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Classification of surfaces

Theorem 0.1. Let S be a closed, oriented, connected surface.

i) χ(S) ≤ 2, with equality exactly if S = S2.
ii) If χ(S) < 2, then S is obtained from a surface S′ with χ(S′) = χ(S) + 2

by removing two disks and gluing their boundaries.

Proof. This follows the paper “A quick proof of the classification of surfaces”
by Andrew Putman (available on his website).

Choose a triangulation T of S. The one-skeleton T 1 is the union of all
vertices and edges of T . It is an embedded graph on S. Choose a maximal
tree T ⊂ T 1. Such a tree contains every vertex, and does not disconnect
the surface – indeed, a small ε–neighbourhood U(T ) (with respect to any
chosen Riemannian metric) of the graph T is an embedded disk in S.
Construct another graph Γ, where

• Vertices vf of Γ correspond to faces f of T .
• Two vertices vf , vf ′ are joined by a (geometric) edge, if the faces
f, f ′ share an edge e not contained in T .

Observe that the graph Γ is connected – indeed, we will show that graphs
ΓT defined analogously for any tree T in the 1-skeleton are connected. To
this end, first show that for the empty tree T = ∅, the full dual graph of
T is clearly connected. Furthermore, if T is any tree, and e is a leaf of T ,
then there are paths in ΓT connecting faces f, f ′ joined along an edge e in
T . This follows by moving around the vertex. Now, since T − e is a tree of
smaller size, the claim follows by induction.

Now, let V , E, F be the numbers of vertices, edges and faces in T . Let
eT , eΓ be the number of edges in T,Γ. We have

e = eT + eΓ,

T has v vertices, and Γ has f vertices. Thus, we have

χ(S) = v − e+ f = (v − eT ) + (f − eΓ) = χ(T ) + χ(Γ) = 1 + χ(Γ).

This shows that χ(S) ≤ 2, with equality exactly if Γ is also a tree.
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In the case where Γ is a tree, we have that U(Γ) is a disk as well, and we
obtain S from joining two disks along their boundaries. This implies that S
is homeomorphic to the sphere S2.
If χ(S) < 2, then Γ is not a tree, and therefore contains a loop α ⊂ Γ. Such
a loop does not disconnect S, since T is connected. Therefore, S admits a
nonseparating curve, and therefore is not a sphere (by the Jordan-Schoenflies
theorem). This proves i).

To prove ii), take α as above, and consider a small neighbourhood U(α) of

α. Let Ŝ = S − U(α). As S is oriented, Ŝ is a surface with two bound-
ary components (corresponding to the two sides of α). Form a surface S′

by gluing disks to the boundary components of Ŝ. To compute the Euler
characteristic of S′, observe that in S, α was embedded in the 1–skeleton
of T . Say that α contains Vα vertices and Eα edges. This implies that we
have a triangulation of Ŝ which has the same number of faces, but Vα extra
vertices, and Eα extra edges. Hence, we have

χ(Ŝ) = χ(S) + Vα − Eα = χ(S)

as a graph which is a circle has the same number of vertices and edges. To
obtain S′ from Ŝ we glue two disks; each such operation has the effect of
adding 1 to the Euler characteristic. This shows the theorem. �

We now need the following, which is intuitive, but fairly hard to prove
completely formally.

Theorem 0.2. Suppose that S is a connected, oriented surface (possibly with
boundary). Suppose that gi : D → S, i = 1, 2 are two orientation preserving
embeddings of disks into S. Then there is an isotopy from the identity to a
map F : S → S with F ◦ g1 = g2.

Corollary 0.3. If S is a surface, then the result of removing two disks and
gluing boundaries does not depend on the choice of disks.

Corollary 0.4. Any two closed oriented connected surfaces with the same
Euler characteristic are homeomorphic.

Proof. Induct by Euler characteristic. The first case is from the first theo-
rem. Otherwise, from that theorem S1, S2 are obtained from surfaces S′1, S

′
2

of the same Euler characteristic by removing and gluing disks. By induction,
these are homeomorphic surfaces, and by the previous corollary the result
is the same surface. �

Together, these theorems imply

Theorem 0.5 (Classification of surfaces). Suppose that S, S′ are two con-
nected oriented surfaces. Then S, S′ are homeomorphic if and only if S, S′

have the same number of boundary components and the same Euler char-
acteristic. If S, S′ have boundary, such a homeomorphism can be chosen to
induce any given permutation of the boundary components.
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Proof. Necessity is obvious. For sufficiency, let Ŝ, Ŝ′ be the surfaces obtained
by gluing disks to the k boundary components to S, S′. As in the proof of
the first theorem, this has the effect of adding k to the Euler characteris-
tic. Hence, Ŝ, Ŝ′ are homeomorphic, and each have k distinguished disks
corresponding to the boundary components. Inductively applying the sec-
ond Theorem allows to send them to each other (in any given permutation).
This yields the desired homeomorphism. �

To explicitly construct the surfaces, we can e.g. glue 4g–gons in the standard
pattern and then remove some number of disks.
Another example is the following “change of coordinates principle”. For its
formulation, and for later, we define for a simple closed curve α the surface

S − α = S \ U ′(α)

where U(α) = S1 × (−ε, ε) is a regular neighbourhood, and U ′(α) = S1 ×
(−ε/2, ε/2). We can identify S−α as a subsurface of S. Also, S is obtained
(up to homeomorphism) from gluing the two boundary components of S−α.

Lemma 0.6. Suppose S is a surface, and α, β are two simple closed curves
so that S −α, S − β are both connected. Then there is a mapping class φ of
S with φ(α) = β.

Proof. Consider the surfaces X = S − α, Y = S − β obtained by cutting.
There are distinguished boundary components ∂±X , ∂

±
Y so that S is obtained

from gluing these.
X,Y are both connected, have the same number of boundary components
(two more than S), and have the same Euler characteristic. Hence, there is a
homeomorphism f : X → Y . Now, choose parametrisations of the boundary
components. By the Alexander trick, we may assume that f respects these,
and thus glues to a homeomorphism f̂ : S → S which, by construction,
sends α to β. �

Curves and Universal Covers

We will also need to know something about universal covers of surface.
Namely, we have the following

Proposition 0.7. Let S be a closed, oriented, connected surface of genus
g ≥ 2. Then the universal cover of S is homeomorphic to the hyperbolic
plane, with deck group consisting of hyperbolic isometries.

One way to prove this involves the following steps:

• Any manifold has a universal cover.
• Any surface of genus g carries a Riemannian metric of constant cur-

vature −1.
• Any simply connected Riemannian manifold of negative curvature
−1 is isometric to hyperbolic space (of the correct dimension).
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Another way to do this is to build the cover explicitly, by realising that the
gluing of the 4g–gon can be extended to a tiling of the hyperbolic plane.
Both of these would take us a little bit away from our main theme, but both
will be (essentially) discussed in the Riemannian geometry course.

Since we do use the hyperbolic point of view later, we do need a brief crash
course on hyperbolic geometry.

• We call H,D the upper half space and disk model for the hyperbolic
plane H2. The boundary at infinity ∂∞H is the set R ∪ {∞}, S1,
respectively.
• A geodesic in the hyperbolic plane is a Euclidean circle or line which

meets ∂∞H orthogonally.
• Between any two points there is a unique geodesic segments. Any two

boundary points are joined by a unique geodesic. Given a geodesic
and a point on it, there is a unique orthogonal. Any two disjoint
geodesic have a unique common perpendicular.
• There is a metric on H, and in the upper half space it computes

length as

l(γ) =

∫
1

=γ(t)
‖γ′(t)‖.

• An isometry of H2 is a map which acts on H as a linear fractional
transformation

z 7→ az + b

cz + d
, ad− bc = 1.

• Isometries preserve geodesics, induce homeomorphisms of the bound-
ary at infinity.
• Any isometry is conjugate (by an isometry) to one of the following

types:

z 7→ z + 1, z 7→ λz,

fixes a point in H2.
• We call the first type parabolic, and the second type elliptic.
• Parabolics have one fixed point on the boundary. Every set not

containing it is attracted to the fixed point.
• Parabolics preserve no geodesic.
• Parabolics move points arbitrarily small amounts.
• Hyperbolics preserve a unique geodesic, their axis.
• Hyperbolics move points on the axis by a fixed amount D (called

translation length), and all other points by more than D.
• Hyperbolics φ have two fixed points N,S on the boundary. They

have north-south dynamics: for any N ∈ U, S ∈ V there is a k so
that φk(∂∞H2 \ U) ⊂ V .
• For any compact set K ⊂ H, we have φk(K)→ S.

Just from these, we can understand something about compact surfaces.
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Lemma 0.8. Suppose S is a compact surface, and suppose that S = H/Γ.
Then Γ consists of hyperbolic elements. No two distinct elements of Γ have
axes with exactly one endpoint in common. Hyperbolic elements with the
same axis have a common root.

Proof. Deck transformations cannot fix points, so there are no elliptic ele-
ments.
Since H→ S is a covering and a local isometry, at every point p ∈ H there
is some ε so that

Bε(p) ∩ γBε(p) = ∅,
for all γ 6= 1. Since S is compact, and the condition above is Γ-invariant, we
can find an ε which works for all p. Now, parabolics move points arbitrarily
small amounts, so we are done.
Finally, suppose that there would be hyperbolics φ, ψ with the axes A,B
that share an endpoint. Then, by conjugating ψ by a power of φ we find
a sequence of geodesics An converging to A. The translation length of the
corresponding elements ψn is constant D. Now, this violates properness of
the action, as we can find infinitly many orbit points in a 2D-ball. �

Next, we need to understand how lifts of essential simple closed curves look.

We call a curve essential, if it does not lift to a closed curve in S̃.
So, let α be such a curve, and let α̃ be a lift. If α is essential, then there is
a deck group element gα mapping α̃(0) to α̃(1). By the lemma above, gα is
hyperbolic, and therefore has an axis Aα.

Lemma 0.9. A full lift α̃ : R → H has the same endpoints at infinity as
Aα. That means: the limits α̃(t) in H2 exist for t→ ±∞.
Furthermore, these endpoints depend only on the homotopy class of α.
Finally, α is homotopic to the image of Aα.

Proof. The first statement follows since K = α̃[0, 1] is compact, and imα̃ =
∪gnαK.
To show the second statement, simply observe that the image of a homotopy
also lives in a compact set C.
For the final statement, choose for any s ∈ [0, 1] the orthogonal geodesic
segment os(t) to Aα parametrised by constant speed so that os(0) = α̃(s),
os(1) ∈ Aα. Then, gαo0(t) = o1(t), and therefore (s, t) → os(t) descends to
the desired homotopy. �

We can use this to detect intersections up to homotopy.

Lemma 0.10. Suppose that Aα, Aβ intersect. Then α, β cannot be made
disjoint by a homotopy.

Proof. The endpoints of α̃, β̃ link, since the ones ofAα, Aβ do. By Schoenflies
this means that any curves with these endpoints need to intersect. �

Here’s a concrete example:
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Corollary 0.11. Suppose that α is a simple closed geodesic, and γ1, γ2 are
two essential curves which meet only in a point p ∈ α, and leave α on
opposite sides. Then the concatenation γ1 ∗ γ2 cannot be made disjoint from
α.

Proof. Let A be an axis of gα, and p̃ be a lift of p. Let g1, g2 be the deck
group elements corresponding to γ1, γ2 lifted at p. Then, giA ∩ A = ∅, and
g1A, g2A live on different sides of A. Hence, g2g1 nests one halfspace defined
by A properly into itself, and the inverse does the same with the opposite
halfspace. This implies that Aγ1γ2 crosses Aα. We are then done by the
lemma. �

We now need to know a few more things about curves.

Theorem 0.12 (Transversality). Suppose that α1, α2 : S1 → S are any two
curves. Then up to homotopy we may assume that α1, α2 are smooth and
satisfy the following:

• If αi(t) = αi(s) = p for some t 6= s, then α′i(t), α
′
i(s) span TpS.

• If α1(t) = α2(s) = p for some t, s, then α′1(t), α′2(s) span TpS.

For curves on surfaces, this is not too hard. One possibility is to replace αi
by broken geodesic arcs having the desired properties and then smooth cor-
ners. Alternatively, look up “transversality” in any textbook on differential
topology.
In particular, up to homotopy, curves always have a finite number of in-
tersections and self-intersections. We can actually detect when we see the
smallest possible number fairly easily. This is the so-called bigon criterion.

Definition 0.13. A bigon is a union a∪b of two embedded arcs intersecting
only in its endpoints, so that a ∪ b = ∂D for D an embedded disk in S.

Lemma 0.14. If for transverse simple curves α, β on S = H2/Γ there is

no bigon a ∪ b formed out of arcs a ⊂ α, b ⊂ β, then any two full lifts α̃, β̃
intersect in at most one point.

Proof. Suppose not. Then there are subarcs ã, b̃ intersecting only in its
endpoints and thus bounding a disk D (Jordan curve theorem). The interior

of D may intersect finitely many other arcs of ã, b̃ (there are finitely many
intersection points on any compact arc by transversality). Thus, we may

choose an innermost disk D whose interior is disjoint from ã, b̃. We aim to
show that gD ∩D = ∅ for all g ∈ Γ, from which it follows that D embeds
under the covering map and yields the desired bigon.
First, consider ∂D. Here, the claim follows since otherwise D would not be
innermost. Suppose now that gD ∩ D 6= ∅. Then (up to switching roles),
we have gD ⊂ D (as the boundaries are disjoint, and both bound unique
disks in H2). But, any continuous map of a disk to itself has a fixed point
(Brouwer fixed point theorem), violating the fact that Γ acts freely. �
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Theorem 0.15 (The bigon criterion). Two transverse simple curves α, β
on S = H2/Γ are in minimal position if and only if there is no bigon a ∪ b
formed out of arcs a ⊂ α, b ⊂ β.

Proof. Suppose there is a bigon a ∪ b as in the statement. Then there is
a slightly larger disk D′ ⊃ D, and a′ ⊃ a, b′ ⊃ b with a′, b′ intersecting in
two points in D′, and unlinked endpoints. Hence, in D′, we can reduce the
number of intersections, showing that α, β are not in minimal position.
Next, suppose that there are no bigons. Consider any two full lifts α′, β′ to
H2. By the previous lemma, these are disjoint or intersect in one point.
Let gα ∈ Γ be the element fixing α′. Then, intersections between α, β
correspond exactly to gα–orbits of full β–lifts intersecting α′.
If we homotope β′, which full lifts intersect α′ does not change (as the
endpoints do not change, and thus stay linked or unlinked). As we can
lift the homotopy so that it commutes with gα, this implies that the orbits
which of β′–lifts which intersected α′ still do so after homotopy. Hence, the
number of intersections cannot be decreased by a homotopy. �

Finally, some comments on regularity:

Theorem 0.16 (Zieschang). Suppose that α, β are two simple closed curves
which are homotopic. Then α, β are (ambient) isotopic.

This is also proved by an innermost disk argument, but the details are messy.
(For the interested, a readable account can be found in the book “Geometry
and spectra of compact Riemann surfaces” by Buser). The idea is fairly
simply though: if α, β are disjoint and homotopic, then they need to bound
an annulus (why? Use classification of surfaces! If all components of S−α∪β
would be more complicated, then α, β could not be homotopic) and therefore
are isotopic. Otherwise, lift to the universal cover. Since α, β are disjoint
up to homotopy, endpoints cannot link. Hence, suitable lifts bound a disk,
and we may choose an innermost one. Now perform a modification on that
disk, reducing the number of intersections.

Theorem 0.17. i) Any orientation preserving homotopy equivalence of S
is homotopic to a diffeomorphism.

ii) Any two homotopic homeomorphisms/diffeomorphisms are isotopic (in
the same category).

For the first, there are various possibilities. One is to lift the homotopy
equivalence to H2, look at the induced map on ∂H2, and construct an ex-
tension to the disk using complex analysis (e.g. by Douady-Earle). The fact
that homeomorphisms are isotopic to diffeomorphisms (a consequence of i)
and ii)) can be done “by hand” (see Hatcher: The Kirby Torus Trick for
Surfaces).
The second part for homeomorphisms can be proved using Zieschangs the-
orem. Namely, successively applying Zieschang on a system of curves which
cut the surface into disks we may assume that the homeomorphisms are
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equal on these curves. Then apply the Alexander trick. The second part for
diffeomorphisms is a consequence of the Earle-Eells theorem: components
of the diffeomorphism group of a surface are contractible. A proof is not
really easy.

The upshot of these things is: if we are interested in objects up to homotopy
(as we always are, in the study of mapping class groups!) we may assume
that curves are in minimal position, all maps are smooth, all homotopies
can be changed to isotopies etc. We will often do this without mention.

Our next two big goals concern generation of the mapping class group.

Theorem 0.18 (Dehn). The mapping class group is generated by Dehn
twists.

Theorem 0.19 (Dehn). The mapping class group is finitely generated.

We have seen both of these for the torus.
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