Prof. Dr. Sebastian Hensel Anna Ribelles Pérez

Riemannian Geometry PROBLEM SET 2

- 1. Compute the Levi-Civita connection on \mathbb{H}^n in local coordinates.
- 2. The flat cone. Let $X = \{(x_1, x_2) | x_1 \ge 0, x_2 \ge 0\} \setminus (0, 0)$ be the upper right quadrant of the Euclidean plane without the origin, and define

$$C = X / \sim$$
,

where ~ is the equivalence relation generated by $(x, 0) \sim (0, x) \forall x > 0$. C is a topological space with the quotient topology. Show:

- (a) The flat metric on X descends to a Riemannian metric on C.
- (b) C is the same as the quotient of $\mathbb{R}^2 \setminus \{0\}$ by the group action given by rotation by $\pi/2$.

(As an aside, think about what happens if we instead take rotation by a rational or irrational multiple of 2π , as opposed to by an angle of the form $\frac{2\pi}{n}$.)

Moreover, C is isometric to the open (i.e. without the tip) cone embedded in \mathbb{R}^3 with opening angle $2 \arcsin(1/4)$.

- (c) $TC = C \times \mathbb{R}^2$, i.e. show that there exist $X, Y \in \Gamma(TC)$ such that $\{X(p), Y(p)\}$ is a basis of T_pC for all $p \in C$.
- (d) Compute the parallel transport along a loop around the cone (i.e. the image of a path from (r, 0) to (0, r) on X). Use this to compute parallel transport along a small circle of a sphere.
- 3. Affine manifolds. Let $X = \mathbb{R}^2 \setminus \{0\}/\sim$, where \sim is given by the identification $\phi : x \mapsto 2x$, and let $p : \mathbb{R}^2 \setminus \{0\} \to X$ be the projection.
 - (a) Show that X is diffeomorphic to the torus T².
 Hint: Consider an annulus around (0,0) containing one point in each equivalence class.
 - (b) Show that the flat connection D on $\mathbb{R}^2 \setminus \{0\}$ descends to a connection ∇ on X.
 - (c) Compute the parallel transport along the closed curve $p \circ \gamma$ with

$$\gamma: [0,1] \to \mathbb{R}^2 \smallsetminus \{0\}, \gamma(t) = t+1.$$

Conclude that ∇ cannot be the Levi-Civita connection of a Riemannian metric on X.