rel A), if H(a, t) = H(a, 0) for all a ∈ A
and t ∈ [0, 1].

Intuitively: f, g are homotopic, if one can continously deform one into the
other. Here are some basic examples:

• The constant 0 map and the identity of Rn are homotopic. In fact,
we can take

H(x, t) = tx.

• A homotopy between maps of the one-point-space {pt} into X is
the same thing as a path. This is a little bit silly, but it sometimes
allows us to give quick proofs about paths from statements about
homotopies.

Definition 0.26. A continuous map f : X → Y between topological spaces
is called a homotopy equivalence if there is a map g : Y → X (called homo-
topy inverse) so that f ◦ g and g ◦ f are both homotopic to the identity (of
Y,X respectively).

Intuitively, this means that “X can be deformed into Y ” – but the defor-
mations are allowed to squish parts of the space to points, as long as no
information is lost up to homotopy. Examples make this clearer:

• Rn and the one-point space are homotopy equivalent. We have seen
this above.
• Rn \ {0} and Sn−1 are homotopy equivalent. One map is simply the

inclusion, the other is x 7→ x/‖x‖.
• A graph in the shape of θ and a graph in the shape of 8 are homotopy

equivalent. We will soon see a way to prove this formally and quickly
– but it is instructive to think about how one would build the maps
and homotopies by hand.

Lecture 4 (October 23)

We continue with homotopies. First, we’ll prove a useful lemma about
homotopies between homotopies:

Lemma 0.27 (Reparametrisation lemma). Suppose X,Y are topological
spaces, and

F : X × [0, 1]→ Y

is a homotopy. Suppose that φ1, φ2 : [0, 1]→ [0, 1] are two continuous maps
with φ1(t) = φ2(t) for t = 0, 1. Then the maps G1, G2 : X × [0, 1] → Y
defined by Gi(x, t) = F (x, φi(t)) are homotopic relative to X × {0, 1}.
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Proof. Simply define H : X × [0, 1]× [0, 1] by

H(x, t, s) = F (x, sφ2(t) + (1− s)φ1(t)).

This is clearly continuous, and it is equal to G1, G2 for s = 0, 1. Since for
t = 0, 1 the two functions φ1, φ2 take the same value, it is a homotopy rel
X × {0, 1}. �

Here is a typical application: similar to paths, given homotopies F,G :
X × [0, 1]→ Y we define the concatenation

F ∗G(x, t) =

{
F (x, 2t) if t ≤ 1/2

G(x, 2t− 1) if t ≥ 1/2

We define the inverse as

F (x, t) = F (x, 1− t).

The lemma then immidiately implies the following: the concatenation F ∗F
is homotopic, relative to X × {0, 1} to the constant homotopy C(x, t) =
F (x, 0) (for all x, t). In that sense, the inverse really deserves its name: it
is an inverse up to homotopy.
Another standard application is the following: the concatenation F ∗ G is
homotopic to {

F (x, f1(t)) if t ≤ c
G(x, f2(c)) if t ≥ c

if f1 : [0, c] → [0, 1], f2 : [c, 1] → [0, 1] are any surjective increasing continu-
ous maps. In other words, it does not matter (up to homotopy) how exactly
we define concatenation, as long as we traverse first F , then G in the correct
direction. To prove the claim, apply the lemma to F ∗ G, φ1 the identity
map, and φ2 defined as

φ2(t) =

{
1
2f1(t) if t ≤ c
1
2(f2(t) + 1) if t ≥ c

Definition 0.28. Let X be a topological space, and x ∈ X. We define

π1(X, p) = {γ : [0, 1]→ X | γ(0) = γ(1) = p}/ ∼
where the equivalence relation is homotopy relative to {0, 1}.
The constant path as identity element, concatenation of paths, and inverses
of paths turn π1(X, p) into a group, called the fundamental group.

The fact that inverses of paths are inverses in π1(X, p) is exactly the obser-
vation about homotopies above (recall: homotopies of one-point-maps are
paths!). Similarly, that the constant path really is the identity, and that
concatenation is associative (up to homotopy). Work out these details for
yourself; they are all straightforward applications of the reparametrisation
lemma.
Next, just as for π0 we have the following functoriality:
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• If f : X → Y is a continuous map, and p ∈ X is a point, then there
is a group homomorphism

f∗ : π1(X, p)→ π1(Y, f(p))

defined by f∗[γ] = [f ◦ γ].
• We have id∗ = id for the identity map id : X → X, and
• (fg)∗ = f∗g∗ if f : Y → Z, g : X → Y are continous maps.

As for π0, these properties guarantee that π1 is a topological invariant –
homeomorphic spaces have the same fundamental group (up to group iso-
morphism).
However, we have to be a little bit careful with basepoints! If f : X → Y is
a homeomorphism, then we get an induced group isomorphism

f∗ : π1(X, p)→ π1(Y, f(p))

Is the choice of p, f(p) important? Not for path-connected spaces:

Lemma 0.29 (Basepoint dependence of π1). Suppose that X is a topological
space and that ρ : [0, 1] → X is a path connecting p = γ(0) to q = γ(1).
Then there is a group isomorphism

π1(X, p)→ π1(X, q)

defined by
[γ] 7→ [ρ ∗ γ ∗ ρ]

Proof. First, we need to check that the map is well-defined. This means that
ρ ∗ γ ∗ ρ, ρ ∗ γ′ ∗ ρ are homotopic if γ, γ′ are homotopic, which is clear (check
if you agree!). Next, we need to check that is a group homomorphism. This
means that

ρ ∗ γ ∗ γ′ ∗ ρ and ρ ∗ γ ∗ ρ ∗ ρ ∗ γ′ ∗ ρ
are homotopic rel {0, 1}. But this is just the reparametrisation lemma again!
Similarly, we see that the assigment

[γ] 7→ [ρ ∗ ρ ∗ γ ∗ ρ ∗ ρ]

is the identity map of π1(X, p), and therefore the map from the lemma has
an inverse. �

Next week we will start developing tools which are able to compute π1, and
that will give us the ability to tell apart many more spaces.
But first, we want to briefly talk about one very useful tool to show that
spaces are homotopy equivalent. This uses the following notion.

Definition 0.30. Suppose that f : X → Y is a continuous map. The
mapping cylinder is the space

Mf = Y ∪X × [0, 1]/ ∼
where the equivalence relation is generated by f(x) ∼ (x, 0) for all x ∈ X.
The mapping cone is the space

Cf = Mf ∼
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where now we also identify (x, 1) ∼ (x′, 1) for all x, x′ ∈ X.

This is a useful, and very general construction. One crucial special case is
the process of attaching a cell. We will discuss this in detail later in the
course, but will already give an indication now. Namely, suppose that X
is a topological space. We denote by Dn = {p ∈ Rn | ‖p‖ ≤ 1} the n–
dimensional cell. The boundary ∂Dn = Sn−1 is the (n − 1)-dimensional
sphere. Suppose we are given a map f : Sn−1 → X. Then we define

Y = X ∪Dn/ ∼
where f(x) ∼ x for all x ∈ Sn−1 and say that Y is obtained from X by
attaching a n–cell. Often one writes Y = X ∪f Dn.
What does this have to do with mapping cones? We have a homeomorphism

X ∪f Dn ' Cf .
Namely, Sn−1 × [0, 1]/ ∼= Dn, where (s, 1) ∼ (s′, 1) for all s, s′ ∈ Sn−1.
Thus (at least as sets) there is an obvious bijection between X ∪f Fn and
Cf , and it should be a homeomorphism. Formally, we have to be a little bit
careful, as in X ∪f Dn we first take the quotient of Sn−1 × [0, 1], and then
glue it to X with f , whereas in Cf we first glue to X and then take the
quotient. We’ll see below that these are the same thing.
The theorem we would like to prove is the following:

Theorem 0.31. Suppose that f, g : X → Y are homotopic. Then Mf ,Mg

are homotopy equivalent, and so are Cf , Cg.

As a consequence, we get

Corollary 0.32. The result of attaching a cell depends up to homotopy
equivalence only on the homotopy class of the attaching map.

For the proof of the theorem, I closely follow Bredon, I.14.18.

Lecture 5 (October 29)

One crucial step is the proof following lemma, which is often useful:

Lemma 0.33. Suppose that q : X → Y is a quotient map (i.e. Y has the
quotient topology with respect to that map), and that K is locally compact
Hausdorff. Then the map

q × id : X ×K → Y ×K
is a quotient map as well.

Intuitively, taking products (with nice spaces) commutes with taking quo-
tients. The proof is Bredon, I.13.19. It in turn relies on this characterisation
of the quotient topology:

Lemma 0.34. A continuous map q : X → Y is a quotient map if and
only if the following is true: a map h : Y → Z is continuous if and only if
h ◦ q : X → Z is continuous.
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This is Bredon, I.13.5. We also need the following

Lemma 0.35. Suppose that K is compact and X is any space. Then the
projection πX : X ×K → X is a closed map.

This is Bredon, I.8.2.

Part III: Covering Space Theory. Our next immediate goal will be to
compute the fundamental group of the circle. We would guess that it is Z,
via winding number.
How do we prove this? First, here is a convenient way to get all of these
basic loops. We think of S1 ⊂ C as the unit norm complex numbers. Then
we have the maps

γn(t) = e2πint

all of which are continuous, γn : [0, 1]→ S1 and γn(0) = γn(1) = 1.
How can we relate an arbitrary loop γ : [0, 1]→ S1 to one of these? Let

f : R→ C, f(t) = e2πit

be the exponential function.

Lemma 0.36. Suppose that γ : [0, 1]→ S1 is an arbitrary loop with γ(0) =
1 = γ(1). Suppose m ∈ Z is arbitrary. Then there is a unique continous
map γ̃ : [0, 1]→ R so that f ◦ γ̃ = γ and γ̃(0) = m.

Proof. Note that f has the following property: for any x ∈ S1 there is an
open set Ux ⊂ S1, and

f−1(Ux) =
∐
n∈Z

In

and each f : In → Ux is a homeomorphism. Call these Ux good.
For any t, we can choose δ so that γ(t − delta, t + δ) ⊂ Ut for a good Ut.
By compactness of the interval, there are in fact intervals Jk = [ak, bk], k =
1, . . . , n with a1 = 0, bk = ak+1, bn = 1 and so that γ(Jk) ⊂ Uk for good Uk.
Now, we will inductively choose local inverses gk : Uk → Ik to f . We
begin by choosing g1 so that g1(γ(0)) = m. This is uniquely possible by
the property above. Now, suppose that gk is already defined. We then
choose gk+1 : Uk+1 → Ik+1 so that gk+1(γ(ak+1)) ∈ Ik (which is possible
since γ(ak+1) = γ(bk) ∈ Uk). Observe (also inductively) that these gk are
uniquely determined by this requirement.
But now we can simply define:

α(t) =
{
gk ◦ γ(t) ift ∈ [ak, bk]

and observe that it defines a lift of γ.
For the uniqueness, observe that by uniqueness of g1, the lift α is unique on
[a1, b1] by the defining property of f above. Now induction shows uniqueness
globally. �

As a conseqeunce, we have
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Lemma 0.37. The map Z→ π1(S1, 1) defined by n 7→ [γn] is surjective.

Proof. Let γ : [0, 1] → S1 be any loop, and let γ̃ : [0, 1] → R be the
lift guaranteed by the previous lemma. Note that γ is a loop, we have
that γ̃(1) = n ∈ Z = f−1(1). Thus, γ̃ is homotopic to the affine map
[0, 1] → [0, n]. Postcomposing with f yields a homotopy from γ to γn as
claimed. �

Lecture 6 (October 30)

Next, we want to show injectivity. This will be very similar, except that we
will lift homotopies now, instead of paths. Here’s the result:

Lemma 0.38. Suppose that H : [0, 1] × [0, 1] → S1 is a homotopy relative
to {0, 1}, and suppose that γ̃ is a lift of H(·, 0). Then there is a unique map

H̃ : [0, 1]× [0, 1]→ R so that H̃(x, 0) = γ̃(x) and f ◦ H̃ = H. This is again
a homotopy rel {0, 1}.

Proof. The existence and uniqueness of H̃ as a set-theoretic map follows
from the following trick: fixing a t, the map s 7→ H(t, s) is a path, and so it
has a unique lift starting at γ̃(t).
Thus, we just have to show that this is continuous. This requires some
preliminaries.
For any p = (s, t), find a good neighbourhood Up of H(s, t) (see above), and
εp > 0, so that H((s− 2εp, s+ 2εp)× (t− 2εp, t+ 2εp)) ⊂ Up. Covering the
unit square with boxes of sidelength 2εp (inside these 4εp boxes above), and
using compactness of the unit square, we see that there is some ε with the
following property: for any (s, t) ∈ [0, 1]2 there is a good neighbourhood U ,
and the 2ε–box is mapped by H into U .

This allows us to describe H̃(t, s) in a different way. Recall that, by def-

inition, we know that H̃(t, s) is the endpoint of a lift ρ̃0 : [0, s] → R
of s 7→ H(t, s). Namely, choose points s0 = 0 < s1 < . . . < sn = s
so that |si − si+1| < ε/2. Choose good neighbourhoods Ui containing
H(t− ε, si− ε)× (t+ ε, si + ε). There are unique sets Ii, so that f : Ii → Ui
is a homeomorphism, and so that ρ̃0(si) ∈ Ii (by the definition of good).
Let gi : Ui → Ii be the inverses. We claim that for s ∈ [si, si+1] we have
ρ̃0(s) = gi(H(t, s)). This is true, since both the left and right hand side
are lifts of s 7→ H(s, t), s ∈ [si, si+1] with the same initial point. But, simi-
larly, for any t′, |t − t′| < ε we then have that ρ̃(s) = gi(H(t′, s)) is a lift of
s 7→ H(s, t′). In particular, this is well-defined if the choice of i in nonunique,
and in fact, we have that for (s′, t′) ε–close to (s, t):

H̃(t′, s′) = gn(H(t′, s′)).

This shows continuity.

The final claim (about homotopies rel endpoints) follows since H̃(t, s) for
t ∈ {0, 1} is continuous and contained in the discrete set f−1(H(s, t)), hence
constant. �
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As a consequence we have

Lemma 0.39. The map Z→ π1(S1, 1) defined by n 7→ [γn] is injective.

Proof. If γn would be nullhomotopic, simply lift the nullhomotopy. By the
previous lemma this is a homotopy rel endpoint, showing n = 0. �

With this in hand, we can show a few nice consequences.

Theorem 0.40. Every continuous function f : D2 → D2 has a fixed point.

Proof. Hatcher, Theorem 1.9 (Chapter 1) �

We can also use this to distinguish spaces. To this end, we need

Theorem 0.41. For any n ≥ 2, we have π1(Sn) = 1.

Proof. Hatcher, Proposition 1.14 (Chapter 1) �

Lecture 7 (November 5)

First, we want to show that the fundamental group can actually distin-
guish spaces up to homotopy equivalence, not just homeomorphism (this is
not entirely trivial, since one has to be careful about what happens to the
basepoint). Concretely, we proved:

Proposition 0.42 (Hatcher, 1.18). If f : X → Y is a homotopy equivalence,
and p ∈ X is a point, then the induced map

f∗ : π1(X, p)→ π1(Y, f(p))

is an isomorphism.

[Hatcher, 1.18] Next, we come to the crucial definition for the next few
classes:

Definition 0.43. A map f : X → Y between topological spaces is a covering
map, if f is surjective, and every point y ∈ Y has an open neighbourhood
U so that

f−1 =
∐
i∈I

Vi

for some index set I, and so that fVi : Vi → U is a homeomorphism for all
i ∈ I.

The core property of coverings is the following:

Theorem 0.44 (Homotopy lifting, Hatcher Proposition 1.30). Suppose that
p : X → Y is a covering map, and suppose that f : Z → Y is a map. Let

f̃ : Z → X be a lift of f , i.e. a continuous map so that pf̃ = f .
If H : Z × [0, 1] → X is any homotopy starting in f (i.e. H(z, 0) = f(z)),

then there is a unique lift H̃ of H starting in f̃ (i.e. pH̃ = H and H̃(0, z) =

f̃(z))
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We actually proved this when figuring out the fundamental group of the
circle. Check the discussion in Hatcher if you are unsure about the details.
To see applications of this, we first need a supply of examples. These will
be given by graphs.

Definition 0.45. A Graph Γ consists of the following data:

(1) A set V = V (Γ), (the vertex set)
(2) A set E = E(Γ), (the set of oriented edges)
(3) A map · : E → E (inverting oriented edges)
(4) Maps i, t : E → V (initial and terminal vertex maps)

so that

i) · is a fixed point free involution
ii) t(·(e)) = i(e) for all e.

An orientation on a graph is a choice E+ ⊂ E containing exactly one of e, e
for all e ∈ E.

Out of a graph we can build a topological space as follows. Suppose Γ is a
graph and E+ an orientation (the choice will not matter, but this makes it
easier to describe the construction)

XΓ = (V
∐

E+ × [0, 1])/ ∼

where V,E+ are equipped with the discrete topology, and ∼ is generated by
(e, 0) ∼ i(e), (e, 1) ∼ t(e). This is called the (topological) realisation of the
graph Γ.
One example is the wedge of circles. To this end, consider the graph with
one vertex and 2k edges (all other data is then already determined). The
realisation then is

S1 ∨ · · · ∨ S1 = {1, . . . , k} × [0, 1]/ ∼
where ∼ is generated by (i, t) ∼ (j, s) for all i, j and s ∈ {0, 1}.
In fact, we can relate graphs to this example.

Definition 0.46. Suppose that Γ is a graph and E+ an orientation. An
edge-labelling by a set S is a map

L : E+ → S.

Now suppose that we have an oriented graph labelled by {1, . . . , k}. Then
the map

V
∐

E+ × [0, 1]→ {1, . . . , k} × [0, 1]

which maps any v ∈ V to (1, 0) and a point (e, t) to (L(e), t) induces a
continuous map

p : XΓ → S1 ∨ · · · ∨ S1.

Lemma 0.47 (Covering Criterion). In the context above, assume that for
every v ∈ V the following holds. For any 1 ≤ j ≤ k there is exactly one e ∈
E+ with L(e) = j, i(e) = v and exactly one e ∈ E+ with L(e) = j, t(e) = v.
Then the map p above is a covering map.
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Proof. There are two cases. First, consider a point p ∈ S1 ∨ · · · ∨ S1 which
is not the vertex, i.e. defined by a point (i, t0), 0 < t0 < 1. Then let U be
the image of

{(i, t), 0 < t < 1}
The preimage is

p−1(U) = {(e, t) | L(e) = i, 0 < t < 1}/ ∼

It is easy to see that p restricted to any set of the form {(e, t) | 0 < t <
1} for a given e is a homeomorphism onto its image. Hence U is a good
neighbourhood.
Next, consider the point p which is the vertex of the wedge of circles. In
this case, define U be the image of

{(i, t), 1 ≤ i ≤ k, 0 ≤ t < ε or 1− ε < t ≤ 1}

The preimage is

p−1(U) = {(e, t) | e ∈ E+, 0 ≤ t < ε or 1− ε < t ≤ 1}/ ∼

Given a vertex v ∈ V , define Vv to be the image of

{(e, t) | i(e) = v and 0 ≤ t < ε or t(e) = v and 1− ε < t ≤ 1}

It is clear that

p−1(U) =
∐
v∈V

Vv.

By the condition assumed in the lemma, p|Vv : Vv → U is a bijection for
each v, and it is easy to see that it is in fact a homeomorphism. �

Lecture 8 (November 6)

We now want to use the construction of covering spaces via graphs:

Corollary 0.48. The group π1(S1 ∨ S1) is nonabelian.

Proof. Denote by a, b the loops given by the two obvious circles in S1 ∨ S1.
First, we claim that there is a cover X → S1∨S1 with the following property:
there is an embedded segment ρ in X (with distinct endpoints!) which maps
under the covering map to a∗b∗a∗b. The existence of this can easily be seen
by drawing a suitable graph and appealing to the lemma from last time.
Now, suppose that [a, b] ∈ π1(S1 ∨ S1) were trivial. Then there would be
a homotopy H starting in a ∗ b ∗ a ∗ b and ending in the constant path
rel endpoints. Lift this homotopy to X starting in ρ. The lift would be
a homotopy from ρ to the lift of a constant path rel endpoints. This is
impossible since ρ has distinct endpoints. �

Let us emphasise two important properties about covers (compare the dis-
cussion after Prop. 1.30 in Hatcher)
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• The path lifting property: if p : X → Y is a covering, and γ : [0, 1]→
Y , then for any x ∈ p−1(γ(0)) there is a unique lift γ̃ : [0, 1] → X
with γ̃(0) = x (apply the homotopy lifting theorem for Z = {∗}, H =
γ)
• Endpoints of path lifts: suppose that p : X → Y is a covering,
γ1, γ2 : [0, 1]→ Y are two paths which are homotopic rel endpoints.
If γ̃1, γ̃2 are two lifts with the same initial point, then they have the
same endpoint as well (lift the homotopy to find some lift of γ2 both
of whose endpoints agree and use uniqueness of path lifting)

Next, we study how covering maps interact with the fundamental group.

Lemma 0.49 (Hatcher 1.31). If p : X → Y is a covering map, then the
induced map

p∗ : π1(X,x)→ π1(Y, p(x))

is injective. Its image consists exactly of those loops based at p(x) which lift
to loops in X at x.

Lemma 0.50 (Hatcher 1.32). Suppose that p : X → Y is a covering map,
and X is path-connected. Then, the cardinality of p−1(y) is equal to the
index of p∗π1(X,x) in π1(Y, y) for any y ∈ p−1(y).

Crucial is the following criterion guaranteeing existence of lifts:

Theorem 0.51 (Lifting theorem, Hatcher 1.33). Let p : X → Y be a cov-
ering, and suppose X is locally path-connected and path-connected. Suppose
that f : Z → Y is a continuos map and f(z0) = y0 = p(x0). Then f has a

lift f̃ with f̃(z0) = x0 if and only if f∗π1(Z, z0) ⊂ p∗π1(X,x0).

Lecture 9 and 10 (November 12 and 13)

Definition 0.52. A topological space X is semilocally simply-connected if
every point x ∈ X has a neighbourhood U so that π1(U, x) → π1(X,x) is
trivial.

Theorem 0.53 (Hatcher, page 63-65). Let X be path-connected and locally
path-connected. Then X is semilocally simply-connected if and only if it has
a simply-connected covering space.

We call simply-connected covering spaces universal covers.
There is the following correspondence between covering spaces and sub-
groups of the fundamental group:

Theorem 0.54 (Hatcher 1.38). Suppose that X is path-connected, locally
path-connected and semilocally simply-connected and x ∈ X. Then the as-
signment

{path-connected covering spaces p : Y → X with p(y) = x}/ ∼→ subgroups of π1(X,x)

defined by p 7→ p∗(π1(Y, y)) ⊂ π1(X,x) is a bijection. Here, ∼ is isomor-
phism of coverings, i.e. homeomorphisms lifting the identity.
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Lecture 11 (November 19)

Next, we want to study a different way to characterise covering spaces. This
uses the notion of a set with group action.

Definition 0.55. Let G be a group, and M a set. A (right) G–action on
M is a map

(m, g) 7→ m · g
so that

m · 1 = m

for all m ∈M and

m · (gg′) = (m · g) · g′

A set with a G action we also call a G–set. A right action of G on a set M
is equivalent to a homomorphism ρ : G→ Bij(M) into bijections of M . The
correspondence is given by ρ(g) = [m 7→ m · g−1] (the inverse is necessary
to make ρ a homomorphism).

One core example is given by covering spaces. Namely, suppose p : Y → X
is a covering space, and x0 ∈ X a point. Given a loop γ : [0, 1] → X based
at x0 ∈ X, and y ∈ p−1(x0), let γ̃ be the lift of γ starting at y. Then define

y · [γ] = γ̃(1).

We have already seen that this indeed only depends on the homotopy class
of γ, and thus it defines a π1(X,x0)–set structure on p−1(x0).
The other core example is given by sets of cosets. Namely, if G is a group,
and H is a subgroup, then the set H\G = {Hg} of left cosets is a right
G–set in the obvious way: Hg · g′ = Hgg′.

Given a G–set M and a m ∈M , define the stabiliser

Gm = {g ∈ G | m · g = m}.

In the covering space setup, we can identify the stabilisers:

Lemma 0.56. Suppose p : Y → X is a covering space, and let G =
π1(X,x0). Then, for the G–set M = p−1(x0) we have

Gm = p∗(π1(Y,m))

Proof. By definition of the action, Gm is the subgroup of π1(X,x0) formed
by all those loops whose lifts to m are closed. We have already seen that
this is p∗(π1(Y,m)). �

We call a G–set M transitive if for all m,m′ ∈ M there is an element g so
that m · g = m′.

Lemma 0.57. Suppose p : Y → X is a covering space with X path-
connected, and let G = π1(X,x0). Then, the G–set M = p−1(x0) is transi-
tive if and only if Y is path-connected.
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Proof. First suppose that Y is path-connected. Then, for any m,m′ ∈
p−1(x0) there is a path ρ : [0, 1] → Y with ρ(0) = m, ρ(1) = m′. Then
ρ is the lift of the loop γ = p ◦ ρ based at x0, and thus m · γ = m′ by
definition.
Conversely, suppose that M is transitive. By definition, this means that any
two points of p−1(x0) can be joined by a path (the lift of a suitable loop).
Hence, it suffices to show that any point y ∈ Y can be joined to the fiber
p−1(x0) by a path. This follows, since X is path-connected, and therefore
p(y) can be joined to x0 by a path ρ. A lift ρ̃ starting in y then has the
desired property. �

A morphism between G–sets M,M ′ is a map ϕ : M →M ′ so that ϕ(m ·g) =
ϕ(m)·g for all m. An isomorphism of G sets is a morphism which is bijective,
and whose inverse is also a morphism.

Lemma 0.58. Suppose M is a transitive G–set. Let m ∈M be given. Then
there is an isomorphism of G–sets

ϕ : Gm\G→M

Proof. First, we define a map G → M by g 7→ m · g. By definition, this
induces a map Gm\G→M . Transitivity of the set M guarantees that this
map is surjective. For injectivity, suppose that ϕ(Gmg) = ϕ(Gmg

′), and
thus

m = ϕ(Gm) = ϕ(Gmg) · g−1 = ϕ(Gmg
′) · g−1 = ϕ(Gmg

′g−1) = m · (g′g−1).

Thus, g′g−1 ∈ Gm and Gmg = Gmg
′. Hence, ϕ is bijective. The inverse is

then automatically a G–set morphism. �

Hence, to understand transitiveG–sets, it suffices to understand the concrete
sets H\G. An example of this is the following very useful lemma:

Lemma 0.59. Suppose that M,N are two transitive G–sets, and m ∈
M,n ∈ N . Then there is a G–set morphism ϕ : M → N with ϕ(m) = n if
and only if Gm ⊂ Gn. If it exists, the map is unique and surjective.

Proof. For one direction, suppose the map exists, and g ∈ Gm. Then

n · g = ϕ(m) · g = ϕ(m · g) = ϕ(m) = n.

For the other direction, we can construct the map as

M → Gm\G→ Gn\G→ N

where the first and last map are from the previous lemma, and the middle
map exists by the assumption on the stabilisers.
Uniqueness follows from transitivity of M : the value ϕ(m′) is determined
by ϕ(m) since there is some g ∈ G with m′ = m · g. Surjectivity follows
from transitivity of N , since for any n′ there is a g ∈ G with n′ = n · g =
ϕ(m · g). �
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Corollary 0.60. Suppose M is a transitive G–set. Then there is an auto-
morphism ϕ : M →M with ϕ(m) = m′ if and only if Gm = Gm′.

Corollary 0.61. Consider M = G as a G–set (with the usual right multi-
plication action). Then there is an isomorphism

G→ AutG(M)

from G to the group of G–set automorphisms of M , which associates to g
the unique automorphism mapping 1 to g.

Next, we want to interpret morphisms between G–sets with covers.

Definition 0.62. Suppose that pi : Yi → X, i = 1, 2 be two covers of a
space X. A continuous map f : Y1 → Y2 morphism of covers if p2 ◦ f = p1.

Equivalent (and sometimes useful) is the perspective: a morphism of covers
is a lift of the identity map.

Lemma 0.63. Suppose pi : Yi → X, i = 1, 2 be two covers of a space X
and x0 ∈ X. A morphism of covers f : Y1 → Y2 induces by restriction a
morphism of π1(X,x0)–sets p−1

1 (x0)→ p−1
2 (x0).

Proof. Let y ∈ p−1
1 (x0) be given. It is clear from the definition of morphism

of covers that f(y) ∈ p−1
2 (x0). Thus, we just have to check that it commutes

with the G = π1(X,x0) action. In other words, let γ be a loop in X based
at x0 and let γ̃ be a lift at y. Then, observe that f ◦ γ is a lift of γ based at
f(y). By definition of the action, this shows

f(y · [γ]) = f(y) · [γ].

�

Much more interestingly, the coverse is also true:

Theorem 0.64. Suppose that X is path-connected, locally path-connected,
and semi-locally simply-connected and x0 ∈ X. Let pi : Yi → X, i = 1, 2 be
two covers. Then the assignment f 7→ f |p−1

1 (x0) induces a bijection

{morphisms of covers Y1 → Y2} → {morphisms of G–sets p−1
1 (x0)→ p−1

2 (x0)}
for G = π1(X,x0).

Proof. The first step is a technical observation. Write Y1

Y1 =
∐

Vi

as the union as its path-connected components. We claim that each Vi is
open (and so Y1 has the topology of the disjoint union of the Vi). Namely,
let v ∈ Vi be any point. By assumption, there is a neighbourhood U of
v so that p1|U is a homeomorphism onto its image. By assumption, p1(U)
contains a path-connected neighbourhood of p1(v), and therefore U contains
a path-connected neighbourhood of v, showing the claim.
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Next, observe that each p|Vi is surjective. Namely, if v ∈ Vi is arbitrary, lift
a path from p1(v) to some x starting in v. The lift (being a path) cannot
leave the path-component Vi, and thus its endpoint lies in Vi ∩ p−1

1 (x). In
particular, each p|Vi is itself a covering map.
Now, the lifting theorem guarantees that a lift fi of the identity (of X) to a
(path-connected) cover p|Vi is already determined by the image of a single
point in p−1

1 (x0) ∩ Vi. This shows injectivity of the map.

Finally, suppose that ϕ : p−1
1 (x0) → p−1

2 (x0) is a morphism of G–sets. By

the lemma above we have, for any m ∈ p−1
1 (x0) the inclusion Gm ⊂ Gϕ(m)

of stabilisers. This implies

Gm = (p1)∗(π1(Y1,m)) ⊂ (p2)∗(π1(Y2, ϕ(m))).

Denoting by Vj again the path-component containing m, the lifting theorem
implies that there is a lift fj of p1 to p2 : Y2 → X with fj(m) = ϕ(m).
Since Y1 is the disjoint union of the Vj as a topological space, f =

∐
fj is a

continuous map f : Y1 → f2 which has the desired property. �

Lecture 12 (November 20)

We call the group of automorphisms of a covering p : Y → X the group of
deck transformations. By the theorem from last time, this is the same as
the group of G–set automorphisms of the fibers. A covering is normal if the
group of deck transformations acts transitively on the fibers.
A crucial example is the universal covering.

Lemma 0.65. Let X be path-connected, locally path-connected, and suppose
that p : Y → X is a universal covering. Then p is normal.

Proof. Let G = π1(X,x0). The fiber p−1(x0) is a transitive G–set, since
Y is path-connected. Further, the stabilisers Gy = p∗(π1(Y, y)) = e since
the covering is universal. Thus, p−1 = G as G–sets. By a corollary from
last time, the automorphism group of G is G itself, in particular it acts
transitively. Thus, by the theorem from last time, the deck transformation
group does as well. �

Lemma 0.66. Suppose X is path-connected and locally path-connected. Let
p : Y → X be a covering, and suppose Y is path-connected. Then p is
normal if and only if p∗(π1(Y, y)) is normal in π1(X, p(y)).

Proof. Fix some x0, and y0 ∈ p−1(x0). Given any other y ∈ p−1(x0), suppose
that ρ is a path from y0 to y. Observe that then γ = p ◦ ρ is a loop based at
x0. Also, as we have seen earlier, the map α 7→ ρ∗α∗ρ gives an isomorphism
π1(Y, y)→ π1(Y, y0). Now, there is a G–set isomorphism mapping y to y0 if
and only if the stabilisers are the same. In this setting, this is equivalent to

Gy = p∗(π1(Y, y)) = [p ◦ ρ]p∗(π1(Y, y0))[p ◦ ρ]−1.

Hence, if p∗(π1(Y, y0)) is normal, then for any y there is a deck transfor-
mation mapping it to y0, showing normality of p. Conversely, since [p ◦ ρ]
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above can be in any homotopy class, for a normal covering p the group
p∗(π1(Y, y0)) is normal. �

At this point, a warning: the fiber of a normal cover has two different
actions – by the deck group and by the fundamental group of the base.
These are not the same, even in cases where one might think that they
might be related. E.g. in general for the universal cover (where the two
groups are the same), the two actions are different!

Our next goal is to construct covers from G–sets. To do so, we will use
group actions by homeomorphisms.

Definition 0.67. An action of G on Y by homeomorphisms is called a
covering space action if the following holds: for any y ∈ Y there is an open
set U, y ∈ U , so that gU ∩ U 6= ∅ implies g = id.

The importance and name of this is given by the following:

Lemma 0.68. Suppose that Y is a space, and G acting on Y as a covering
space action.

i) The quotient map p : Y → Y/G is a normal covering space.
ii) If Y is path-connected, then G is the group of deck transformations of

p.

Proof. To see the first claim, suppose that x = p(y) is any point. Take a
neighbourhood U of y as in the definition of covering space action. Then we
have

p−1(p(U)) =
∐
g∈G

gU

by the defining property. Further, for any g, we have

p|gU : gU → p(U)

is a continuous bijection, and by definition of the quotient topology it is
actually a homeomorphism. Thus, p is a covering. Since G acts as covering
automorphisms, and transitive on fibers, it is normal, showing i).
Part ii) is immediate, since for a connected Y deck transformations are
uniquely determined by the value of a single point. �

Lecture 13 (November 26)

Lemma 0.69. Let X be path-connected, locally path-connected, and semi-
locally simply-connected, and put G = π1(X,x0). Suppose that M is any
G–set. Then there is a cover p : Y → X whose fiber p−1(x0) is isomorphic
to M as a G–set.

Proof. Let q : Z → X be the universal cover, and let δ : G→ Homeo(Z) be
the action by deck transformations. Similarly, let ρ : G → Bij(M) be the
action corresponding to the G–set M .
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Define the space Z ×M (M has the discrete topology), and observe that
there is a (diagonal) action by homeomorphisms

G→ Homeo(Z ×M)

We define

Y = Z ×M/G.

Observe that Z ×M is a cover of Y as the action is a covering space action.
There is a natural map

p : Y → X

induced by the projection to Z and the covering map q. We claim that this
is a covering map. To this end, suppose that x ∈ X is a point, and U ⊂ Z
be a set so that q−1(q(U)) =

∐
g∈G gU . We then claim that

p−1(U) = U ×M,

so that p is the projection to the first factor. This shows that p is a covering
map, and that p−1(x0) is M as a set. It remains to check that the G–set
structure is the correct one.
To see this, suppose that g = [γ] ∈ π1(X,x0) is a loop, and γ̃ is a lift to
Z, based at z0. Its endpoint is δ(g)(z0) (this is how the identification of the
deck group with the fundamental group works). Hence, lifting at (z0,m) in
Z ×M ends at (δ(g)(z0),m), which is equivalent to (z0, ρ(g−1)(m)). Hence,
it acts on the fiber M as m · g.

�

Together with the result from last time, this shows: covers (and their mor-
phisms) of X are in 1-1 correspondence to G–sets (and their morphisms).
Based covers (and their morphisms) are in 1-1 correspondence to based G–
sets.
The free group on a set of symbols is the “biggest” group generated by those
symbols. There are two flavors of saying this.

Definition 0.70 (Free groups, flavor 1). Let S be a set. The free group
F 〈S〉 is the group whose elements are words with letters s± for s ∈ S up to
obvious cancellation.

This is easy to imagine and play with, but something of a formal annoyance
(checking that things are well-defined or unique...)

Definition 0.71 (Free groups, flavor 2). Let S be a set. The free group F 〈S〉
is the group together with a subset S ⊂ F 〈S〉 with the following universal
property: if G is any group and gs, s ∈ S are any collection of elements,
then there is a unique homomorphism ϕ : F 〈S〉 → G so that ϕ(s) = gs for
all s.

In other words, free groups are groups which are easy to map out of.
It is sort of clear that version 1 has the property of version 2 (once you know
that you can actually compute with words the way you want it is actually
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easy). It is a standard algebraic trick that things defined as in version 2 are
unique once they exist. Hence, they are actually equivalent.

Lemma 0.72. Let X = S1 ∨ · · · ∨ S1 be the wedge of n circles. Then
π1(X) = F 〈{1, . . . , n}〉 = Fn.

We have a map Fn → π1(X) mapping i to the i–th petal. One could now
directly check that this is surjective and injective with various means (e.g.
by dealing with paths, homotopies and being careful about the basepoint,
or by “guessing a universal cover”) – and it is sort of instructive that you
try!

Lecture 14 (November 27)

We now discuss an important special case: suppose X is as before path-
connected, locally path-connected and semi-locally path-connected. Sup-
pose x0 ∈ X is a point, G = π1(X,x0) and Q is any group.
A homomorphism ϕ : G → Q turns Q into a G–set with a preferred point
ϕ(e) by right-multiplication by ϕ(g). Further, this right action commutes
with the left action of Q on itself. We now build out of this G–set a cover
p : Y → X. This cover furthermore comes with an action of Q by deck
transformations (since the Q–action on the left of Q gives G–set automor-
phisms), and this action is free and transitive, showing in particular that
the cover is normal.
Now, conversely, suppose that we have a normal cover p : Y → X, to-
gether with a preferred point y ∈ p−1(x0), and a free transitive Q–action by
deck transformations. The free transitivity of the action allows to identify
p−1(x0) with Q, so that the deck group action is the multiplication action
on the left, and the preferred point y corresponds to the identity. Since the
G–action commutes with the deck transformation action, the G–action is
multiplication by elements on the right under this identification (think of
the G–action as an automorphism of the left–Q–set structure of Q), and
therefore we get a homomorphism ϕ : G→ Q.
On the level of (based) G–sets these two operations are inverses to each
other, and so by the results from last time we have shown:

Corollary 0.73. In the context above, there is a 1–1 correspondence between
homomorphisms π1(X,x0) → Q and based regular covers (Y, y) → (X,x0)
with a free transitive Q–action (which we’ll call Q–regular for short).

This allows to transfer from topology to algebra and vice versa. We will see
a powerful application of this next, the Seifert-van Kampen theorem.
As a warm-up, we will discuss a different proof of the following lemma using
the machinery above.

Lemma 0.74. Let X = S1 ∨ · · · ∨ S1 be the wedge of n circles. Then
π1(X) = F 〈{1, . . . , n}〉 = Fn.
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So, suppose we have any group G and elements g1, . . . , gk. Clearly there are
unique homomorphisms ρi : π1(S1, 1) = Z→ G which map 1 to gi.
By the correspondence above, these correspond to unique based regular G–
covers pi : (Yi, yi)→ (S1, 1) of the circle.
We now define a space

Y =
∐

Yi/ ∼ yi · g ∼ yj · g,

i.e. we glue the Yi identifying the preimages of the basepoint in a G–
equivariant way.
The space Y has a natural map p : Y → S1 ∨ · · · ∨ S1 (induced by the pi),
and this map is a covering space: at points not glued this follows from the
fact that the pi are coverings, and at the basepoint it follows observing that
gluing evenly covered neighbourhoods is an evenly covered neighbourhood.
The space also has a natural G–action (since the gluing is G–equivariant),
making Y a G–regular cover.
Hence, p : (Y, y) → (S1, 1) corresponds, by the corollary again, to a unique
homomorphism ϕ : π1(X, 1) → G. This maps the loops represented by
the petals to gi. Why? Because restricted to the i–th petal Ci the map
p is exactly pi, and so the fibers are the same π1(Ci, 1)–sets. Hence, the
corollary tells us that ϕ restricted to the subgroup π1(Xi, 1) is ρi.
The same argument also yields uniqueness of ϕ – given the cover Y ′ cor-
responding to any such ϕ′, restricting to the petals needs to give the same
covers pi using the corollary the other way around, and so Y ′ is also obtained
by gluing the Yi equivariantly.

Lecture 15 (December 4)

Sometimes, it is useful to have the other definition of a free group.

Lemma 0.75. The free group F 〈S〉 can be identified with the set of words in
S± (up to obvious cancellation), with concatenations of words as the group
operation.

One useful thing we can do with this is give presentations of groups. Namely,
suppose we have a set S and a set R ⊂ F 〈S〉. We can then form

G = 〈S|R〉 = F 〈S〉/N(R)

We call the data S,R a presentation of the group G.
Some examples: Z/k = 〈a|ak〉.
Z2 = 〈a, b|[a, b]〉.
These claims are actually slightly nontrivial. We have to check that the
chosen relations suffice to completely determine the group.
How does one do this? The key is that it is easy to describe homomorphisms
mapping out of groups with presentations: a homomorphism ρ : F 〈S〉 → Q
induces ρ̂ : G→ Q if and only if ρ(r) = 1 for any r ∈ R.
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Thus, e.g. we have a homomorphism ϕ : 〈a|ak〉 → Z/k. It is clearly sur-
jective, but injectivity requires some minimal care. Similarly for the Z2

example.
Warning: In general, it is impossible to determine what group is given by
a presentation...

The Seifert-van Kampen theorem is a generalisation of this argument where
we don’t just glue circles. On the algebraic side, we need the notion of
amalgamated free products. The input data is three groups A,B,C and two
homomorphisms ιA : C → A, ιB : C → B. The output is a group A ∗C B
and maps fA : A→ A ∗C B, fB : B → A ∗C B.
We will give three different descriptions, all of which are useful:

(1) Universal Property Given gA : A → Q, gB : B → Q so that gAιA =
gBιB there is a unique g : A ∗C B → Q with gfA = gA, gfB = gB.

(2) Presentation

A ∗C B = 〈A ∪B|a · a′ · (aa′)−1, b · b′ · (bb′)−1, ιA(c)ιB(c−1)〉
(3) Words A ∗C B consists of formal words in A,B where ιA(c) ∈ A is

equal to ιB(c) ∈ B.

The third has the same “issues” as with the free group. To see that the
second has the property of the first is not hard. The standard trick shows
uniqueness.
With this in hand, we can now state the Seifert-van Kampen theorem.

Theorem 0.76. Suppose X is reasonable, X = U1 ∪ U2, and all three of
U1, U2, U1 ∩ U2 are reasonable. Then for any x ∈ U1 ∩ U2,

π1(X,x) = π1(U1, x) ∗π1(U1∩U2,x) π1(U2, x)

for the maps induced by inclusion.

The proof is actually very simple to the proof from last time, and relies on
the following:

Corollary 0.77. For a reasonable space X there is a 1–1 correspondence
between homomorphisms π1(X,x0) → Q and based regular covers (Y, y) →
(X,x0) with a free transitive Q–action (up to equivariant covering isomor-
phism).

We also recall the following observation

Corollary 0.78. Suppose that p : (Y, y) → (X,x0) corresponds to a map
ϕ : π1(X,x0) → G. Suppose that U ⊂ X is an open subspace with x0 ∈ U .
Then the cover

p|p−1(U) : p−1(U)→ U

corresponds to ϕ◦ ι, where ι : π1(U, x0)→ π1(X,x0) is induced by inclusion.

Proof. The correspondence from cover to group homomorphism comes from
considering the fiber as a G–set, i.e. by path-lifting. If γ is a path in U ,
then it acts exactly as ι([γ]) on the fiber of p, showing the claim. �
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Proof. We will check the universal property. So, suppose we are given two
maps ϕi : π1(Ui, x) → G for some group G as in the universal property.
Using the classification, associated are covers pi : Yi → Ui.
The restrictions pi|p−1

i (U1∩U2) : Zi = p−1
i (U1∩U2)→ U1∩U2 correspond, via

the classification, to the maps ϕiιi (where ιi : π1(U1 ∩ U2, x) → π1(Ui, x))
are induced by the inclusion map). By the setup of the universal property,
these are equivariantly homeomorphic. This means that we have a homeo-
morphism

F : Z1 → Z2

which commutes with the G–action on both sides.
Hence, we can form a cover Y → X in the following way:

Y = Y1

∐
Y2/ ∼ z ∼ F (z)∀z ∈ Z1

Since the gluing is done by a G–equivariant covering morphism, the map
p1
∐
p2 induces a map p : Y → X, and the G–action extends. It is clearly a

covering map, and G acts transitively on fibers (since it did so for the Yi).
Using the correspondence, we get a morphism ϕ : π1(X) → G. It restricts
to the correct maps by the corollary before the proof.
It remains to show uniqueness. To this end, we just read the construction
backwards. If ϕ′ is any other map, we obtain a cover X ′ → X. Restricting
to U1, U2, U1 ∩ U2 we then see covers which are equivariantly isomorphic to
Y1, Y2, Z1 = Z2. Hence, X ′ is isomorphic to X. �

Lecture 16 (December 10)

The next big topic is homology. This will allow us to probe different infor-
mation than is captured by the fundamental group – it is not better or finer
or coarser, but different.
A main difference that will be clear immediately is that homology is much
harder to define, and seemingly harder (impossible) to compute, making it a
dubious tool. However, the definition just needs to be digested, and we will
later develop very powerful tools that allow very quick computation, making
homology (in the long run) the most accessible and computable invariant
we have.
The basic roadmap is similar to all other invariants we have seen before:
given a space, we will associate algebraic data in a functorial way. Here,
we will split the algebraic step into two parts. From the space, we will first
build a so-called chain complex, and out of that chain complex we will then
compute homology.
We begin with the details of the second step.

Definition 0.79. A chain complex consists of Abelian groups Cn, n ≥ 0
and homomorphisms ∂n : Cn → Cn−1, n > 0 so that ∂2 = 0. The ∂ are
called boundary maps.
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Chain complexes can be defined for other things apart from groups. E.g.
if the Cn are k–vector spaces over some field k, and ∂ are vector space
homomorphisms, then we say that Cn is a chain complex of k–vector spaces
etc.
Here is an example, which in a sense is the only crucial example you ever
really need to understand.
First, we consider the standard n–simplex :

∆n = {(x0, . . . , xn) ∈ Rn+1,
∑

xi = 1, xi ≥ 0}.

More generally, for any v0, v1, . . . , vn with vi − v0 linearly independent, we
also call the set

{
∑

xivi ∈ Rn+1,
∑

xi = 1, xi ≥ 0}

a n–simplex (together with the numbering of the vi). There is a unique affine
linear map from any simplex to a standard simplex (this is where we use
the ordering) which maps the vi to the standard basis vectors (respecting
numbering). To have some notation, we denote by [v0, . . . , vn] the simplex
defined by the vi.
A (dimension n− 1) face of the standard n–simplex is a set

Fk = {(x0, . . . , xn) ∈ ∆n, xk = 0.}
Observe that in a natural way Fk is an (n−1)–simplex. Similarly, we define
faces of general simplices, and also faces of smaller dimension (i.e. faces of
faces). Again, to have notation, we denote by [v0, . . . , v̂i, . . . , vn] the face
defined by omitting vi (and taking the induced numbering).
Now we are ready for our definition. Namely, we let Ck(∆

n) be the free
Abelian group with basis the k–dimensional faces of ∆n.
Draw some pictures here!
Now, the boundary operator will send a face to its boundary. We just have
to be careful with the orientations. Again, pictures will help.
We define:

∂([w0, . . . , wk]) =
∑

(−1)i[w0, . . . , ŵi, . . . , wk]

Lemma 0.80. This ∂ is a boundary operator, i.e. ∂2 = 0.

Proof. Hatcher, Lemma 2.1 �

Back to abstract algebra. We are now given any chain complex (C·, ∂·), and
we define

Hi(C) = ker ∂n/im∂n+1.

Some names: we call elements of ker ∂n n–cycles and elements of im∂n n–
boundaries. The elements of Hi are homology classes, cycles defining the
same homology class are called homologous.
Again, if the Cn had extra structure, and that structure passes to quotients,
then homology inherits it. For example, if the Cn was a chain complex of
k–vector spaces, then the Hn are k–vector spaces.
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Why might one expect that this has anything to do with anything? Here
are two hopefully guiding examples, although we don’t formally understand
what’s really going on there yet.

(1) Picture: The circle as a “1–simplex with endpoints glued”. Define

C1 = Z, C0 = Z

and all ∂ = 0. We get nothing over degree 1 (dimension?) and Z
both in degree 1 and 0.

(2) Picture: The sphere as “two 2–simplices with boundary glued”. De-
fine

C2 = Z⊕ Z, C1 = Z⊕ Z⊕ Z, C0 = Z⊕ Z⊕ Z

where the ∂ are defined as in the initial simplex example. Then,
H2 = Z, H1 = 0, H0 = Z.

(3) Picture: The torus with “two 2–simplices making a square, then
glued”.

Why guiding? Because, out of chain complexes looking very similar to
spaces we understand, we extract homology groups that seem to be saying
something. Why not understood? How do we actually get the complex out
of the space?

Lecture 17 (December 11)

For the latter question there are two approaches. One (seemingly nice) is to
make precise what happens in the examples. That leads to the definition of
a simplicial complex (a space glued in a very nice way from simplices), and
simplicial homology. While this definition is pretty easy to understand, and
really nice to compute, it is sort of a nightmare to work with from the formal
side – e.g. why should homeomorphic spaces have the same homology?
We go down a different route: we define a (seemingly horrible...) chain
complex out of a space, which gives the formal properties much easier. Later
we will care about how to compute.

Given a space X, we call a continuous map σ : ∆n → X a singular n–
simplex. Now, let Cn(X) be the free Abelian group with basis all of the
singular n–simplices. (Observe: this is really big in general, uncountably
dimensional). More explicitly, an element of Cn(X) is a formal sum∑

i

niσi

where the ni ∈ Z and σi : ∆n → X are continuous maps. How to define a
boundary map? Write ∆n = [v0, . . . , vn] as above (the vi are the standard
basis vectors). Observe that there is a canonical ordering-preserving affine
linear map A from [v0, . . . , v̂i, vn] with ∆n−1. We define

σi|[v0, . . . , v̂i, vn] = σi ◦A−1 : ∆n−1 → X
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and put

∂(σi) =
∑
i

(−1)iσi|[v0, . . . , v̂i, vn],

extending linearly.

Lemma 0.81. ∂ is a boundary map.

We have already proved that (it is verbatim the same computation as above).
Hence, we can define the singular homology groups

Hn(X) = ker ∂n/im∂n+1.

With this definition, it is clear that Hn is a homeomorphism invariant. Let’s
be a little bit more precise. First, observe

Lemma 0.82. Let f : X → Y be a continuous map. Then there is an
induced homomorphism

f] : Cn(X)→ Cn(Y )

determined by f](σ) = f ◦ σ, which descends to a homomorphism

f∗ : Hn(X)→ Hn(Y ).

These constructions respect the identity and composition (functoriality), and
in particular if f is a homeomorphism, then f] and f∗ are isomorphisms.

Proof. The existence of the map f]. is obvious (on a free Abelian group we
can freely prescribe images on basis vectors). To show that it descends, we
observe that

∂Y (f]σ) = f]∂
Xσ,

and note that this implies f](ker ∂Xn ) ⊂ ker ∂Yn , and f](im∂
X
n ) ⊂ im∂Yn ,

showing the second claim.
Functoriality of f] is obvious from the definition, and descends to functori-
ality of f∗. The last claim we have done a couple of times already. �

Let’s try to prove some basic properties. First, let’s try to compute at least
one homology.

Lemma 0.83. The homology of the one-point space has H0 = Z, Hi = 0, i >
0.

Proof. We have exactly one singular n–simplex σn in each degree. Hence,
all Cn = Z. The boundary maps are trivial for n odd (odd-dimensional
simplices have an even number of faces), and isomorphisms for n even. �

Also, note that if X =
⋃
Xi is the decomposition into path-connected com-

ponents, then

Cn(X) =
⊕

Cn(Xi)

as the image of any simplex is path-connected. Further, the boundary re-
spects this decomposition, showing
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Lemma 0.84. If X =
⋃
iXi is the decomposition into path-connected com-

ponents, then

Hn(X) =
⊕

Hn(Xi).

Finally, we can always compute the zeroth homology group:

Lemma 0.85. If X is path-connected and nonempty, then H0(X) = Z.

Proof. Hatcher Proposition 2.7. �

Our first real goal is the following:

Theorem 0.86. The map f∗ : Hn(X) → Hn(Y ) depends only on the ho-
motopy class of f : X → Y .

In order to do this, we will show that a homotopy F between f and g induces
a certain kind of map between the chain complexes C•(X), C•(Y ).
The kind of map we will extract is a map P : Cn(X) → Cn+1 (sometimes
called a chain homotopy) satisfying

∂P = g] − f] − P∂
which in particular shows that g∗ = f∗.

Lecture 18 (December 17)

So, suppose that a homotopy F : X × [0, 1]→ Y between f, g is given, and
suppose that σ : ∆n → X is a singular simplex. Relating f]σ, g]σ is the map
∆n × [0, 1]→ Y induced by the homotopy.
To connect this to singular homology, we first need to decompose the “prism”
∆n× [0, 1] into simplices. To do this, embed this space (in the obvious way)
into Rn+2, and let vi, wi be defined so that ∆n×{0} = [v0, . . . , vn],∆n×{1} =
[w0, . . . , wn] and the labels are so that vi, wi differ only in the last coordinate.
Now, consider the simplex [v0, . . . , vi, wi+1, . . . , wn]. This is in fact the
graph of the function ϕi(t0, . . . , tn) = ti+1 + . . . + tn, defined on the sim-
plex [v0, . . . , vn]. Namely, the last coordinate of a point in the simplex
[v0, . . . , vi, wi+1, . . . , wn] is exactly the sum of the coefficients of the wi+1, . . . , wn;
whereas the first coordinates are the same as when one replaces the w’s with
v’s. As i increases, the ϕi increase, and so the region bounded by the graphs
of ϕi, ϕi+1 is in fact a (n+ 1)–simplex.
Together, this shows that ∆n × [0, 1] is the union of the (n + 1)–simplices
[v0, . . . , vi, wi, . . . , wn], i = 0, . . . , n+ 1. Now, we define

P (σ) =
∑
i

(−1)iF ◦ (σ × id)|[v0, . . . , vi, wi, . . . , wn]

and we claim that this is a chain homotopy. This computation is in Hatcher,
bottom of page 112, and it shows the theorem about homotopy invariance.

From now on, we follow Hatcher very closely. Our next big goal is Theorem
2.13, which allows to compute homology of a space by collapsing a subspace.
Before we enter the proof (which will take us quite some time...) we want
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to highlight some applications. Namely, Corollary 2.14 (homology groups of
spheres) and Corollary 2.15 (Brouwer fixed point theorem)

Lecture 19 (December 18)

We now start our journey towards Theorem 2.13 from Hatcher. The first
step is the long exact homology sequence for a pair. This is discussed as
Theorem 2.16 in Hatcher.

Lecture 20 (January 7)

Next is a lengthy chain of results leading towards the “theorem of small
simplices”.

• Barycentric subdivision Given a simplex [v0, . . . , vn] we define
the barycenter as

b =
1

n+ 1

∑
vi

The barycentric subdivision of a 1–simplex [v0, v1] consists of the two
simplices [v0, b], [b, v1]. Their union is indeed the original simplex,
and they intersect (if at all) in faces.

Now, suppose we know how to barycentrically subdivide (n− 1)–
simplices, and we are given a n–simplex [v0, . . . , vn. Then, the
barycentric subdivision consists of all simplices of the form [b, w1, . . . , wn]
where [w1, . . . , wn] is a simplex of a barycentric subdivision of any
face. Draw some pictures.

Lemma 0.87. With respect to the Euclidean metric, and for any
simplex ∆′ in the barycentric subdivision of ∆, we have

diam(∆′) ≤ n

n+ 1
diam(∆).

Proof. Observe that the diameter of a simplex is always realised by
the distance between vertices:

‖v −
∑

tivi‖ = ‖
∑

ti(v − vi)‖ ≤ max ‖v − vi‖.

We prove the result by induction on dimension. For n = 1 this is
clear. This also means that the distance between vertices on a face
of ∆′ not involving the barycenter of ∆ is controlled (by induction).

Thus, the only case that is left is estimating the distance of the
barycenter b of ∆ to one of the vertices vi of ∆. But then we have

‖b− vj‖ =
1

n+ 1
‖
∑
i

vi − vj‖ ≤
n

n+ 1
diam(∆)‖

since one of the terms in the sum is 0, and so only n remain. �

In other words, repeated barycentric subdivision makes the sim-
plex arbitrarily small, independent of shape.
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• Now, suppose that Y ⊂ Rk is a convex set. We define a chain
complex LCn(Y ) formed by the linear chains, i.e. maps ∆n → Y
which are (affine) linear. This is a subcomplex of Cn(Y ), since it is
compatible with the boundary operator. Also recall that such a map
is completely determined by the images w0, . . . , wn of the vertices,
so we can denote (basis) elemenents of LCn by [w0, . . . , wn].

Given any point b ∈ Y , we can define a (coning) homomorphism

cb : LCn(Y )→ LCn+1(Y )

defined by

cb([w0, . . . , wn]) = [b, w0, . . . , wn].

Lemma 0.88. We have

∂cb = id− cb∂
Proof. It suffices to check this on basis elements. There, it is imme-
diate form the usual formula for boundary (and cb). �

In other words, cb is a chain homotopy between the identity and
the zero map on the augmented chain complex LC∗ → Z → 0 (this
shouldn’t come as a shock – a convex set Y is contractible, so one
might expect that reduced homology associated to it is trivial)

Lecture 21 (January 8)

• Next, we define a subdivision operator

S : LCn(Y )→ LCn(Y )

inductively. We start with S([∅]) = [∅] in LC−1, and then define

S([w0, . . . , wn]) := cb[w0,...,wn](S∂[w0, . . . , wn])

where b[w0, . . . , wn] is the barycenter. Observe that the result is a
sum of simplices in the barycentric subdivision of [w0, . . . , wn] (with
some signs, which we don’t care about right now) supposing that it
is indeed a simplex.

Lemma 0.89. We have

∂S = S∂.

In other words: S is a chain map.

Proof. In degree −1 and 0 this is clear, since S = id there.
Otherwise, we compute

∂Sλ = ∂cbS∂λ = S∂λ− cb∂S∂λ
where we have used the inductive definition of S and the previous
lemma. Now, we can use induction to find

cb∂S∂λ = cb∂∂S = 0

which gives the claim. �
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• Next, we build a chain homotopy

T : LCn(Y )→ LCn+1(Y )

between S and the identity. Again, this is done inductively. We
start with L−1 = 0 and then

Tλ := cb(λ− T∂λ)

Lemma 0.90. We have

∂T + T∂ = id− S

Proof. This is obvious on LC−1 (T = 0, S = id). Otherwise, we
compute

∂T = ∂cb(λ− T∂λ) = λ− T∂λ− cb(∂λ− ∂T∂λ)

(using the lemma above again) and then by induction (and ∂2 = 0)

cb(∂λ− ∂T∂λ) = cb(∂λ− ∂λ+ S∂λ) = Sλ

by the inductive definition of S. �

Also observe that this lemma also holds without the (auxiliary)
LC−1.
• Finally, we are ready to define the objects we actually care about.

Given any space X, we define a subdivision operator S : Cn(X) →
Cn(X) by

Sσ = σ]S∆n

Lemma 0.91. S is a chain map.

Proof.
∂Sσ = σ]∂S∆n = σ]S∂∆n

where, with abuse of notation as above, we denote by ∆n the obvious
n-simplex with image in Rn+1. Denoting the faces of ∆n by ∆i

(suitably numbered), we then have

σ]S∂∆n = σ]S
∑
i

(−1)i∆i =
∑

(−1)iS(σ|∆i) = S∂σ

�

We also define T:Cn(X)→ Cn+1(X) by

Tσ = σ]T∆n

and a completely analogous computation shows

∂T + T∂ = id− S
• Iterating barycentric subdivision. Define

Dm =

m−1∑
i=0

TSi.

Lemma 0.92. Dm is a chain homotopy between Sm and id.
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Proof.

∂Dm +Dm∂ =
∑

∂TSi + TSi∂ =
∑

∂TSi + T∂Si =
∑

(∂T + T∂)Si

by definition and the fact that S is a chain map. Now, using that T
is a chain homotopy, and telescope sum, we are done. �

• Connecting to covers Suppose now that U = {Ui} is a cover of X
by open sets, and σ : ∆n → X is a singular simplex.

Lemma 0.93. There is a number ε > 0 so that if M ⊂ ∆n is any
set of diameter < ε, then there is an index i so that

M ⊂ σ−1(Ui)

Proof. This follows by compactness of the simplex, and the fact that
if there is a δ–ball around y contained in Ui, then a (δ−d(x, y))–ball
around x is contained in Ui. �

Using the contraction lemma from above, this implies that given
σ there is a smallest number m(σ) so that Sm(σ)σ ∈ CUn (X).
• We define Dσ = Dm(σ)σ. What property does this have? We begin

by noting

∂Dm(σ)σ +Dm(σ)∂σ = σ − Sm(σ)σ

This is not quite saying that D is a chain homotopy, since Dm(σ)∂σ
is not the same as D∂σ. We therefore simply add the missing term
on both sides, and get

∂Dσ +D∂σ = σ − (Sm(σ)σ +Dm(σ)∂σ −D(∂σ)).

Let’s denote the term in the bracket by ρ(σ), and observe that it is
a chain map, by the equality we have shown. This shows:

Lemma 0.94. D is a chain homotopy between id and ρ.

Lemma 0.95. ρ has image in CUn (X), and so it defines a chain
homotopy inverse for the inclusion ι : CUn (X)→ Cn(X).

Proof. The first claim is clear by definition for the Sm(σ) contribu-
tion. To analyse the other, observe that if σi is a face of σ, then
m(σi) ≤ m(σ). Thus, Dm(σ)∂σ−D(∂σ) is a sum of simplices of the

form TSkσi with k ≥ m(σi) and all these are small (as T preserves
smallness).

Thus, we can interpret the equation from above as

∂D +D∂ = id− ιρ

Finally, the last claim follows by noting that D = 0 on CUn (X) (since
there m(σ) = 0), and thus ρι = id. �
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Lecture 22 (January 14)

Now, we are finally ready for the proof of excision:

Proof of the excision theorem. Let A,B be the cover from the theorem: X =
A∪B. We can then identify CU (X) with the chains which are sums of chains
in A and chains in B (not a direct sum!). Take D, ρ from the small simplices
theorem. That means:

∂D +D∂ = id− ιρ, ρι = id.

Consider the inclusion

ι1 : CU (X)/C(A)→ C(X)/C(A)

induced by ι. Recall that both D and ρ were defined by a subdivision
process. In particular, they preserve chains with image in A, and therefore
define maps on the quotients by C(A), satisfying the same formulas. Thus,
ι1 induces an isomorphism in homology.
On the other hand, both groups

C(B)/C(A ∩B), CU (X)/C(A)

are free Abelian with basis the simplices in B which do not lie in A. Thus,
the inclusion

ι2 : C(B)/C(A ∩B)→ CU (X)/C(A)

is actually an isomorphism. Together they show the theorem. �

Now, we quickly recall two results you show on the problem sets:

(1) The triple sequence in homology: if A ⊂ B ⊂ X, then the inclusions
give an exact sequence:

. . .→ Hn(B,A)→ Hn(X,A)→ Hn(X,B)→ Hn−1(B,A)→ . . .

(2) If (V,A) is a pair in X so that V deformation retracts to A, then
Hn(V,A) = 0 and Hn(X,A)→ Hn(X,V ) is an isomorphism.

Now, we are ready to prove the exact sequence for good pairs. This just
involves one diagram now, see Prop. 2.22 in Hatcher.

Next, we prove another useful tool in computing homology: the Mayer-
Vietoris sequence.

Theorem 0.96 (Mayer-Vietoris). Suppose that X = A ∪ B the union of
two open sets. Then there is a long exact sequence

. . . Hn(A ∩B)→ Hn(A)⊕Hn(B)→ Hn(X)→ Hn−1(A ∩B)→ . . .

To prove this, consider the short exact sequence of chain complexes:

0→ C(A ∩B)→ C(A)⊕ C(B)→ CU (X)→ 0

where U = {A,B}, the first map is σ 7→ (σ,−σ) and the second map is
(σ, τ) 7→ σ − τ .
What is the connecting map? Suppose x ∈ Hn(X) is given. By small
simplices, we can write it (nonuniquely) as x = a + b for chains supported
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in A,B. Since x is a homology class, we have ∂a = −∂b; in particular it is
an element of C(A ∩B). Thus, we can set δ(x) = [∂a].

Lecture 23 (January 15)

We now perform two computations of homology using the sequences we have
developed.
The first concerns the 2–torus T = S1 × S1, and we will use the Mayer-
Vietoris sequence. To this end, we interpret T as the quotient T = [0, 1]2/ ∼
as the space obtained from a square by identifying opposite sites.
Now, let B be a small disk in Q, seen as a subset of T , and let A be the
complement of a smaller disk. We then have:

• B is homotopy equivalent to a point.
• A is homotopy equivalent to S1 ∨ S1 – indeed you have shown on

the homework this is true for the torus with a point removed; this
is proved in exactly the same way.
• A∩B is homeomorphic to a annular domain (a ring-shaped region),

hence homotopy equivalent to S1.

Now, consider a part of Mayer-Vietoris:

Hk(A ∩B)→ Hk(A)⊕Hk(B)→ Hk(T )→ Hk−1(A ∩B)

If k > 2 then both outer terms are zero, hence Hk(T ) ' Hk(A)⊕Hk(B) =
0⊕ 0.
If k = 2, then the left term is zero, but the right is not. We thus consider
how the sequence continues:

H2(A)⊕H2(B)→ H2(T )→ H1(A ∩B)→ H1(A)⊕H1(B).

We want to understand the rightmost map. To this end, note that it is
induced by inclusion. Hence, consider a loop δ which represents a generator
of H1(A ∩ B). Then, arguing as above, it is homotopic (in A) to the loop
which is the image of the boundary of the square in T . However, this is
zero in homology (not π1), and therefore the rightmost map of the sequence
above is zero. As a consequence, we have that

H2(T )→ H1(A ∩B)

is an isomorphism.
For k = 1 we have

H1(A ∩B)→ H1(A)⊕H1(B)→ H1(T )→ H0(A ∩B)→ H0(A)⊕H0(B)

We already know that the leftmost map is zero. The rightmost map is
injective: a generator of H0(A ∩ B) is given by any point in A ∩ B, which
maps to generators of H0(A), H0(B). Thus, we again have that

H1(A)⊕H1(B)→ H1(T )

is an isomorphism.
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Next, we want to do the same with the three-torus T = S1×S1×S1, or the
quotient of the cube [0, 1]3 by identifying opposite faces. Similarly to above,
we let B be a small cube in [0, 1]3, and A the complement of a smaller cube.
We then have

• B is homotopy equivalent to a point.
• A is homotopy equivalent to the space X obtained from ∂[0, 1]3 by

identifying opposite faces.
• A ∩B is homotopy equivalent to a 2–sphere S2.

As before, we have the Mayer-Vietoris sequence:

Hk(A ∩B)→ Hk(A)⊕Hk(B)→ Hk(T )→ Hk−1(A ∩B)

If k 6= 3, 2, 1, then both outer terms are zero. As a consequence Hk(T ) =
0, k > 3. For the others, we need to understand the inclusion maps:

H2(A ∩B)→ H2(A)⊕H2(B)

For this, the generator of H2(A ∩ B) is represented by the sum of all faces
of the small cube, which in B is homotopic to the quotient of the boundary.
Similar to above, this is zero in H2(B) as opposite sides cancel. Hence, this
map is zero, showing that H2(B)→ H2(T ) is an isomorphism.

H0(A ∩B)→ H0(A)⊕H0(B)

is again an isomorphism, exactly as above, and thus H1(B)→ H1(T ) is also
an isomorphism.

Lecture 24 (January 21)

To finish the computation of the homology of the 3–torus, we need to com-
pute the homology of the space X above. X can be obtained by gluing
three 2–tori T1, T2, T3 (the images of the individual faces of the cube), glued
along curves. To compute the homology, we perform a similar trick as for
the 2–torus as above: let B be the disjoint union of three small disks, one
in each Ti, and let A be the complement of a smaller disks. We then have:

• B is homotopy equivalent to the disjoint union of three points.
• A is homotopy equivalent to S1 ∨ S1 ∨ S1 – indeed each single Ti

minus the part of B in it is homotopy equivalent to S1∨S1, and the
gluing identifies the S1’s pairwise.
• A∩B is homeomorphic to a disjoint union of three annular domains,

hence homotopy equivalent to S1
∐
S1
∐
S1.

Now, consider a part of Mayer-Vietoris:

Hk(A ∩B)→ Hk(A)⊕Hk(B)→ Hk(T )→ Hk−1(A ∩B)

We are interested in the sequence for k = 1, 2. For k = 2 we have

0 = H2(A)⊕H2(B)→ H2(T )→ H1(A ∩B)→ H1(A)⊕H1(B)
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The rightmost map is zero again: generators of H1(A ∩ B) map to zero
homology classes in the Ti (as in the 2–torus). Thus, H2(T )→ H1(A∩B) =
Z3] is an isomorphism.
For k = 1 we have

H1(A ∩B)→ H1(A)⊕H1(B)→ H1(T )→ H0(A ∩B)→ H0(A)⊕H0(B)

The left map is zero as we just saw, and the right map is injective, as
H0(A ∩ B) → H0(B) is injective. Thus, Z3 = H1(B) → H1(T ) is an
isomorphism.

We now need to briefly discuss a very useful class of topological spaces.

• Recall: if X is any space, and Dn is the n–ball (from now on often
called: n–cell). Suppose we also have a continuous map f : ∂Dn →
X (called: attaching map). We can then form the space

X ′ = X ∪f Dn

and say that it is obtained from X by attaching an n–cell.
• Recall: the homotopy type of X ′ depends only on the homotopy

type of f .
• Examples of attaching: attaching Dn to a single-point space yields

the sphere Sn. Attaching D1 to S1 has two possibilities, depending
on the attaching map.
• More generally, suppose that J is any index set, and

f : J × ∂Dn → X

is a continous map (where J has the discrete topology). Then we
say that

X ′ = X ∪f J ×Dn

is obtained from X by attaching n–cells. J is explicitly allowed to
be infinite.
•

Lemma 0.97. Denote by p : X
∐
J ×Dn → X ′ the quotient map.

– The restricted map p|X : X → p(X) is a homeomorphism; in
particular X is closed in X ′.

– The restricted map p|J×(Dn)◦ : J × (Dn)◦ → p(J × (Dn)◦) is a
homeomorphism; in particular J × (Dn)◦ is open in X ′.

– If, for each j, there is an open set Vj ⊂ Dn containing ∂Dn,
then X ∪

⋃
j Vj is open.

– There is an open neighbourhood V of X in X ′ which deforma-
tion retracts to X.

Proof. – p is continuous (restriction of continous), and bijective
(by definition of the equivalence relation). We want to show
that p is also closed. So: suppose that A ⊂ X is closed. We
have

p−1(p(A)) = X ∪ f−1(A)
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which is closed (disjoint union topology and continuity of f)
– Again, the restriction of p is actually a homeo onto the image.

We show that it is open. Take O ⊂ J × (Dn)◦ open. Then

p−1(p(O)) = O

and that is clearly open.
– The preimage under p is open.
– Put V to be the image of X ∪J×Dn−{0}. This is open by the

previous. The retraction is given by radial retraction on each
cell.

�

• If X is Hausdorff, then so is any space X ′ obtained by attaching
cells.

Namely: If x, y are both in the interior of a cell, we can clearly
seperate them inside that cell. If x ∈ X and y is in the interior of a
cell, then we can take a small neighbourhood of ∂Dn not containing
y, together with X as one of the sets, and a small ball around y as
the other. For the last case, we can use seperating sets Ox, Oy and
then take the preimage under the retraction r from above.
• If X is compact, then so is any space obtained by attaching only

finitely many cells.
• If X ′ is obtained from X by attaching cells, and K ⊂ X ′ is compact,

then K intersects only finitely many of the new cells. You’ll discuss
this on the problem set.

We now come to the core definition:

Definition 0.98. Let A be any topological space (possibly empty). A CW
complex relative to A consists of a space X together with a sequence of
subspaces

A = X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xn ⊂ · · · ⊂ X,
with the following:

(1) For any n ≥ 0 the space Xn is obtained from Xn−1 by attaching
n–cells.

(2) We have X = ∪nXn, and a set O ⊂ X is open if and only if all
intersections O ∩Xn are open.

If A = ∅, we simply say that X is a CW complex. The choice of the
Xi is called a CW-structure. The Xi are called skeleta, and X is finite-
dimensional, if X = Xn for some n. It is called finite, if it is finite-
dimensional, and in every stage only finitely many cells are attached.

Lecture 25 (January 22)

Some remarks on CW complexes
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• The condition on the topology is equivalent to: a set-map f : X → Y
is continuous if and only if all the restrictions f : Xn → Y are
continuous.
• The condition on the topology is nontrivial (if the dimension is infi-

nite).
• The complements Xn −Xn−1 are disjoint unions of open balls, also

called the n–cells of the complex. Observe also that the inclusion
of any of these balls extends to the boundary of the ball. However,
these characteristic maps (or attaching maps) are not part of the
data of a CW structure.

Let’s discuss some examples:

(1) The n-sphere has various CW structures. There is one with one 0–
cell and one n–cell, or one could build an inductive one by always
adding two n–cells to the structure of the n− 1 sphere.

(2) From pictures: the cube or tetrahedra, the torus, ...

We record from before:

Lemma 0.99. Suppose that (X,A) is a relative CW-complex. If A is Haus-
dorff, then so is X. If A is compact, and X is finite, then X is compact.

Proof. There is one small thing to check. Given two points x, y ∈ Xn,
we know that there are separating sets U,U ′ in Xn. We need to promote
these to open separating sets in X. To do so, observe that there were
retractions rn : Vn+1 → Xn for open Vn+1 ⊂ Xn+1. Now, inductively set
Ui+1 = r−1

i+1(Ui) and similarly for U ′i . These stay open and disjoint, and by
the defining property of CW complexes they are also open. �

Lemma 0.100. Suppose that (X,A) is a Hausdorff relative CW complex.

(1) The closure of any cell is compact.
(2) A set U ⊃ A is closed if and only if the intersection of A with the

closure of any cell is closed.

Proof. Take an open cell C, and an attaching map f : Dn → X so that
f(intDn) = C. Then, the image f(Dn) is compact, hence closed. Since
f(Dn) is certainly contained in the closure of C it is therefore equal to the
closure, showing the first point.
One direction of the second point is clear: intersections of closed sets are
closed. For the other direction, we need to show that U ∩Xn is closed for
all n. For n = −1 this is clear. Now, consider the quotient map

pn : Xn−1

∐
Jn−1 ×Dn → Xn,

and the preimage p−1
n (U). The part in Xn−1 is exactly the intersection

Xn−1 ∩ U , so we can assume by induction that it is closed. By assumption,
the intersection U∩p(j×Dn) is closed, and thus the same is true for the part
in Jn−1×Dn. This implies that p−1

n (U) is closed, which by the definition of
the quotient topology proves what we want. �
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Definition 0.101. We call a subspace Y ⊂ X of a CW complex (X,A)
a subcomplex, if there is a CW structure on Y so that Yn = Y ∩ Xn and
furthermore Yn − Yn−1 is a union of open n-cells of X.

One can show that subcomplexes are always closed subsets, but we don’t
need this (yet). You will show in the homework

Lemma 0.102. Suppose that (X,A) is a CW-complex. Then the closure of
any cell is contained in a finite subcomplex. More generally, any compact
set K ⊂ X is contained in a finite subcomplex.

Whitehead (who invented CW complexes) states that the C means “closure
finite” (in the sense of that lemma), and the W means “weak topology”
(i.e. that sets are open iff their intersections with the skeleta are open).
Then again, his full name was JHC W hitehead, so that may or may not be
completely accurate reasoning.

CW complexes, homologically. Next, we want to study the homology
of CW complexes.

Lemma 0.103. Let X be a CW complex, and Xi its skeleta. We then have

(1) Hk(X
n, Xn−1) is zero unless k = n, and is the free Abelian group

with basis the set of n–cells for k = n.
(2) Hk(X

n) = 0 if k > n.
(3) The inclusion i : Xn → X induces isomorphisms Hk(X

n)→ Hk(X)
for all k < n.

Proof. (1) Observe that (Xn, Xn−1) is a good pair (previous lemma),
and thus we have

Hk(X
n, Xn−1) = H̃k(X

n/Xn−1).

But Xn/Xn−1 is a wedge of n–spheres, one for each n–cell, which
implies the claim.

(2) Consider the long exact sequence for (Xn, Xn−1):

Hk+1(Xn, Xn−1)→ Hk(X
n−1)→ Hk(X

n)→ Hk(X
n, Xn−1)

If k 6= n, n − 1 then both outer terms are zero. Thus, we have, for
k > n:

Hk(X
n−1) ' Hk(X

n)

via inclusion. Inductively, this shows Hk(X
n) ' Hk(X

0) = 0.
(3) If X is finite-dimensional, then the argument from the previous point

suffices. In the infinite-dimensional case a little bit more work is
needed.

We will show surjectivity and injectivity individually. So, suppose
that [x] ∈ Hk(X) is given. We can realise x =

∑
niσi as a cycle.

The union of all the images of the σi is a compact set, and so, by
homework, is contained in a finite subcomplex. In particular, there
is some m so that the image is contained in Xm. But then, we have
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that [x] is in the image of the map Hk(X
m) → Hk(X) (since it is

already in the image of the chain level map). Now, using the fact
that k > n we have that Hk(X

m) = Hk(X
n) via inclusion, showing

that [x] is also in the image of the desired inclusion.
Injectivity is very similar. Suppose that x is some chain so that

[x] = 0 in Hk(X). This means that x = ∂y for some other chain y.
Again, y lives in some skeleton Xm, and so [y] = 0 in Hk(X

m), and
therefore the same is true in Hk(X

n).
�

Lecture 26 (January 28)

Now, we construct a (fairly big) diagram by combining the pair sequences
of (Xi, Xi−1) for all i. Compare Hatcher, before Theorem 2.35 for this. The
result is the cellular chain complex Hi(X

i, Xi−1) with boundary maps di.
From this diagram we conclude using diagram chasing:

Theorem 0.104. The cellular chain complex computes singular homology.

Proof. See Hatcher, Thm. 2.35. �

Why would this be useful? We’ve identified Hi(X
i, Xi−1) with something

very concrete before: the free Abelian group with basis the i–cells of X. Our
next long-term goal will be to describe the boundary maps di of the cellular
chain complex under this identification, as this will give us a very good tool
to compute homology.
This will require a quick discussion of mapping degree. Before beginning
with the real discussion of mapping degree, we revisit generators for the
homology of a sphere. In particular, we show

Lemma 0.105. The identity map id : ∆n → ∆n, seen as a singular n–
simplex, generates the group Hn(∆n, ∂∆n).

Proof. Hatcher, the first part of Example 2.23 �

Lemma 0.106. Identifying the n–sphere Sn with the gluing of two n–
simplices ∆n

+ ∪∆n
− along their common boundary, the group Hn(Sn) is gen-

erated by [∆n
+ −∆n

−].

Proof. Hatcher, the second part of Example 2.23 �

In fact, this same proof also applies more generally. If we triangulate Sn,
i.e. write it as a union of simplices, then the sum of all those simplices (with
appropriate signs, so that the boundary is zero) will be another generator
of Hn(Sn).

Lecture 27 (January 29)

Now, we collect some basic facts on mapping degree. This is in Hatcher,
Section 2.2. The basic properties (a)–(g) as well as the results 2.28, 2.29.
are important.
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To compute the mapping degree, one often uses a local constuction, which
is described in Proposition 2.30 of Hatcher (and the preceding diagram).

Lecture 28 (February 4)

Examples of degree computations.

Lecture 29 (February 5)

The cellular boundary formula (Hatcher, page 140), and some example com-
putations (points i)–iii) on page 140, Example 2.36, 2.39)
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