Prof. Dr. Sebastian Hensel

Riemannian Geometry

WARNINGS ABOUT THIS DOCUMENT

This document contains the lecture notes for *upcoming* lectures. All warnings about the script apply here doubly so.

UPCOMING MATERIAL

0.1. The Sphere Diameter Rigidity theorem (not covered in class).

Theorem 0.1. Suppose M^n is complete and $K_M \ge H > 0$ and diam $(M) = \pi/\sqrt{H}$. Then M is isometric to N_H .

Proof. Pick p, q realise the diameter. Take $\gamma_1 : [0, t_0] \to M$ be any geodesic segment starting in p, and let γ_2 be a minimal geodesic from p to q. Consider a comparison hinge on N_H . By the length assumption on γ_2 , it connects antipodal points, which means that the geodesic closing the hinge in N_H has length $\pi/\sqrt{H} - t_0$. The actual geodesic closing the hinge in M is shorter. But, since p, q realise diameter, this implies that the length is exactly $\pi/\sqrt{H} - t_0$. Hence, γ_1 extends to time π/\sqrt{H} and connects p to q. In particular, any Jacobi field along any minimal geodesic starting in p and which vanishes at 0, also vanishes at π/\sqrt{H} the next time. Together with the curvature condition this implies that all curvatures spanned by $\gamma'(0)$ and any other vector are exactly H, and \exp_p is nonsingular on the ball of radius π/\sqrt{H} .

By the previous lemma, this implies that the ball of radius π/\sqrt{H} is actually isometric to the corresponding ball in S^n . This isometry extends to a distance-preserving map $M \to S^N$, which is then the desired isometry. \Box

0.2. More about the index form. As the final topic, we will relate conjugate points to minimisers.

Lemma 0.2. Let $\gamma : [0, l] \to M$ be a geodesic starting in $p = \gamma(0)$. If $q = \gamma(t)$ is not conjugate to p along γ , then for any V, V' there is a unique Jacobi field J with J(0) = V, J(t) = V'.

Proof. Let \mathcal{J} be the space of Jacobi fields with J(0) = 0. This is a n-dimensional vector space, and the evaluation map $J \mapsto J(t)$ is an injective linear map (as q is not conjugate to p along γ). Hence, it is an isomorphism, showing the lemma in the special case where V = 0. The same argument (reversing the geodesic) shows the special case where V' = 0. This shows the existence of the J in the general case. For dimension reasons this gives uniqueness as well.

We return to studying the index form and Jacobi fields.

Now, take a subdivision of the interval $0 = t_0 < t_1 < \ldots < t_k = l$ on which the geodesic is defined, and so that $\gamma[t_i, t_{i+1}]$ is contained in a totally normal neighbourhood. In particular, there are no conjugate points on $\gamma[t_i, t_{i+1}]$. Let \mathcal{V}^- be the subspace of \mathcal{V} of those fields V so that $V|[t_i, t_{i+1}]$ is a Jacobi field. Let \mathcal{V}^+ be the subspace of those W which are zero at all t_i .

Lemma 0.3. $\mathcal{V} = \mathcal{V}^+ \oplus \mathcal{V}^-$ and the decomposition is orthogonal with respect to *I*. The form *I* is positive definite restricted to \mathcal{V}^+ .

Proof. The direct sum claim is a direct consequence of the fact that since $\gamma(t_{i+1})$ is not conjugate to $\gamma(t_i)$, the endpoints determine a unique Jacobi field and vice versa. Orthogonality is clear from the definition of I.

Since the $\gamma[t_i, t_{i+1}]$ are minimising geodesics, they are a minimum of any variation. By the second variation formula, this implies that I is positive semidefinite of \mathcal{V}^+ .

If I(V, V) = 0 for $V \in \mathcal{V}^+$, then note that for $W \in \mathcal{V}^+$

 $0 \le I(V + cW, V + cW) = 2cI(V, W) + c^2I(W, W)$

for all c. This implies I(V, W) = 0. In fact, V is in the nullspace of I, by the orthogonality. Thus V is a Jacobi field, vanishing at all the t_i , hence zero.

In particular, the index (or nullity) of I is the index (or nullity) of I restricted to \mathcal{V}^- , which is finite.

Theorem 0.4 ((Morse) Index theorem). The index of I is finite, and the number of conjugate points on $\gamma[0,t]$ counted with multiplicity.

Before/Instead giving the proof, we note corollaries:

Corollary 0.5. Suppose $\gamma : [0, a] \to M$ is a geodesic segment so that $\gamma(a)$ is not conjugate to $\gamma(0)$ along γ . Then γ has no conjugate points on (0, a) if and only if for all proper variations of γ energy can be reduced.

Proof. By the Morse index theorem there are conjugate points exactly if there is a proper variation field V with $I_a(V, V) < 0$. By the variational formula for energy this implies the second variation of energy for that variation is negative.

Corollary 0.6. After the first conjugate point, geodesics stop to be minimising.

Proof of the index theorem. • Let γ_t be the restriction of γ to [0, t], I_t the corresponding index form and i(t) its index.

- Since the initial segment of γ has no conjugate points, i is 0 close to 0.
- Further, *i* is nondecreasing: one can just extend every vector field in the negative definite subspace of I_r to [0, s], s > r by 0.

 $\mathbf{2}$

- i(t) does not depend on the chosen subdivision of the interval. Thus, to study *i* near a fixed *t*, we may assume $t \in (t_{i-1}, t_i)$.
- We know that the index of I_t is the same restricted to $\mathcal{V}^-(0,t)$, and since elements in that space are determined by their values on the breaks we have

$$\mathcal{V}^{-}(0,t) \cong \bigoplus_{i < j} T_{\gamma(t_i)} =: S_j$$

in particular the index forms $I_t, t \in (t_{j-1}, t_j)$ can all be interpreted as forms on S_j , and these vary continuously in t (Jacobi solutions vary continuously).

- $i(t \epsilon) = i(t)$ for small ϵ , since: it could only go down, but by continuity negatively definite subspaces stay negatively definite.
- $i(t + \epsilon) \leq i(t) + d$ for small ϵ and d the nullity of $\gamma(t)$: dim $(S_j) = n(j-1)$ and I_t is positive definite on a subspace of dimension n(j-1) i(t) d (total dim minus neg def minus nullity). By continuity this stays positive definite for small values above t, which shows the claim.
- Suppose that $V \in S_j$ satisfies $V(t_{j-1}) \neq 0$. Let V_{t_0} be the piecewise Jacobi field which agrees with V on the $t_i, i < j$ and vanishes at $t_0 \in (t_{j-1}, t_j)$. Then

$$I_{t_0}(V_{t_0}, V_{t_0}) > I_{t_0+\epsilon}(V_{t_0+\epsilon}, V_{t_0+\epsilon})$$

Namely: If we define W the field which is equal to V_{t_0} up to t_0 and then becomes zero, then by the Index Lemma

$$I_{t_0}(V_{t_0}, V_{t_0}) = I_{t_0+\epsilon}(W, W) > I_{t_0+\epsilon}(V_{t_0+\epsilon}, V_{t_0+\epsilon})$$

since W on the last segment is not a Jacobi field.

• $i(t + \epsilon) \ge i(t) + d$, since if $I_t(V, V) = 0$, then $I_{t+\epsilon}(V, V) < 0$, so the null space becomes negative definite.

0.3. **Cut points.** To understand minimisers versus conjugate points in more detail, we use

Definition 0.7. Given a geodesic $\gamma : [0, l] \to M$. We say that $q = \gamma(t_0)$ is a *cut point of* p *along* γ if

$$t_0 = \sup\{t | d(p, \gamma(t)) = t\}$$

Given a point $p \in M$, the *cut locus* $C_m(p)$ is the set of all cut points of p.

Proposition 0.8. Suppose that $q = \gamma(t_0)$ is a cut point of $p = \gamma(0)$ along γ . Then

- either $\gamma(t_0)$ is the first conjugate point of p along γ .
- or there is a geodesic $\sigma \neq \gamma$ joining p to q of the same length as γ .

Conversely, if one of these hold, then $\gamma(t') = q'$ is a cut point of p along γ for some $t' \leq t_0$.

Proof. First the converse: non-minimising after the first cutpoint we did already. If we had two geodesics, we could find a broken arc of length $t_0 + \epsilon$ connecting to $\gamma(t_0 + \epsilon)$ (follow along σ and then shortcut in a geodesic ball). Since broken paths are never geodesic, this means that the minimiser is actually shorter that $t_0 + \epsilon$.

Now suppose that t_0 is as in the assumption.

- Find $t_0 + \epsilon_i \rightarrow t_0$ and σ_i minimisers from p to $q_i = \gamma(t_0 + \epsilon_i)$.
- Up to subsequence, we can let the σ_i converge, and the limit σ is a minimiser from p to q.
- If $\sigma = \gamma$ we are done.
- Otherwise, suppose that $\sigma'(0) = \gamma'(0)$ and that $d \exp_p$ is not singular at $t_0 \gamma'(0)$. Hence, there is a neighbourhood U of that point where \exp_p is a diffeomorphism.
- We have

$$\gamma(t_0 + \epsilon_j) = \sigma_j(t_0 + \epsilon'_j)$$

with $\epsilon'_j < \epsilon_j$ (as the σ_j are minimisers and γ is not anymore). We may assume that the $\sigma_i(t_0 + \epsilon'_j)$ are in the neighbourhood U.

• Then

 $\exp_p(t_0 + \epsilon_j)\gamma'(0) = \gamma(t_0 + \epsilon_j) = \sigma_j(t_0 + \epsilon'_j) = \exp_p(t_0 + \epsilon'_j)\sigma'_j(0)$

and by our assumption on U this means

$$(t_0 + \epsilon_j)\gamma'(0) = (t_0 + \epsilon'_j)\sigma'_j(0)$$

which implies $\gamma'(0) = \sigma'_i(0)$ as both are unit norm

• This would mean that γ is minimising after t_0 , contraditing cut point.