Name: \_

## Problem 2. Cone

[1+1+2+2+2+1+1+3+2 points]

Consider  $\mathbb{R}^2 \setminus \{(0,0)\}$  with polar coordinates  $P: \mathbb{R}_{>0} \times \mathbb{R} \to \mathbb{R}^2$  with  $(r,\varphi) \mapsto (r\cos\varphi, r\sin\varphi)$ .



Rotations  $R_{\beta}$  by  $\beta \in [-2\pi, 2\pi]$  act on  $\mathbb{R}^2 \setminus \{(0, 0)\}$  in the usual way and can be defined via  $R_{\beta}(P(r, \varphi)) = P(r, \varphi + \beta)$  (even though P is not injective, you don't need to show that this is well defined).

For  $0 < \alpha < 2\pi$  and  $\epsilon > 0$ , define the thickened wedge  $D_{\alpha,\epsilon} \coloneqq P(\mathbb{R}_{>0} \times (-\epsilon, \alpha + \epsilon))$ . For  $p_1, p_2 \in D_{\alpha,\epsilon}$  define an equivalence relation  $p_1 \sim p_2 :\Leftrightarrow p_1 = R_\alpha(p_2)$  or  $p_2 = R_\alpha(p_1)$ . Denote the quotient by  $K_0 = D_\alpha / \sim$  and equip it with the quotient topology. We denote the equivalence class of  $p \in D_{\alpha,\epsilon}$  by  $[p] \in K_0$ .

In this exercise, we will equip  $K_0$  with the structure of a smooth manifold, and study a specific Riemannian metric on it.

- (a) Show that  $K_0$  is Hausdorff.
- (b) Denote the rotated (unthickened) wedges by  $D^{\pm} := R_{\pm \epsilon/2}(D_{\alpha,0})$ . Define two charts  $\phi_{\pm}: [D^{\pm}] \rightarrow D^{\pm}$  via  $\phi_{\pm}([p]) = p$ . Show that the chart transitions are smooth.
- (c) Define  $K = K_0 \cup \{0\}$  by extending the map P continiously to include the origin for r = 0. Add a third chart covering 0 that turns K into a smooth manifold. In particular, verify that the chart transitions are smooth.

(d) On  $[D^+]$  define a metric g using the identification via  $\phi_+$  with  $D^+_{\alpha,0}$  and using the standard euclidean metric on  $\mathbb{R}^2$ , i.e.

$$(\phi_+^{-1})^*g = dx \otimes dx + dy \otimes dy.$$

Compute this metric in the chart provided by the polar coordinates map P.

- (e) Show that a rotation  $R_{\beta}$  is a local isometry, i.e. that  $(R_{\beta}^*g)_{[p]} = g_{[p]}$  for points  $[p] \in [D^+]$  such that  $R_{\beta}(p) \in D^+$ .
- (f) Use this to show that there is a unique extension of g to all of  $K_0$ .
- (g) Let  $\nabla$  be the Levi-Civita connection for this metric. Show that the Riemann tensor vanishes on  $K_0$ . (*Hint: This can be done without computation.*)
- (h) Compute the parallel transport of a vector along the closed path  $c: [0, \alpha] \to K$  with  $c(\varphi) = P(r, \varphi)$  for some fixed r > 0 as well as for a path  $\tilde{c}: [r_0, r_1] \subset \mathbb{R}_{>0} \to K$  with  $\tilde{c}(\rho) = P(\rho, \varphi_0)$  for some fixed  $\varphi_0$ .
- (i) Show that the metric cannot be extended to all of K (*Hint: this can be done by showing that the Riemann curvature tensor of a hypothetical metric would not be compatible with what we concluded about parallel transport*).

Hoden 2 Example Solution a) Ko Hansderff: [p], [g] = Ko Ep] + [q]. These tood have at most four preimages that are pairwise distinct. let 5 be the minim of pairwise distance to the boundary. Then images of balls with radius % do the job. b) Chart fransitions: NB: Ern Mongl  $\phi_{\pm}(Epj) = p$  we do not necessarily have \$4 (Ep]) = \$-(Ep]! [D+] aID] Where the fransition is the ideality (smooth) and one where the transition  $\mathcal{D}_{-}/\mathcal{P}_{+} \longrightarrow \mathcal{D}_{+}/\mathcal{D}_{-}$ is a rotation by La, which is also Smooth.

c) In area to get an apen coardite  
with bour hood, we held to strad the  
angle wa  
[
$$t_{k,a}$$
]  $\stackrel{E_{J'}}{\longrightarrow}$   $D_{x,o}$   $\stackrel{p_{J'}}{\longrightarrow}$   $R_{J,o} \times (0, \infty)$   $\stackrel{(M_{1}, M_{2}, \dots)}{\longrightarrow}$   $R_{J,o} \times (0, \infty)$   
This can the be extended by cartinity  
to  $R^{2}$  which provides a chost grand  
the origin, kill map chosend are smooth.  
d)  $(\Phi_{T}^{-1})^{\#}g = d \times \varphi d \times + d \oplus \varphi d g$   
 $= (\cos \varphi d \times - \pi \sin \varphi d \varphi)^{\otimes 2}$   
 $+ (\sin \varphi d \times + \pi \cos \varphi d \varphi)^{\otimes 2}$   
 $= (\cos \varphi d \times - \pi \sin \varphi + \sin \varphi \pi \cos \varphi) d \otimes d \varphi$   
 $+ v^{2} (\sin \varphi + \cos \varphi) d \oplus d \varphi$   
 $= dr \otimes dr + v^{2} d \varphi \otimes d \varphi$   
 $= dr \otimes dr + v^{2} d \varphi \otimes d \varphi$   
 $= dr \otimes dr + v^{2} d \varphi \otimes d \varphi$   
 $= dr \otimes dr + v^{2} d \varphi \otimes d \varphi$   
 $= dr \otimes dr + v^{2} d \varphi \otimes d \varphi$   
 $= dr \otimes dr + v^{2} d \varphi \otimes d \varphi$   
 $= dr \otimes dr + v^{2} d \varphi \otimes d \varphi$ 

f) Ko \ [D+] can be rotated by 2/2 to [Pt] which is a smooth map and we can thus exhed g as 2/2\* g. This is smooth by es.

h) This can be can puled in polar coordinates but this is camberone. Easier: Catesian coordinates of the where parallel branspart is literally prallel, noting rotates.

> De beginning in 510t to connect the De beginning in 510t to the and in 510t we have to apply a odethice by Ra which also votates ducy oractor by an angle of (inde pendent of r!)

## Problem 1. Cohomology

In this exercise we consider throughout the manifold  $M = S^1 \times S^2$ .

You may use without proof that the manifolds  $\mathbb{R}^n$ ,  $(0, 1)^n$  and  $D^n$  (the open unit ball) and a hemi-sphere are all diffeomorphic. Similarly, you may use without proof that the two-sphere  $S^2$  is the union of two balls  $U_+, U_-$  which intersect in a region diffeomorphic to  $S^1 \times (-1, 1)$ .

- (a) Show that  $H^0_{dR}(M) \cong H^3_{dR}(M) \cong \mathbb{R}$ .
- (b) Show that  $H^1_{dR}(M)$  is not trivial.
- (c) Show that  $H^1_{dR}((0,1) \times S^2) = 0$ . Hint: Cover the manifold with two balls.
- (d) Show that  $H^1_{dR}(M) \cong \mathbb{R}$  (*Hint: observe that*  $M = U_1 \cup U_2$ , where each  $U_i$  is diffeomorphic to  $(0,1) \times S^2$ , and so that  $U_1 \cap U_2$  has two connected components  $C_1, C_2$ . Use the previous part to find antiderivatives on the  $U_i$  and compare them on the  $C_j$ .)

## Solution

a) We know from class that dim  $H^0_{dR}(M)$  is the number of connected components of M. Since  $S^1 \times S^2$  is connected, this shows dim  $H^0_{dR}(M) = \mathbb{R}$ .

The manifold  $S^1 \times S^2$  is oriented, connected and compact, and has dimension 3. Hence, a theorem from class implies  $H^3_{dR}(M) = \mathbb{R}$ .

b) Consider the map

$$p: S^1 \times S^2 \to S^1$$

obtained by projecting to the first factor, and let  $\theta$  be a closed 1-form on  $S^1$  with  $\int_{S^1} \theta = 1$  (we know that this exists from class).

Let  $\omega = p^*\theta$ . This is a closed one-form on M, since  $d(p^*\theta) = p^*d\theta = 0$ . Now, let  $q \in S^2$  be any point. Then

$$\int_{S^1 \times p} \omega = \int_{S^1 \times p} p^* \theta = \int_{S^1} \theta = 1.$$

Thus,  $\omega$  is not exact, and therefore  $0 \neq [\omega] \in H^1_{dR}(M)$ .

c) As was done in class, write

$$S^2 = U_1 \cup U_2, \quad U_1 \cap U_2 \simeq S^1 \times (0,1)$$

where  $U_1, U_2$  are diffeomorphic to the open unit disk.

Let  $\omega$  be any 1-form on  $(0,1) \times S^2$ . Since  $(0,1) \times U_i$  is diffeomorphic to a three-ball, there are functions  $f_i: U_i \to \mathbb{R}$  so that  $d\omega|_{(0,1)\times U_i} = f_i$  by the Poincare lemma.

The function  $f_1 - f_2$  is defined on  $U_1 \cap U_2 \simeq S^1 \times (0, 1)$  and has vanishing derivative there. Hence, since  $U_1 \cap U_2$  is connected, the function  $f_1 - f_2$  is constant with value  $c \in \mathbb{R}$ .

Defining

$$f(x) = \begin{cases} f_1(x) \text{ if } x \in U_1 \\ f_2(x) + c \text{ if } x \in U_2 \end{cases}$$

gives then a function with  $df = \omega$ . This shows that any closed 1-form is exact, and thus  $H^1_{dR}(M) = 0$ .

d) We use the notation as in the hint. Let  $\omega$  be a closed 1-form, and let  $f_i : U_i \to \mathbb{R}$  be functions so that  $df_i = \omega$ . These exist, since  $\omega|_{U_i}$  is a closed 1-form on  $U_i \simeq (0,1) \times S^2$  and by part c) any such form is exact. Furthermore, since the  $U_i$  are connected, the  $f_i$  are determined up to the addition of a constant. Let  $p \in C_1$  and  $q \in C_2$  be any two points. Consider the number

$$D(\omega) = (f_1(p) - f_2(p)) - (f_1(q) - f_2(q)).$$

Observe that this does not depend on the choice of the  $f_i$ , since the number is unchanged when we replace  $f_i$  by  $f_i + c$ .

Next, observe that  $D(\omega)$  is linear in  $\omega$ , and clearly D(df) = 0. Hence, D defines a linear function on  $H^1_{dR}(M)$ .

Furthermore, observe that  $\omega$  is exact if  $D(\omega) = 0$ . Namely, observe that  $f_1 - f_2$  is constant on both  $C_1$  and  $C_2$  (since these sets are connected and the derivative of  $f_1 - f_2$  vanishes there), and so  $D(\omega) = 0$  implies that  $f_1 - f_2$  has the same value c on  $C_1$  and  $C_2$ . Then, as in c), the function

$$f(x) = \begin{cases} f_1(x) \text{ if } x \in U_1 \\ f_2(x) + c \text{ if } x \in U_2 \end{cases}$$

gives then a function with  $df = \omega$ .

Together, these show that D defines an injective map  $H^1_{dR}(M) \to \mathbb{R}$ . Hence,  $H^1_{dR}(M)$  has dimension at most 1, and by part b), it therefore has dimension exactly one.