let's see what differential forms
can be use ful for. To make cantest
with the most familiar case, let
us can sider
$$\mathbb{N}^3$$
 with carlesian
coordinates $\mathbf{x} = (x, y, z) \in \mathbb{R}^3$. For Heltinistic
application, cansider also \mathbb{R}^{13} with
coordinates $\mathbf{x} = (x, y, z) \in \mathbb{R}^3$. For Heltinistic
application, cansider also \mathbb{R}^{13} with
coordinates $[1, x, y, z]$.
A basis for $\mathbb{N} \mathbb{R}^3$ is $d\mathbf{x}$, $d\mathbf{y}$ and $d\mathbf{z}$
which we can group togeted as
 $d\mathbf{x} = \begin{pmatrix} d\mathbf{x} \\ d\mathbf{x} \end{pmatrix}$
A great 1- Jarm A effet \mathbb{R}^{13} can then
be decomposed in coordinates as
 $\mathbf{x} = \mathbf{y} d\mathbf{t} + \mathbf{x} \cdot d\mathbf{x}$
with $\mathbf{y} : \mathbb{R}^{13} \to \mathbb{R}$, $\mathbf{x} : \mathbb{R}^{13} \to \mathbb{R}^3$.
Similarly, for $\mathbb{R} \mathbb{R}^3$, we have a basis
 $d\mathbf{x} = d\mathbf{y}$, $d\mathbf{x}$, $d\mathbf{x}$ which we write
as
 $d\mathbf{x} = \begin{pmatrix} dyndz \\ dx \end{pmatrix}$

For
$$\mathcal{R} \mathcal{R}^{13}$$
, we have in addition
 $dt_{\Lambda} d\vec{x}$
So, any $F \in \mathcal{P}(\mathcal{R}^{13})$ can be decomposed as
 $F = \vec{E} \cdot [dt_{\Lambda} d\vec{z}] + \vec{E} \cdot d\vec{\sigma}$.
For \mathcal{R}^{12} , $\vec{E} : \mathcal{R}^{13} : \mathcal{R}^{3} : \mathcal{R}^{3} : \mathcal{R}^{13} : \mathcal{R}^{$

1 - for :

F as
$$F = dA$$
 in forms of a "A-form
pointial" as $dF = dA = 0$. comparing
comparts of $F = dA$, we find
 $E = -O(p + \tilde{A}, \tilde{B} = \tilde{O} \times \tilde{A})$
Again, F dots not change if we modify
A Og a "gauge bunstarmetion", The downline
of a O-form
 $F = d(A + dA) = dA + d^2A = dA$
For the can points of $\tilde{A} = A + dA$, we
find $\tilde{U} = p + \tilde{A}$, $\tilde{A} = \tilde{A} + \tilde{B}A$
What about the inhomogenous the world
ognetions?
We need additional Structure: Observe that
for an n-dimensional manifold
 $dim A^{K} T_{p}TT = {M \choose K}$
So these are iso mappice as rectar spaces.
For a fixed (as monopulation ("Hodge star")

As it finns out, this depends on the basis
chosen. It can be made to dependent of
droites when we have a metric and
an orinitation (sorting of artrogonal basis
elents). Decall that or the first
home work, we also meded a metric to
write the inhomogeneous Maxwell equilia
yto
$$\partial_{\mu}$$
 fog = ds'
For $\Lambda^2 R^{1/3}$, one first
 $\star F = \overline{B} \cdot dtrdx - \overline{E} \cdot dS$

$$F = B \cdot \partial t_A dx - E \cdot ds$$
Then
$$d \times F = \partial_y B_x dy dt A dx + \partial_z B_x dy A dA dx$$

$$+ \cdots$$

$$+ \cdots$$

$$- \partial_t E_x dt A dy A - \partial_x E_x dx A dy A dx$$

The theomogeness flowell equilions

$$\vec{\nabla} \cdot \vec{E} = g \begin{pmatrix} Coulons's \end{pmatrix} \quad \vec{\nabla} \times \vec{F} + d_{4} \vec{E} = \vec{J} \begin{pmatrix} Fevelog b \\ Ion \end{pmatrix} \quad \vec{T} \\ \vec{T} \end{pmatrix}$$

are then in cocht in

~ ~ ~ ~

$$d \neq F = -j$$

with the "count dusity 3-form"
 $j = gdVol + j$ dt rds

From $0=0^2 \times F = dj$ we get the continuity equation 1 consurvation of dys $-8 = \overline{\nabla} \cdot \overline{j}$

. 0 0 0

$$S = \int \left(L_{un} - \tilde{\varphi}(\tilde{x}^{(4)}) + \tilde{x} \cdot \tilde{\lambda}(\tilde{x}^{(4)}) \right) dt$$

for parties (world lines) $\chi : \mathbb{R} \to \mathbb{R}^{13}$
Tas comple, we can an "static gry"
 $t \mapsto (t, \tilde{x}^{(4)})$
We can then a tryvele The gape polyine
(a Λ fam.) one This parts
$$\int A = \int \chi^{*} A$$

$$= \int_{\mathbb{R}} \left(\varphi \, dt + \tilde{A} \cdot x^{*} d\tilde{z} \right)$$

$$= \int_{\mathbb{R}} \left(\varphi \, dt + \tilde{A} \cdot x^{*} d\tilde{z} \right)$$

But this is exactly the declorgetic
contribution to the action! If has a
grander arryin. And gange invitance
is given by Stole's law:

JX = JA + JdX = JdA + X Kenne R Ale these notions work for grand Lawnin 4- manifolds

Flux: W non-degravate mans in coordinates

$$W = \sum_{i=1}^{n} w_{ij} dx^{i} A dx^{j}$$

that the matrix $(W_{ij})_{i,j=1,\dots,2n}$ is implified
Shaw-diagonalization means that any
autisymmetric matrix can be brought
to a tern
 $S^{-1}SS = \begin{pmatrix} 0 & a \\ 1 & b \\ 0 & a \end{pmatrix}$
the non-dographe mans two are to 0's
in the end.

A non-dequate w provides as with an identification of Tox with Tox Vía X H> YW won-degring ensures this is immethice. Darbour: dwed implies the diagonalisation can be doere in an open nighbour bood. This is biff examples: from more car where currents an ophation 1) let Q be an A-dimisional Manifold. The X=T*Q is Symplectic with a define in a cht q: ucQ -> 12h providig (carchinates q'= q(q) $\omega = \overline{Z} dgidpi$ with (dp:), on the dual basis of OPJ (JZI) = St. This is independent of the dut of Since in a dight dut of with coardules qu' $dq^{i} = \frac{\partial q^{i}}{\partial r} d\tilde{q} \dot{r}$

while
$$f_{qi}^2 = \sum_{i=1}^{2} \sum_{j=1}^{2} g_{qj}^2 i$$

So the brass function of bei Cards
the brass function of all.
Physicists think of Q as "Campignation
space" providig "gradial coordinates"
while $T_{qi}^2 Q$ contains "canonical mounta".
W encodes the canonical paining.
X = T*Q is called "phone space"
2) X = S² = { Z C R | #X#=1} fogether
with ang non-vanishing 2 for
(eg. volume the obove embeddery)
is a symplectic mailfold (dw=0)
by dimesion that is not of the
form X=T*Q for Jone Q.
The is the symplectic spine
appropriate to describe "spin".
Dy H: X -> R C P(NO X) shoots is
called a "Hamiltonia". Accorders
to the serve asone, it detres

or "Hamiltonian vector field" X_{4} defend via $dH = i x_{4} \omega$

example:
$$k = T + Q$$
 with coordinates
 (q^{i}, p_{i}) and $w = \sum_{i} dq' \cdot dp_{i}$.
We have $dH = \sum_{i} \left(\frac{a_{i}}{\partial q_{i}} dq' + \frac{\partial H}{\partial p_{i}} dp_{i}\right)$

Now, we need to find
$$X = \overline{z}[X^{i} \frac{\partial}{\partial q^{i}} + X_{i} \frac{\partial}{\partial r_{i}}]$$

such that $dH = ie_{H} \cup$
letts comple
 $e_{X_{H}} \cup = \sum_{i,j} \left(X^{i} \frac{dq^{j}(\frac{\partial}{dq_{j}})}{\delta t_{i}} \frac{dr_{i}(\frac{\partial}{dq_{j}})}{\delta t_{i}} \frac{dr_{i}(\frac{\partial}{dq_{j}})}{\delta t_{i}} \right)$
 $= \overline{z}(X^{i} dr_{j} - X_{i} dq^{i})$
company coefficients, we find
 $X^{i} = \frac{\partial H}{\partial r_{i}} - \frac{\partial H}{\partial q^{i}} \frac{\partial}{\partial r_{i}} \right)$
Finally, write for $(x_{i}, r) \in T^{a}Q$
 $(X(H)_{i}, r(H)) = \overline{P}_{+}((x_{i}, r))$
Thus from $\frac{d}{dr} I_{H} \cdot \overline{P}_{+} = X_{H}$, we read of

 $T_{q_{\text{R}}} \times \ni \overline{Z} \left(\dot{q}_{\text{R}}^{i} \partial_{q}^{j}; \dot{P}_{i} \partial_{p}^{j} \right) = \overline{Z} \left(\begin{array}{c} \partial \mathcal{H} \\ \partial \mathcal{P}_{i} \partial_{q}^{j}; -\partial \mathcal{H} \\ \partial \mathcal{P}_{i}^{j} \partial_{q}^{j}; -\partial \mathcal{H} \\ \partial \mathcal{P}$

$$E^{s} = \frac{\partial H}{\partial p_{i}} + \frac{\partial H}{\partial p_{i}} + \frac{\partial H}{\partial q^{2}}$$

These are Hamilton's equations
of motion.
$$\Phi_t((q_{1P}))$$
 describes the
time evolution of a state that is
 $(q_{1P}) \in \pm 0$ triting.

(luma (Liamille's turn) For ter

$$\overline{\mathcal{I}}_{\mathcal{E}}^{\star} \omega = \omega$$

PL (tufinilesimilly)

$$d_{T}|_{t=0} \overline{\Psi}^* \omega = \mathcal{L}_{X_{H}} \omega$$
$$= \pm i_{X_{H}} d\omega \pm \alpha i_{X_{H}} \omega$$
$$\overset{\circ}{\overset{\circ}{_{U}}} = d_{U} d\mu$$
$$= 0.$$

Def
$$f: X \rightarrow R$$
 is called an dwarke.
NB: This is farmily the same as Hemilter
So i twee is also X_f .
For fig observates, we can
define the Roisson bracket
 $\{f, g\} := -in(X_f, X_g) > -df[X_g]$
lemme $(\Gamma(X^{o}X), (..., f))$ forms a Lie
algebra, i.e. $\{i, j\}$ is artisymptic
and obsys a Jacobi identity
PL abrect calculator.
lemme H: X -> R induces a derivation
 $\{H, \cdot\}$ on $\Gamma(PX)$:
For $f: X \rightarrow R$
 $f = \{H, f\}$
 $= dfT \times h$
 $= X_HTf$
 $= dfT \times h$
 $= if T_{ch} I_{co}$ (History com)

Note is Thean: let G be a lie grap
with a symplectic action Go X on

$$X_1 \propto .$$
 $\forall g \in G : g^* (\omega) = c_0$
that levers a Hamiltaian $H: X \rightarrow TR$
twant, i.e. $\forall g \in G : g^{H}H=H$. Then there
is a time map from $g = T_{CG}$
 $\lambda: gg \rightarrow \Gamma(T^*X)$
such that $\lambda(V)$ is doed $d\lambda(U)=0$
and carried $f_{T}^* \lambda(V) = \lambda(V)$.
(locally $\lambda(v) = dC(v)$ fas $c(v): X \neg R$
(as globaly if eq. $H'(x)=5d$)
Is called a conserved cluster.
By rewsing the average in
 $c_{T} \rightarrow C^{co}(x)$
we can view this as a mp
 $\chi \rightarrow OJ^*$
called a mount wap by mutumbias.

v

$$= - \alpha_{\chi_{y}} \lambda(u)$$

$$= \frac{d}{d\tau} \left(\int_{\tau=0}^{\infty} \Phi_{\tau}^{*} \lambda(u) \right) \qquad \Box$$

Flows & Lie derivchive
firm a rectar field
$$V \in \Gamma(TX)$$
, we can about
A tamily of diffeo multimes
 $\overline{\Phi} : \mathbb{R} \times X \longrightarrow X$
 $(t, x) \mapsto \overline{\Phi}_t(x)$
with $\overline{\Phi}_{\theta} = id_x$
 $\frac{1}{2} \int_{B \to t} = V$
 $\overline{\Phi}_{s+t} = \overline{\Phi}_s \circ \overline{\Phi}_s \quad (group hour) = \operatorname{sup}(x)$
is called a "Hamiltonian flow". At least
for compact X, its existence is
grownhed by standard ODE- argunts.
(finite artiss, in each club ODE,
smoothness = S (riphile).

This way, we have means to
compare truscass at differt parts.
This the leads as to
but his the leads as to
but his derivative : U
$$\in T(TTT)$$

 \overline{T}_{1} its flow. Now, eg. W $\in T(TTT)$
 $(= [V, V])$
Similar for other fusers. In publicly,
we have
 \cdot $\mathcal{L}_{V} f = V df$
 \cdot $\mathcal{L}_{V} f = V df$
 \cdot $\mathcal{L}_{V} (T_{1} \otimes T_{1}) = \mathcal{L}_{V} T_{1} \otimes T_{1} + T_{1} \otimes T_{1}$
 \cdot $\mathcal{L}_{V} (T_{X} \times) = V_{XX} \times + V_{X} dx$

• $d \lambda_v = d_v d$ Trus out, these propeties define $\mathcal{A}_{\mathcal{V}}$.

NB: Besides the exterior derivative (which does not have a direction but increases the ferr degree), this is another derivative which leaves the Kusor type inhact. However, it diplids not only on a vector (at p) but on a vector fuild (er its germ). i.e. it is hot colnj- linar: $\mathcal{L}(fv) W = f \mathcal{L}vW + (i) df) W$ (Cartan's formula) For XE 2°(1) Clum V @ [T] : d'a = devatuda Pf in Hw.