Prof. Dr. Sebastian Hensel Anna Ribelles Pérez

Riemannian Geometry PROBLEM SET 3

1. Recovering connections from parallel transport. Let X, Y be smooth vector fields on a Riemannian manifold M. Let $p \in M$ and let $\gamma : [a,b] \to M$ be a trajectory of X through p, i.e. $\gamma(t_0) = p$ (for a $t_0 \in (a,b)$) and $\frac{d\gamma}{dt} = X(\gamma(t))$. Prove that the Levi-Civita connection of M is

$$(\nabla_X Y)(p) = \frac{d}{dt} \left(P^{\gamma_{t_0,t}^{-1}}(Y(\gamma(t))) \right) \Big|_{t=t_0}$$

where $P_{t_0,t}^{\gamma}: T_{\gamma(t_0)}M \to T_{\gamma(t)}$ is the parallel transport along γ from t_0 to t.

2. Geodesics on the tangent bundle. It is possible to introduce a Riemannian metric in the tangent bundle TM of a Riemannian manifold (M, \langle , \rangle) in the following manner. Let $(p_0, v_0) \in TM$ and V, W be tangent vectors in TM at (p_0, v_0) . Choose curves in TM

 $\alpha: t \mapsto (p(t), v(t)), \beta: s \mapsto (q(s), w(s))$

with $p(0) = q(0) = p_0$, $v(0) = w(0) = v_0$, and $V = \alpha'(0)$, $W = \beta'(0)$. Define an inner product on TM by

$$\langle V,W\rangle_{(p_0,v_0)} = \langle d\pi(V), d\pi(W)\rangle_{p_0} + \langle \frac{\nabla v}{dt}(0), \frac{\nabla w}{ds}(0)\rangle_{p_0},$$

where $d\pi$ is the differential of $\pi: TM \to M$.

- (a) Prove that this inner product is well-defined and introduces a Riemannian metric on TM.
- (b) A vector at $(p_0, v_0) \in TM$ that is orthogonal (with respect to the metric above) to the fiber $\pi^{-1}(p) = T_p M$ is called a *horizontal vector*. A curve $\gamma : t \mapsto (p(t), v(t))$ in TM is *horizontal* if its tangent vector is horizontal for all t. Show that γ is horizontal if and only if the vector field v(t) is parallel along p(t) in M.
- (c) Prove that the geodesic field is a horizontal vector field (i.e. it is horizontal at every point).
- (d) Prove that the trajectories of the geodesic field are geodesics on TM in the metric above.

Hint: Let $\tilde{\alpha}(t) = (\alpha(t), v(t))$ be a curve in TM. Show that $l(\tilde{\alpha}) \ge l(\alpha)$) and that equality holds if v is parallel along α . Consider a trajectory of the geodesic flow passing through (p_0, v_0) which is locally of the form $\tilde{\gamma}(t) = (\gamma(t), \gamma'(t))$, where γ is a geodesic on M. Choose convex neighborhoods $U \subseteq TM$ of (p_0, v_0) and $V \subseteq M$ of p_0 such that $\pi(U) = V$. Take two points $Q_1 = (q_1, v_1), Q_2 = (q_2, v_2)$ in $\tilde{\gamma} \cap W$. If $\tilde{\gamma}$ is not a geodesic, then there exists a curve $\tilde{\alpha}$ in W passing through Q_1 and Q_2 such that $l(\tilde{\alpha}) < l(\tilde{\gamma}) = l(\gamma)$. This is a contradiction.

- 3. Geodesics on the hexagonal torus. Recall the hexagonal torus we defined in Problem Sheet 1 as the quotient of \mathbb{R}^2 by a translation action. We showed that the resulting surface is diffeomorphic to the standard torus. In this exercise, we will study the metrics of these two manifolds.
 - (a) Recall from the lecture that geodesics are completely determined by a starting point p and initial velocity v in a neighborhood of p. How can we characterize all *closed* geodesics with ||v|| = const. through a point on the square and hexagonal torus, respectively?

Hint: Consider the tilings of the plane instead of the quotient spaces.

(b) Consider the set of shortest closed geodesics through a point. Argue that there cannot be an isometry between a square and a hexagonal torus, not even after rescaling.