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Abstract. We show that if S is a closed surface of genus g ≥ 5 or a surface
of genus g ≥ 2 with at least p ≥ 3 marked points, then the set of uniquely

ergodic foliations and the set of cobounded foliations is path-connected and

locally path-connected.

1. Introduction

Projective measured foliations play a prominent role in Teichmüller theory, dy-
namics and the study of mapping class groups. In addition to the structure of
individual foliations, the set PMF(S) of all foliations on a given finite type sur-
face S has particular importance. PMF(S) carries a natural (weak-∗) topology
and is homeomorphic to a sphere of dimension 6g + 2p− 7 if S has genus g and p
punctures. One reason for its importance stems from the fact that PMF(S) can
be identified with both the sphere of directions, and the boundary of infinity of
Teichmüller space. One can also use PMF(S) to describe the Gromov boundary
of the curve graph.

In this article we study global topological properties of two dynamically moti-
vated subsets of PMF(S). The first is the set UE(S) of uniquely ergodic foliations,
where a foliation F is called uniquely ergodic if it admits a unique transverse mea-
sure up to scale. The second is the set COB(S) of cobounded foliations, where F
is called cobounded if a Teichmüller geodesic ray with vertical foliation F projects
into a compact set of the moduli space of Riemann surfaces.

These sets have been intensely studied from a dynamical point of view, owing to
their importance in Teichmüller theory. As a starting point, by a theorem of Masur
[Mas], any cobounded foliation is uniquely ergodic, and we therefore have

COB(S) ⊂ UE(S) ⊂ PMF(S)

Both COB(S) and UE(S) are dense in PMF(S) (but the same is also true for their
complements). Masur and Veech [Mas, Vee] show that UE(S) has full measure in
PMF(S). In contrast, the set COB(S) has measure zero.

It is known that there are embedded circles in COB(S) [LS2], but Masur and
Smillie [MS] have shown that the complement PMF(S) \ UE(S) has Hausdorff
dimension stictly bigger than dimPMF(S) − 1, and hence one cannot expect to
locally deform paths in order to avoid PMF(S) \ UE(S).

Our main result shows that paths are nevertheless abundant in COB(S) and
UE(S):
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Theorem 1.1. Let S be a closed surface of genus at least 5, or a surface of genus
at least 2 with at least 3 punctures. Then the subsets UE(S), COB(S) are path-
connected, and locally path-connected.

In fact, the proof shows something slightly stronger: any two points in UE(S)
can be joined by a continuous path which is contained in COB(S) except possibly
at its endpoints.

Our result can also be used to show that through any finite number of points in
UE or COB there is an embedded circle in UE or COB1.

Proof Strategy and Structure of this Article. Our strategy in proving Theo-
rem 1.1 has two main ingredients. On the one hand, we will develop in Section 3 a
robust mechanism to construct paths of cobounded foliations in the sphere of pro-
jective measured foliations of a punctured surface. This construction was heavily
inspired by the work in [LS1], and our main new contribution here is to use bad
approximability of points under straight line flows on tori to certify coboundedness
and to improve the paths built in [LS1] to consist of cobounded foliations. This
will be done in Section 3.

The second ingredient consists in assembling these paths with a limiting proce-
dure into paths that can reach any uniquely ergodic foliation. This is somewhat
similar in spirit to our previous work [CH] on interval exchanges. However, the
methods of this paper are softer and more flexible than the explicit construction
in that work. Here, we use train track splitting sequences to define mapping class
group sequences that exhibit contracting behaviour on PMF . The main technical
work to make this work happens in Section 2, and uses the hyperbolic geometry of
curve graphs to show that these sequences act on PMF in a contracting way.

Section 4 then combines these two parts and shows the path-connectivity state-
ment in Theorem 1.1 for punctured surfaces. This is also the prerequisite for Sec-
tion 5, in which the path-connectivity statement of Theorem 1.1 is proved for closed
surfaces.

Finally, in Section 6 we show how to leverage the constructions of paths to show
local path-connectivity.

Further Questions. Finally, we want to highlight a few questions for further
research suggested by Theorem 1.1 and its proof.

Question 1. Are UE(S) and COB(S) simply connected, if the genus of S is suffi-
ciently large?

Question 2 (Gabai [Gab]). Is the set AF(S) ⊃ UE(S) of arational foliations
path-connected?

This question came up in Gabai’s analysis of connectivity properties of the Gro-
mov boundary of the curve graph (which is the quotient of AF(S) by the map
which “forgets” the measure on the foliation). Gabai proves that this boundary
is path-connected, but his methods does not apply to AF(S) directly. Leininger
and Schleimer [LS1] proved that the set AF(S) of arational foliations is connected,

1To ensure that the circle is embedded, one has to use the proof of Theorem 1.1 rather than
just the statement. We omit details, as the claim is not central to our discussion.



PATH-CONNECTIVITY OF UE 3

and contains a dense path-connected subset, but it is not clear that these paths
can be extended to the closure. We suspect that our curve graph methods can
recover Gabai’s result that ending lamination space is path connected in the case
of a surface of genus at least 5. Partly because such genus bounds would not be
optimal, we have not investigated this thoroughly.

Our methods are at the moment also unable to deal with the case of arational
foliations, mainly because the contraction properties in Section 2. This is due to
the fact that in order to certify contraction we use the curve graph boundary, which
is unable to distinguish different measures supported on a topological foliation.

Next, one could consider more restrictive subsets of COB(S). Namely, suppose
we fix a constant ε > 0. Call a foliation F ε-cobounded if a Teichmüller ray with
vertical foliation F eventually stays in the ε-thick part of Teichmüller space.

Question 3. Is the set COBε(S) of ε-cobounded foliations path-connected for any
choice of ε?

Our methods do not yield this, since the paths (both in Section 4 and 5) need to
degenerate very close to simple closed curves in order to apply the methods from
Section 2. However, the basic paths from Section 3 can be guaranteed to have
uniform thickness.

Finally, one motivating reason for studying paths of cobounded paths in the
sphere of projective measured foliation stems from one of the central open questions
in the study of mapping class groups and Teichmüller theory. Namely, Farb–Mosher
[FM2] define convex cocompact subgroups in analogy to such Kleinian groups. At
this time, all known examples of such groups are virtually free, and it is not clear
if any other examples can exist. One touchstone question is therefore: is there a
convex cocompact subgroup of the mapping class group, which is isomorphic to the
fundamental group of a higher genus surface. Such a group G would give rise to a
G–invariant circle in COB(S).

Question 4. Are there embedded circles in COB(S) which are invariant under
groups that are not free?

Most likely, this question requires significant new tools. A weaker version of this
question arises if we relax the invariance condition, e.g.

Question 5. Is there a finite subset F ⊂ Mod(S), and P ⊂ F 2 so that for x in
Teichmüller space we have that the limit in PMF of

{sn...s1x : (s1...sn) ∈ Fn and (si, si+1) ∈ P for all i < n}n∈N
is a circle in COB(S). That is, is there a “convex cocompact shift of finite type”
which has a circle limit set of cobounded foliations in PMF?

One could also ask a similar question for semigroups.

2. Contractions on PMF

We denote by PMF the sphere of projective measured foliations. Recall that
a foliation is called minimal, if every regular leaf is dense. As mentioned in the
introduction, we call a foliation F uniquely ergodic, if F admits a unique transverse
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measure up to scale. We call a foliation F cobounded if a Teichmüller ray with
vertical foliation F is contained in some thick part of Teichmüller space. By Masur’s
criterion [Mas], cobounded foliations are uniquely ergodic, and it is well known that
uniquely ergodic foliations are minimal.

Throughout this article, we will use the notion of measured foliations, although
most literature on train tracks uses measured geodesic laminations instead. We refer
the reader to [Lev] for an excellent dictionary between foliations and laminations
on surfaces. Most of the time this will not be cause for confusion. We only want to
emphasise that a minimal foliation in our sense corresponds to a minimal and filling
lamination. In particular, there are no simple closed curves which have intersection
0 with a minimal foliation.

2.1. From splitting sequences to mapping classes. This section sets out the
framework connecting mapping class group elements and train track splitting se-
quences. We refer the reader to [PH] for a detailed treatment of the basic theory
of train tracks, and [MM1] for some other concepts we use.

If τ is a train track and F is a foliation, we write F ≺ τ if F is carried by τ
(compare [PH, Section 1.6], noting that in [PH] the notion of measured geodesic
laminations is used in place of foliations. We ). We denote by P (τ) ⊂ MF \ {0}
the set of measured foliations which are carried by τ . When it does not cause con-
fusion, we will often identify P (τ) with the subset of the sphere PMF of projective
measured foliations it defines. The set P (τ) naturally has the structure of a closed
polyhedron, whose faces correspond to the polyhedra P (η) of subtracks η of τ .

A train track is called recurrent, if for every branch there is a train path which
traverses it. It is called birecurrent if in addition there is a multicurve hitting
the train track efficiently (i.e. without generating bigons) which intersects every
branch (compare [PH, Section 1.3] for details on these definitions). From now on, we
will usually assume without mention that all train tracks we use are birecurrent.
We say that a train track is large if every complementary component is simply
connected, and maximal, if every complementary component is a triangle (which
implies largeness).

For maximal, birecurrent train tracks τ , the interior of P (τ) defines an open set
in PMF [PH, Lemma 3.1.2]. For other train tracks this need not be the case. By
the interior intP (τ) of P (τ) we will always mean the subset of P (τ) formed by
all those measures which assign a positive weight to each branch. We stress again
that, in general, this is different from the topological interior of P (τ) as a subset of
PMF or MF \ {0}.

Given a train track τ , a branch b is large, if every trainpath through either of its
endpoints runs through b. Recall that we can perform a left, right or central split
at a large branch to obtain a new train track τ ′. Compare [PH, §2.1] for details
on this construction. We recall that a left or right split does not affect the number
and type of complementary components of the train track, while a central split can
join two complementary components into one.

Let τ be a fixed maximal, birecurrent train track. As noted above, the poly-
hedron P (τ) defines an open set in PMF . We let T (τ) be the set of all large
birecurrent train tracks which can be obtained from τ by any number of splits
(left, right, or central). The set T (τ) can be stratified in the following way. Put
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T0(τ) = {τ}, and inductively define Tn+1(τ) to be the set of large train tracks
obtained from each σ ∈ Tn(τ) by splitting each large branch once (in one of the up
to three possible ways). Note that a central split need not yield a large train track,
so not all three possibilities are always allowed.

A large branch b of a large birecurrent train track σ defines a hyperplane H
in P (σ) cutting P (σ) into subpolyhedra Pl, Pr, which are exactly the polyhedra
of the left and right splits of σ. The polyhedron of the central split of σ at b is
the hyperplane H [PH, Proposition 2.2.2]. Hence, the interiors of the polyhedra
P (σ), σ ∈ Tn(τ) define a decomposition of P (τ) into disjoint subpolyhedra.

Lemma 2.1. Un(τ, F ) is an open neighborhood of F in PMF for every n.

Proof. We prove the lemma by induction. For n = 0 this is simply openness of P (τ)
([PH, Lemma 3.1.2]). Suppose now that Un(τ, F ) is an open neighborhood of F .
From the description of the effect of splits on polyhedra given above we conclude
that Un+1(τ, F ) is obtained from Un(τ, F ) by cutting at hyperplanes (corresponding
to central splits) and retaining those polyhedra which contain F . If none of these
hyperplanes contain F , it is clear that Un+1(τ, F ) is still an open neighbourhood
of F . However, suppose that one of them does contain F . This corresponds to
the situation in which a track η ∈ Tn has a large branch so that all three of the
left,right and central splits of η along that branch carry F – and therefore all three
of these splits will contribute to Un+1(τ, F ), guaranteeing that the latter is still an
open neighbourhood of F . �

Now, let F ∈ intP (τ) be given, and let

T (τ, F ) = {σ ∈ T (τ), F ≺ σ}
be the subset of all those train tracks in T (τ) which carry F . We let Tn(τ, F ) be the
set of all those σ ∈ Tn(τ) which carry F . For the next lemma, we use the notion of
diagonal extension. If τ is a train track, then we say that η is a diagonal extension
of τ if η is obtained by adding branches inside simply connected complementary
components. See [MM1, Section 4.1] for details.

Lemma 2.2. The sets Tn(τ, F ) only contain diagonal extensions of the (large) train
track ηn ∈ Tn(τ, F ) with the fewest complementary components.

Proof. Consider the sequence ηk of train tracks obtained by splitting τ in the di-
rection of F and always choosing a central split when possible. These have the
property that they always carry F , and additionally, the weight defined by F is
positive on every branch of ηk for all k (F fills ηk). Note that for any σ ∈ Tn(τ)
there exists (at least one) ηk (depending on σ) so that ηk is a subtrack of σ (this
follows inductively, since if a foliation is carried by, and fills, a subtrack η of σ and
σ splits to σ′, then either η or a split of η is a subtrack of σ′). Since F is minimal,
and therefore there is no simple closed curve that doesn’t intersect F , it can only
be carried by large train tracks. Therefore, σ is a diagonal extension of ηk. The
lemma now follows, since any set Tn(τ, F ) contains at most one ηk, and the number
of complementary components in a split decreases only during central splits. �

We put

Un(τ, F ) =
⋃

σ∈Tn(τ,F )

intP (σ)
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A splitting sequence τi in the direction of F is a sequence τi of train tracks with
τ0 = τ and so that each τi carries F , and τi+1 is obtained from τi by splitting exactly
one large of τi branch once. A full splitting sequence instead requires splitting each
large branch of τi once when passing from τi to τi+1. Hence, if τi is a full splitting
sequence in the direction of F starting in τ , then τi ∈ Ti(τ) for all i.

If F is a foliation in the minimal stratum (i.e. each singularity is 3–pronged, and
there are no saddle connections2), then each split in a splitting sequence τi is a left
or a right split, and furthermore the type is uniquely determined by F . If F has
saddle connections or k–prong singularities for k > 3, then it is possible that for
some n, F is carried by the left, right and central split of τn. This is furthermore
the last time F is carried in the interior of a maximal train track τn along the
splitting sequence.

Splitting sequences in the direction of minimal foliations have good contracting
properties. In the following theorem, and below, we denote by ∆(F ) the (closed)
simplex of projective measured foliations which are topologically equivalent to F .

Theorem 2.3 (compare e.g. [Mos, Theorem 5.1.1]). Suppose that F is a minimal
foliation and that τi is any splitting sequence in the direction of F . Then

∞⋂
i=1

P (τi) = ∆(F ).

As an immediate corollary, we have

Corollary 2.4. Let F ∈ intP (τ) be minimal. Then⋂
n≥0

Un(τ, F ) = ∆(F ).

We now describe how to connect splitting sequences to sequences in the mapping
class group. The first step is the following lemma.

Lemma 2.5. There is a finite number of sets

(1) T (1), . . . , T (M)

so that for each maximal train track τ , each minimal F , and each n there is a
number kτ,F,n and a mapping class fτ,F,n with

Tn(τ, F ) = fτ,F,n

(
T (kτ,F,n)

)
.

The number kτ,F,n is unique. The mapping class fτ,F,n is unique up to a finite
indeterminacy.

We call the set of T (i) standard neighborhood models and we call the number
kτ,F,n the type of Tn(τ, F ).

Proof of Lemma 2.5. By Lemma 2.2, Tn(τ, F ) consists of train tracks which are
diagonal extensions of some large train track ηn. Since the mapping class group
Mod(Sg) acts on the set of (isotopy classes of) train tracks on Sg with finitely
many orbits, there are finitely many choices for such a train track ηn up to the

2This means that the corresponding lamination has only triangles as its complementary
components.
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mapping class group action. Since the number of complementary components of ηn
can be bounded from the Euler characteristic of S alone, there are a finite number
of diagonal extensions of ηn. This implies that the mapping class group also acts
on the sets Tn(τ, F ) (over all τ, F, n) with finitely many orbits. We can therefore
choose the sets T (i) to be orbit representatives of this action. This shows both
the desired existence of kτ,F,n and fτ,F,n, as well as the uniqueness of kτ,F,n. The
(coarse) uniqueness of the fτ,F,n follows since the set of mapping classes which fix
a given train track is finite (compare e.g. [Ham2, Lemma 4.2]), and so the element
fn,F is also determined up to a finite choice. �

Let (τi) be a full splitting sequence starting in a maximal train track τ towards
some minimal foliation F . Then each τi ∈ T (τ, F ), and in fact τi ∈ Ti(τ, F ). We
then get an associated Mod-sequence (fi, ki) by applying Lemma 2.5 to Ti(τ, F ) for
each i. In particular, we then have

Tn(τ, F ) = fn(T (ki)).

As before, the numbers ki are uniquely determined by the splitting sequence, and
the mapping classes fn are determined up to a finite choice. We call the number
kn the type of the index n.

Let U (k) be the neighborhoods associated to our standard models T (k), i.e.

(2) U (k) =
⋃

σ∈T (k)

intP (σ).

We call the U (k) the standard neighbourhoods3. By the defining property of the
associated sequence (fn, kn) we can then relate the standard neighbourhoods to
the neighbourhoods of F given by the splitting sequence in the following way:

(3) Un(τ, F ) = fn

(
U (kn)

)
.

The next lemma collects two crucial properties of the associated sequence.

Lemma 2.6. There is a finite set M ⊂ Mod(Sg) with M = M−1 and so that the
following holds. Suppose that fn, fn+1 are two consecutive terms of an associated
Mod-sequence. Then we have

(4) f−1n fn+1 ∈M
Furthermore,

(5) f−1n fn+1

(
U (kn+1)

)
⊂ U (kn).

Proof. Let T be the (finite) set of all those train tracks which can be obtained from
one of the train tracks in ∪iT (i) by full splits, and let M0 be the set of all those
mapping classes which map train tracks σ ∈ T to train tracks in any ∪jT (j). Note

that since T is finite, M0 is finite by Lemma 2.5. We put M = M0 ∪M−10 .

To see that it has property (4), observe that if fn, fn+1 are consecutive terms of
an associated Mod-sequence, there are train tracks ηn ∈ T (in), ηn+1 ∈ T (in+1), so
that fn+1ηn+1 is a full split of fnηn. This implies that f−1n fn+1ηn+1 is a full split
of ηn.

3Note that the model neighbourhoods U(k) need not be contained in the polyhedra P (τi) along
the splitting sequence.
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In other words, f−1n fn+1 maps a train track in T (in+1) to one in T , and is
therefore an element of M by definition.

Equation (5) follows immediately from the following:

fn+1

(
U (kn+1)

)
= Un+1(τ, F ) ⊂ Un(τ, F ) = fn

(
U (kn)

)
.

�

The type-k subsequence is the maximal subsequence f
(k)
s = frs so that krs = k.

We say that type k is essential for the splitting sequence (τi), if the subsequence

f
(k)
s is an infinite sequence. At least one type is essential, but we suspect that the

type of the initial train track need not repeat infinitely often.

By Lemma 2.6 we have that fi+1f
−1
i ∈M for all i; but we warn the reader that

the elements f
(k)
s+1

(
f
(k)
s

)−1
are not constrained to a finite set in the mapping class

group.

2.2. Minimal Foliations and the Curve Graph. In this section we will prove
that large terms in the associated Mod-sequence for a uniquely ergodic foliation send
certain subsets of PMF into small neighborhoods of the foliation, and will use this
to prove contracting properties for associated Mod-sequences. Intuitively, we will
show that all curves (and non-minimal foliations) are attracted to the foliations F
guiding the splitting sequence, and we will show that the speed of attraction can
be controlled for certain geometrically constrained sets of curves.

We begin by rephrasing the contraction exhibited by train track polyhedra under
splitting sequences (Theorem 2.3) in terms of associated Mod-sequences.

Corollary 2.7. Let τi be a splitting sequence towards a minimal foliation F and
let (fi, ki) be an associated Mod-sequence. For any essential type k we have that⋂

s

f (k)s (U (k)) = ∆(F ).

Proof. By Corollary 2.4, we have that⋂
n≥0

Un(τ, F ) = ∆(F ),

and therefore, by definition of essential type,⋂
n≥0,kn=k

Un(τ, F ) = ∆(F ).

Now, using Equation (3) we see that Un(τ, F ) = fn(U (k)) if the index n is of type
k, and therefore ⋂

n≥0,kn=k

Un(τ, F ) =
⋂
s

f (k)s (U (k)),

which shows the corollary. �

In other words, the mapping classes f
(k)
s eventually contract U (k) to a small

neighborhood of ∆(F ). The rest of this section is concerned with studying the
contraction properties of the mapping classes fi outside the open sets U (k).
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To this end, we use the geometry of the curve graph. Recall that the curve graph
C(S) of a surface is the graph whose vertex set is the set of isotopy classes of essential
simple closed curves on S, with edges between classes that admit representatives
with intersection 0. We denote by dC(S) be the resulting metric on C(S). The core
feature of the geometry of the curve graph we need is the following.

Theorem 2.8 (Masur-Minsky [MM1]). If S is a non-exceptional surface (i.e. C(S)
is connected), then the curve graph is hyperbolic in the sense of Gromov.

We will need two methods to produce quasigeodesics in the curve graph. The
first one is the method employed to show hyperbolicity in [MM1].

Theorem 2.9. Let S be a surface of finite type. Then there are numbers K,K ′,
depending on S with the following property: suppose that ρ : R → T (S) is a Te-
ichmüller geodesic, and suppose that for each t ∈ R the curve αt has smallest
possible extremal length4 on ρ(t). Then the assigment

t→ αt

is an unparametrised K–quasigeodesic in the curve graph. In particular, for any
t < s, the set {αr, t ≤ r ≤ s} has Hausdorff distance at most K ′ from a curve graph
geodesic joining αt to αs.

Proof. Theorem 2.3 of [MM1] states that a coarsely transitive path family with the
contraction property in a geodesic metric space consists of uniform unparametrised
quasigeodesics (for the definitions, compare Section 2.4 of [MM1]). Theorem 2.6 of
[MM1] then shows that the family of paths in the curve graph obtained by taking
shortest extremal length curves has the contraction property (that these paths are
coarsely transitive is easy to see). �

The second, related construction of quasigeodesics uses train tracks. It is proven
in [MM2, Theorem 1.3], see also [Ham1, Corollary 2.6]:

Proposition 2.10. Let S be a surface of finite type. Then there are numbers
K,K ′, depending on S with the following property: suppose that (τi)i is a splitting
sequence and suppose that for each i ∈ N the curve αt is a vertex cycle5 on τi. Then
the assigment

i→ αi

is an unparametrised K–quasigeodesic in the curve graph. In particular, for any
t < s, the set {αr, t ≤ r ≤ s} has Hausdorff distance at most K ′ from a curve graph
geodesic joining αt to αs.

4See e.g. [Ahl] for a definition. The precise definition of this does not matter too much to

understand the theorem; it would remain true also for e.g. the shortest hyperbolic geodesic on
ρ(t).

5See e.g. [PH] or [MM1, Section 4.1] for a definition of vertex cycle. Again, the precise
definition of this does not matter too much; the theorem would remain true for e.g. the shortest

trainpath on τi.
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For a Gromov hyperbolic space, one can define a boundary at infinity, see e.g.
[BH, III.H.3]6. If α0 is some basepoint, recall the Gromov product

(x · y)α0
=

1

2
(d(α0, x) + d(α0, y)− d(x, y)).

Also note that the Gromov product extends from the space to the boundary at
infinity [BH, III.H.3.15]. The Gromov product has the property that

(6) |(x · y)α0 − (x′ · y′)α0 | ≤ d(x, x′)

for any point y and (finite) points x, x′.

In the case of the curve graph, the Gromov boundary can be identified explicitly
with a different space. We define the set EL(S) to be the set of minimal foliations
with the measure-forgetting topology. That is, we consider the subsetM⊂ PMF
of all minimal foliations, and let EL(S) be the quotient topological space M/ ∼
under the equivalence relation which lets F ∼ F ′ if F, F ′ are topologically equiva-
lent.

Theorem 2.11 ([Kla, Theorems 1.2, 1.3 and 1.4]). i) The Gromov boundary of
C(S) is homeomorphic to the space EL(S).

ii) A sequence αi of curves (interpreted as points in the curve graph) converges
to the point at infinity defined by a minimal foliation F if and only if every
accumulation point of {αi, i ∈ N} in PMF is contained in ∆(F ).

iii) Suppose that ρ is a Teichmüller geodesic ray whose vertical foliation is a min-
imal foliation F , and that for every t, the curve αt is a curve of smallest
extremal length on ρ(t). Then the curves αt (interpreted as points in the curve
graph) converge to F (interpreted as a point in the Gromov boundary)

As a consequence of Theorem 2.11 we have the following characterization of
neighborhoods in PMF using the curve graph.

Lemma 2.12. Suppose that F is a minimal foliation, and U is an open neighbor-
hood of ∆(F ) in PMF . Let γ be an arbitrary simple closed curve. Then there is a
number K with the following property: suppose that β is a simple closed curve so
that (as a point in the curve graph) we have

(F · β)γ > K.

Then β (seen as a projective measured foliation) is contained in U .

Proof. Suppose that the claim were false. Then we would find a sequence (βi) with
(βi ·F )γ > i but βi /∈ U . By the Gromov product condition, (βi) would then be an
admissible sequence converging to the boundary point F . So, by Theorem 2.11 ii),
the sequence βi converges in the measure forgetting topology to F . Since U is an
open neighborhood of ∆(F ) this is impossible as βi /∈ U . �

We also need the following partial converse.

6Since the curve graph is locally infinite, some care has to be taken here. The correct definition
uses sequences with diverging Gromov products, rather than equivalence classes of quasi-geodesic

rays.
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Lemma 2.13. There is a number k0 with the following property. Suppose that F
is a minimal foliation, α is a simple closed curve, and

(F · α)γ > K

If µi is a sequence of minimal foliations converging to α in PMF , then

(F · µi)γ > K − k0
for all large i.

Proof. Denote by Φ : T (S)→ C(S) the map which assigns to a marked hyperbolic
surface in Teichmüller space a curve of smallest extremal length7. Pick a basepoint
X0 in Teichmüller space for which γ is a curve of smallest extremal length, and
consider the Teichmüller geodesic rays ρi starting from X0 in the direction of µi.
Since the µi converge to α in PMF , the rays ρi converge uniformly on compact
subsets to the Teichmüller geodesic ray ρ∞ starting in X0 with vertical foliation α.

Theorem 2.9 implies that there is a constant K so that the images Φ ◦ ρi can be
reparametrised to be K–quasigeodesics qi beginning in γ. By Theorem 2.11 iii), the
quasigeodesic qi connects γ to the point µi in the Gromov boundary of the curve
graph.

There is a constant T0 so that Φ ◦ ρ∞(t) is equal to α for all t ≥ T0. As the
ρi converge to ρ∞ uniformly on compact sets in Teichmüller space, one concludes
that Φ ◦ ρi(T0) = α for all large i. Hence, the qi pass through α for all large i.
This implies that there is a constant k0, just depending on K and the hyperbolicity
constant of the curve graph, so that (F · µi)γ > (F · α)γ − k0, which implies the
lemma. �

The next lemma and corollary are well known and standard and included for
completeness.

Lemma 2.14. Let F be a minimal foliation, and K a number. Then suppose that
x, y ∈ C(S) with

(F · x)γ , (F · y)γ ≥ K.
Let z be a point on a geodesic between x, y. Then

(F · z)γ ≥ K − 4δ,

where δ is the hyperbolicity constant of the curve graph.

Proof. First we observe that if x, y, z are three points in C(S) and z lies on a geodesic
between x and y, we have

2(x · z)γ = d(γ, x) + d(γ, z)− d(x, z) ≥ d(γ, x) + d(γ, y)− d(y, z)− d(x, z)

= d(γ, x) + d(γ, y)− d(x, y) = 2(x · y)γ .

By δ–hyperbolicity, we have that for all triples a, b, c of points in C(S) ∪ ∂∞C(S)

(a · c)γ ≥ min{(a · b)γ , (b · c)γ} − 2δ,

compare e.g. [BH, III.H.3.17.(4)]. First, apply this to x, F, y to conclude that

(x · y)γ ≥ K − 2δ.

7This curve may not be well-defined, but any two choices have uniformly few intersections due
to the collar lemma. Hence, any two choices have uniformly small distance in the curve graph.
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Now, apply this same estimate again, to conclude

(F · z)γ ≥ min{(F · x)γ , (x · z)γ} − 2δ

≥ min{(F · x)γ , (x · y)γ} − 2δ

≥ min{K,K − 2δ} − 2δ

≥ K − 4δ

which is what we wanted to prove. �

Corollary 2.15. Let K,D > 0 be numbers, F be a minimal foliation. Suppose that
x̃, ỹ are any two points in the curve complex or its boundary, satisfying

(F · x̃)γ , (F · ỹ)γ ≥ K.
Suppose that z ∈ C(S) lies on a (possibly infinite) D–quasi-geodesic q with endpoints
x̃ and ỹ. Then

(F · z)γ ≥ K −X,
where X is a number depending only on the hyperbolicity constant of the curve
graph and the quasi-geodesic constant D.

Proof. Choose points xi = q(ri), yi = q(si) in the curve complex on the quasi-
geodesic q which converge to x̃, ỹ respectively. If an endpoint of q is finite, we assume
that the corresponding sequence is eventually constant. Using [BH, III.H.3.17.(5)]
we then conclude from the Gromov product estimate in the prerequisites that

min{(F · xi)γ , (F · yi)γ} ≥ K − 2δ,

for large i. We furthermore assume that i is large enough so that z is contained in
the subsegment qi of q with endpoints xi, yi. By δ–hyperbolicity, there is a number
B depending only on D, so that the Hausdorff distance between qi and the geodesic
connecting xi to yi is at most B. Let z′ be a point on that geodesic of distance at
most B to z. By Lemma 2.14, we then have

(F · z′)γ ≥ K − 4δ,

and thus

(F · z)γ ≥ K − 4δ −B.
Hence X = 4δ +B satisfies the requirement. �

Lemma 2.16. Let F be a minimal foliation, τ a train track and (τi) a splitting se-
quence in the direction of F and let (fi, ki) be an associated Mod-sequence. Suppose

that (γi) is a sequence of simple closed curves so that γi is contained in f
(ki)
i (U (ki))

for every i. Then, for any base point α0, we have

(γi · F )α0
→∞.

Proof. By Corollary 2.4 and the assumption, any accumulation point of the curves
γi (interpreted as projective measured foliation) is contained in ∆(F ) ⊂ PMF .
By Theorem 2.11 ii), the γi therefore converge (interpreted as points in the curve
graph) to F in the Gromov boundary. By definition, this implies that the Gromov
product condition claimed in the corollary. �

We can use this to show the following contraction behavior for finite-diameter
subsets in the curve graph.
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Proposition 2.17. Let F be a minimal foliation, τ a train track and (τi) a splitting
sequence in the direction of F and let (fi, ki) be an associated Mod-sequence.

Consider any neighborhood V of ∆(F ) in PMF , and let a simple closed curve
β0 and a number d > 0 be given.

Then there is a number N = N(τ, F,V, β0, d) > 0 so that the following holds: If
β is any simple closed curve with dC(S)(β0, β) ≤ d, then

fn(β) ∈ V ∀n > N.

Proof. As a first reduction, note that by Corollary 2.4 we may assume that V is of

the form f
(ks)
s (U (k(s))) for a large enough s. Fix a basepoint α0 in the curve graph.

Apply Lemma 2.12 in order to obtain a number D > 0 with the property that if
γ is any curve so that the Gromov product satisfies

(γ · F )α0 > D,

then γ ∈ V as an element of PMF .

Now, for each k choose a curve δk contained in U (k) and put γn = fn(δk(n)).

Observe that

dC(S)(fn(β0), γn) ≤ max
k

dC(S)(β0, δk) = C0

and, if dC(S)(β, β0) ≤ d we therefore have

dC(S)(fn(β), γn) ≤ C0 + d.

Thus, using Equation (6), we see

(fn(β) · F )α0 ≥ (γn · F )α0 − dC(S)(fn(β), γn) ≥ (γn · F )α0 − (C0 + d).

Applying Lemma 2.16 to the curves γn we see that there is a number N so that

(γn · F )α0
> D + C0 + d ∀n > N.

Together with the previous inequality this implies that

(fn(β) · F )α0
> D ∀n > N,

which finishes the proof. �

The next lemma, which requires a definition, will allows us to obtain that large
terms in the Mod-sequence to a uniquely ergodic foliation contract certain infinite
diameter subsets of the curve graph (thought of as foliations) to a small neghbor-
hood of the uniquely ergodic foliation.

Definition 2.18. Let D be a number, and ψ a pseudo-Anosov map. A (D–)quasi-
axis is a bi-infinite D–quasi-geodesic q : R → C(S) so that its image ψjq has
(Hausdorff) distance at most D from the image of q for any power j ∈ Z.

Lemma 2.19. There are constants D,B > 0, just depending on the surface, so
that every pseudo-Anosov map ψ of S has a D–quasi-axis. Furthermore, any two
such quasi-axes have Hausdorff distance at most B.
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Proof. Let ρ : R→ T (S) be the Teichmüller geodesic invariant under ψ, i.e. there
is some T > 0 so that for all t we have ψρ(t) = ρ(t+T ). For each t ∈ [0, T ), choose
a curve αt of smallest extremal length on ρ(t). For t ∈ [i, i+T ) put αt = ψi(αt−i).
Then for all t, the curve αt has smallest extremal length on ρ(t). By Theorem 2.9,
the assignment t → αt is an (unparametrised) quasigeodesic with quasigeodesic
constant just depending on the topological type of the surface. By construction,
t→ αt is invariant under the action of ψ. This shows that quasi-axes exist.

The uniqueness statement follows since any quasiaxis for ψ converges in the
Gromov boundary of the curve graph to the stable and unstable foliation of ψ by
Theorem 2.11 iii) and two D-quasigeodesics with the same endpoints in a Gromov
hyperbolic space have bounded Hausdorff distance. �

In the future, we will choose a D for which Lemma 2.19 holds once and for all,
and simply refer to quasi-axes of pseudo-Anosov maps.

Also recall the definition of a Dehn twist Tα about a simple closed curve α
(compare e.g. [FM1, Section 3.1]). If α is a multicurve, together with a choice of
left/right for each component, then we denote by Tα the product of the left/right
Dehn twists about the curves in α.

Proposition 2.20. Let F be a minimal foliation, τ a train track and (τi) a splitting
sequence in the direction of F and let (fi, ki) be an associated Mod-sequence.

Consider any neighborhood V of ∆(F ) in PMF . Let ψ be a pseudo-Anosov, and
let α be a multicurve which is within distance d of its quasi-axis in the curve graph.
Let r > 0 be any number. Suppose β0 is a curve.

Then there is a number N = N(τ, F,V, ψ, α, d, r, β0) > 0 with the following
property. Suppose that n > N is given. Then there is a number t0 (which depends

on n), so that for all t > t0 the conjugate ψ̂ = (Tα)t ◦ ψ ◦ (Tα)−t satisfies the
following:

If β is any simple closed curve with dC(S)(β0, β) ≤ d, then

fn(ψ̂jβ) ∈ V, ∀j ∈ Z

Proof. We follow a similar strategy as in the previous proposition. Apply
Lemma 2.12 to find a number D so that if

(γ · F )α0 > U,

then γ ∈ V as an element of PMF .

Introduce the notation

ψ̂t = (Tα)t ◦ ψ ◦ (Tα)−t.

We therefore need to show, that there is a number N so that for all n > N there is
a t0 so that

(fn(ψ̂jtβ) · F )α0
> U,

for any curve β with dC(S)(β0, β) ≤ d, and any t > t0, any j ∈ Z.

The first stage of the proof consists of a (lengthy) reduction of this statement
to a similar statement (Equation (7) below) about quasi-axes of the ψt. To begin
showing this reduction, note that

(fn(ψ̂jtβ) · F )α0
≥ (fn(ψ̂jtβ0) · F )α0

− d(β, β0) ≥ (fn(ψ̂jtβ0) · F )α0
− d
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and therefore it suffices to show

(fn(ψ̂jtβ0) · F )α0
> U + d.

Arguing as above, we have that

(fn(ψ̂jtβ0) · F )α0
> (fn(ψ̂jtα) · F )α0

− d(α, β0).

Hence, it suffices to show that

(fn(ψ̂jtα) · F )α0
> U + d+ d(α, β0) =: U1,

for any t > t0, any j ∈ Z.

Now, let ρ be a (D–)quasi-axis for ψ. Since the mapping class group acts as

isometries on the curve graph, we have that fnT
t
αρ is a (D–)quasi-axis for fnψ̂tf

−1
n .

Furthermore,

d(fnα, fnT
t
αρ) = d(α, T tαρ) = d(α, ρ) = A,

for all t, since Tα acts as an isometry fixing α. Hence, fnα is (for all choices of n

and t) within A of the D–quasi-axis fnT
t
αρ of fnψ̂tf

−1
n . Let η be a point on fnT

t
αρ

with d(fnα, η) ≤ A. The D–quasi-axis property then implies that for any j we have
that

d((fnψ̂tf
−1
n )jη, fnT

t
αρ) ≤ D

and therefore

d((fnψ̂tf
−1
n )jfnα, fnT

t
αρ) ≤ A+D

As such, we have that

d(fn(ψ̂jtα), fnT
t
αρ) = d(fn(ψ̂jt f

−1
n fnα), fnT

t
αρ) = d((fn(ψ̂tf

−1
n )j(fnα), fnT

t
αρ) ≤ A+D.

Therefore, to prove the proposition, it suffices to show that there is a number N ,
so that for all n > N there is a number t0, so that for all t > t0:

(7) ∀x ∈ fnT tαρ : (x · F )α0 > U1 +A+D =: U2.

Now, use Lemma 2.16 as in the previous proof, to find a number N so that

(8) (fn(α) · F )α0
> 2U2 +X + k0 ∀n > N,

where X is the number from Corollary 2.15 and k0 is the number from Lemma 2.13,
applied to the quasi-geodesic constant D. At this point, fix a number n > N .

Observe that if µ+, µ− are the stable and unstable foliations of ψ, then

T tαµ+, T
t
αµ− are the stable and unstable foliations of ψ̂. Note that as t → ∞,

both of these foliations converge to α in PMF . Consider fnψ̂t(fn)−1, and ob-
serve that its stable and unstable foliations therefore converge to fn(α) in PMF
as the number t increases. By Lemma 2.13, this implies that we can choose t0 large
enough, so that for any t > t0 we have

(fn(T tαµ+) · F )α0 > U2 +X

(fn(T tαµ−) · F )α0 > U2 +X

Let now z be any point on a D–quasi-geodesic with endpoints fn(T tµ+), fn(T tµ−).
Then Corollary 2.15 implies that

(z · F )α0 > U2

Since the quasi-axis fnT
t
αρ is such a D–quasi-geodesic, the proposition follows. �
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In the proof of local path-connectivity, we require uniform control over the con-
stants N appearing in the previous two results (Propositions 2.17 and 2.20) Before
stating the corresponding lemma, suppose that (τi)i is a full splitting sequence in
the direction of some minimal foliation F .

Then consider, in Proposition 2.17 or 2.20, a neighbourhood V = Uk(τ, F ), and
observe that it is also a neighbourhood of ∆(E) for all minimal E ∈ Ui(τ, F ), i ≥ k.
Additionally, E determines a full splitting sequence starting in τ , whose first i terms
are identical with the one defined by F .

Hence, it makes sense to apply Proposition 2.17 or 2.20 for this neighbourhood
V, and E in place of F with its full splitting sequence starting in τ . The following
lemma shows a boundedness of the resulting numbers N that these propositions
produce.

Lemma 2.21. Suppose that (τi)i is a full splitting sequence in the direction of some
minimal foliation F with τ1 = τ . Put V = Uk(τ, F ) for some k.

Suppose we are given either

(1) A curve β0 and a number d > 0, or
(2) A pseudo-Ansosov ψ, a curve α, a number r > 0 and a curve β0.

Then there are numbers M,N > 0 with the property that the number

(1) N(τ, E,V, β0, d) from Proposition 2.17, or
(2) N(τ, E,V, ψ, α, d, r, β0) from Proposition 2.20

can be chosen to be smaller than N for all minimal E ∈ UM (τ, F ).

Proof. We will describe the case of Proposition 2.20 in detail, the corresponding
argument for Proposition 2.17 is similar and simpler.

Recall from the proof of Proposition 2.20 that what one needs to show is the
estimate in (7). This in turn is implied simply from (8), which is purely a statement
about Gromov product growth of images of α under the associated mapping class
group sequence fn. Hence, to show this lemma, it suffices to show that the number
N in (8) can be bounded for associated sequences f ′n as in the statement of this
lemma.

If E ∈ UM (τ, F ), then by definition the first M terms of the associated Mod-
sequence for E and F agree. Hence, to show this lemma, we have to show that the
existence of a number N making (8) true can already be guaranteed by knowing a
large initial segment of the associated Mod-sequence. The remainder of this proof
is concerned with showing that.

Similar to the proof of Proposition 2.17, choose for each k a curve αk which
is carried by each σ ∈ T (k) as a vertex cycle. By Proposition 2.10, the path
n 7→ fnαk(n) is then uniformly Hausdorff close to a uniform quasi-geodesic in the
curve graph which converges to F .

In particular, this implies that for any K0 there is an N with the property that

(fnαk(n) · F )γ > K0 for all n > N.

If now F ′ ∈ UN (τ, F ) and (f ′i) is an associated Mod-sequence for F ′, then we
may assume f ′i = fi for all i ≤ N by definition. Thus, for some uniform constant c
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(depending on the quasi-geodesic constant k1 Proposition 2.10 and the hyperbolicity
constant of the curve graph) we have that

(f ′nαk′(n) · F )γ > K0 − c for all n > N.

Since the distance between the curve α and the (finitely many) αk is bounded, there
is a further constant d so that

(f ′nα · F )γ > K0 − c− d for all n > N.

Choosing K0 − c− d > 2U2 +X + k0 then yields that the corresponding N works
in (8) for the sequences of all F ′ ∈ UN (τ, F ), proving the lemma. �

3. Paths by pushing points

In this section we will construct many special paths of cobounded foliations for
punctured surfaces, which will serve as building blocks for all subsequent construc-
tions. The paths we will eventually use to connect uniquely ergodic foliations will
be concatenations of paths of this form, except possibly at a countable set of points
which will be stable foliations of pseudo-Anosovs (or the endpoints).

The construction described in this section is crucially inspired by the work of
Leininger and Schleimer in [LS1], where they build paths of minimal foliations. Our
main contribution is that we modify their construction to produce paths of uniquely
ergodic (and in fact cobounded) foliations, and obtain some extra control over how
these paths follow a “combinatorial skeleton” given by a finite set of curves.

3.1. Preliminaries on Covers, and on Adding Points. Our notation follows
[LS1] and we refer the reader to that article for a very good and readable source
for background information on the methods used here.

A smooth surface will denote a connected, compact, oriented 2–manifold without
boundary. All maps between smooth surfaces will be assumed to be smooth unless
specified. By a slight abuse of notation, a (holomorphic) Abelian differential on S
is a smooth 1–form ω which is holomorphic with respect to some complex structure
on S (compatible with orientation and smooth structure). We denote by dω the
(singular) flat metric on the surface defined by integrating ω.

We let Ω̃(S) be the set of all such Abelian differentials. Note that Ω̃(S) is
a path-connected set (in fact, a vector bundle over a contractible base; compare
[LS1, Section 2.6]).

The quotient

Ω(S) = Ω̃(S)/Diff0(S)

is the Hodge bundle of Abelian differentials over Teichmüller space of S. We need a
variant for surfaces with marked points (which is, crucially, the point of this whole
discussion). Namely, if z ⊂ S is a finite, ordered set of distinct points, we let
Diff0(S, z) denote the group of diffeomorphisms of S, fixing each point in z, which
are homotopic to the identity through such maps. We let

Ω(S, z) = Ω̃(S)/Diff0(S, z)

As in [LS1], the central idea is that any Abelian differential ω ∈ Ω̃(S) defines
projections ω̂ ∈ Ω(S, z) and ω̄ ∈ Ω(S) (in the notation of [LS1]).
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There is an action of SL2(R) on Ω̃(S) defined in the usual way (e.g. by postcom-
posing canonical flat charts) which descends to the usual SL2(R)–action on Ω(S).
We denote by gt the action of diagonal matrices, i.e. Teichmüller geodesic flow.

3.2. Torus Covers and Badly Approximable Points. In this section, we begin
to construct Abelian differentials with desirable horizontal foliations.

To begin, we say that a Abelian differential ω ∈ Ω̃(S) is (eventually) ε–thick
if there exists N so that for all t > N we have that every essential simple closed
curve on S has length ≥ ε with respect to the singular flat metric gtω. We say
that ω is strongly (eventually) ε–thick with respect to z if the same is true for any
arc with endpoints in z. Note that (strong) eventual thickness is invariant under
the Diff0(S, z)–action, and therefore the notion also makes sense for differentials in
Ω(S, z).

The purpose of this section is to give a robust criterion that we will use to
construct many paths of thick Abelian differentials.

We make the following (slightly idiosyncratic) definitions, which will be one of
the core mechanisms in our construction.

Definition 3.1. i) Let (X, d) be a metric space and T : X → X be a dynamical
system. We say a pair of points (x, y) ∈ X is B-badly approximable if there
exists N so that k · d(T kx, y) ≥ B for all k ≥ N and moreover T kx 6= y for all
k 6= 0. We may also say that the point y B-badly approximates x.

ii) We say a rotation Rα of the circle is B-badly approximable if the pair (x, x)
is B-badly approximable for some (equivalently every) x ∈ R for the dynamical
system

Rα : R/Z→ R/Z, z 7→ z + α modZ
iii) Similarly, if F t : X → X is a measurable flow of a metric space, we say a pair

of points (x, y) is B-badly approximable if there exists N so that t ·d(F tx, y) ≥
B for all t ≥ N and moreover, F tx 6= y for all t 6= 0. We say a straight line flow
on a torus is B-badly approximable if the pair (x, x) is B-badly approximable
for some x.

The following lemma shows why we are interested in badly approximable points.

Lemma 3.2. If q and q′ are distinct B-badly approximable points on a torus then
any trajectory γ from q to q′ has |gtγ| ≥

√
B for all large enough t.

Proof. Let t0 satisfy d(FLq, q′) > B
L for all L ≥ t0. Because q and q′ are not in the

same orbit, by the definition of B-badly approximable, lim
t→∞

|gtγ| = ∞ for every

γ a trajectory from q to q′. Thus, we may restrict our attention to the cofinite
set of such γ with vertical component at least t0. Let γ be such a geodesic from
q to q′. Because the torus is flat, if the vertical component of γ is a and the
horizontal component is b we have that d(F aq, q′) = b. Since we assume that (q, q′)
are B-badly approximable, b is at least B

a if a is large enough. Since the product
of the horizontal and vertical components of curves are preserved by gt, we have
|gtγ| is at least

√
2ab ≥

√
B for all t. (We are also using the elementary fact that

the shortest vector in the positive cone in R2 with fixed product of horizontal and
vertical components has angle π

4 .) �
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Definition 3.3. Let S be a closed surface of genus g ≥ 2. An Abelian differential

ω ∈ Ω̃(S) is called (ε, B)–torus good with respect to marked points q1, . . . , qk if
there is a regular branched cover, branched over one point,

p : S → T

of S to a torus T and an Abelian differential ωT on T so that

(1) ωT is eventually ε–thick.
(2) ω is the pullback of ωT .
(3) The images p(qi) of qi in T are pairwise B–badly approximable with respect

to the flat structure defined by ωT .

The associated data to the (ε, B)–torus good ω comprise the cover p and the base
differential ωT .

The notion of being torus good is invariant under the action of
Diff0(S, {q1, . . . , qk}) by pulling back differentials, and therefore is also defined for
differentials in Ω(S, {q1, . . . , qk}).

The following proposition shows why we are interested in torus good differentials.

Proposition 3.4. For any (ε, B) and S there is a number δ > 0 with the following
property. If ω is (ε, B)–torus good with respect to marked points q1, . . . , qk, then ω
is eventually strongly δ–thick with respect to z = (q1, . . . , qk).

In particular, the horizontal foliation of ω is cobounded as a foliation on (S, z).

Proof. To prove that ω is eventually strongly δ-thick with respect to z, by definition
we have to show that there is a t0 so that:

• if γ is a simple closed curve on ω then |gtγ| ≥ δ for all t > t0 and
• if γ is a trajectory from qi to qj with j 6= i we have that |gtγ| > δ for all
t > t0.

The first condition follows for any δ ≤ ε because we are assuming that ωT is
eventually ε-thick and any simple closed curve on ω projects to a closed curve of
the same length on ωT because we are branched over a single point. Similarly we
have that π(γ) is a trajectory from π(qi) to π(qj) and π(gtγ) = gtπ(γ) and so any
such trajectory has length at least B by the Lemma 3.2. This implies the two
conditions above, and therefore eventual strong δ–thickness of ω.

To see the second claim, note that as t → ∞, the differentials gtω all lie in a
compact set of the moduli space of flat surfaces by the first part. This in turn
implies that Teichmüller flow in the direction of the horizontal foliation of ω also
only defines Riemann surfaces which lie in a compact set of the moduli space of
S − z. This shows the proposition. �

Next, we will show that these torus good differentials are in fact dense in the
set of all differentials. The proof of this uses Schmidt games, a technique from
Diophantine approximation, which we briefly define and discuss in the next section.

3.3. Schmidt game digression. Suppose we are given a set E ⊂ Rn. Suppose
two players Bob and Alice take turns choosing a sequence of closed Euclidean balls

B0 ⊃ A1 ⊃ B1 ⊃ A2 ⊃ B2 . . .
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(Bob choosing the Bi and Alice the Ai) whose diameters satisfy, for fixed 0 < α, β <
1, and all i > 0

(9) |Bi| = β|Ai| and |Ai+1| = α|Bi|.
The only requirement on B0 is that it has positive diameter. Following Schmidt
[Sch] we make the following definition.

Definition 3.5. We say E is an (α, β)-winning set if Alice has a strategy so that
no matter what Bob does, ∩∞i=1Bi ∈ E. It is α-winning if it is (α, β)-winning for
all 0 < β < 1. E is a winning set for Schmidt game if it is α-winning for some
α > 0.

A set is called α-winning if it is (α, β) winning for all 0 < β < 1.

Because Bob’s first move is unconstrained we have:

Lemma 3.6. If S is an (α, β) winning set for any α, β then S is dense in X.

Lemma 3.7. ([Sch, Theorem 2]])If S1, ..., Sk are α-winning sets then ∩ki=1Si is
α-winning.

In fact the previous lemma is true for countable intersections as well.

Theorem 3.8. [Tse, first line of Section 2] Let ξ ∈ [0, 1), R denote rotation by ξ

and x ∈ [0, 1). The set of y so that x, y is (αβ4 )3-badly approximable (for R) is a
(α, β) winning set.

From the previous two results we obtain:

Corollary 3.9. Given any rotation R and a finite number of points p1, ..., pr in

[0, 1) we have that the set of q so that pi, q are 1
4·4·4

3r
-badly approximable for all i

with respect to R is (α, β)-winning for some α, β.

By iterating the previous result and Lemma 3.6 we get:

Corollary 3.10. Given any rotation on [0, 1), the set of p1, ..., pk that are pairwise
( 1
4·4·4 )3(k−1)-badly approximable is dense in [0, 1)k.

3.4. Density of torus good differentials.

Proposition 3.11. Let S be a closed surface of genus g ≥ 2 and q1, . . . , qk be a set
of marked points. Suppose that we fix a regular branched cover, branched over one
point,

p : S → T

of S to a torus T and an Abelian differential ωT on T so that ω is the pullback of
ωT .

Then for every ωT , every neighborhood U of ωT in Ω̃(T ), and every δ > 0 there
exists ω′T ∈ U and points q′i with dω(qi, q

′
i) < δ, for all i, so that the pullback of

ω′T is (ε, B)–torus good with respect to marked points (q′i). In this, ε can be chosen
independent of ω and B can be chosen to just depend on k.

Proof. We will work throughout with the canonical flat charts defined by ω, ωT
realizing p as a holomorphic map. We will then show that we can move the qi by
a small amount (in these charts!) and modify ωT by a small rotation to obtain an
(ε, B)–torus good differential. This is enough to show the proposition.
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Given a straight line flow on a flat torus, there are many (geodesic) transversals
so that the first return map of the flow to the transversal is a rotation. Moreover
there exists C so that every aperiodic straight line flow on a flat torus of area 1
has infinitely many transversals γ, so that the first return map to γ is a rotation
and the return times to γ are between 1

C|γ| and C
|γ| . To see this, note that there

is a compact set K in the moduli space of flat tori, so that if the orbit gtωT of a
torus ωT under Teichmüller flow does not diverge to infinity (without recurring),
then there exist arbitrarily large t so that gtωT ∈ K. In the case of an aperiodic
straight line flow the first case does not happen. In the second case, a side of the
fundamental domain of the torus gtωT ∈ K will work as a transversal.

Sublemma: Let p, q be points on a torus T and F t a minimal straight line flow
on T . Suppose that γ is a transversal for F t, and let T0 be the minimal first return
time of F t to the transversal γ. Assume further that the first return of F t defines
a rotation Rξ on γ. Suppose that s1, s2 > 0 are minimal so that F s1p, F s2q ∈ γ,
and that the points F s1p, F s2q are B-badly approximable for Rα. Then p and q
are B′-badly approximable for F t for any B′ < B · T0.

Proof of Sublemma. We prove the statement by contradiction. Assume that there
exists ε > 0 and arbitrarily large L so that

d(FLp, q) <
BT0 − ε

L
.

Assume that the straight line flow is vertical. We may assume that FLp is on the
same horizontal as q. Let T1 be the maximal return time of the flow to γ. Then
there is some 0 ≤ ` ≤ 3T1, so that F `q ∈ γ \ ∂γ (since at most two returns can
hit a boundary point of γ). Furthermore, after fixing `, we have that for all large
enough L:

d(FLp, q) < d(F `q, ∂γ)

Let h ⊂ γ be the shortest horizontal segment connecting FLp to q. Then F `(h) ⊂ γ,
and it is a horizontal segment of length d(FLp, q) joining F `+Lp to F `q. Since
F `+Lp and F s1p are in the same Rα–orbit, there is a power k so that F `+Lp =
RkαF

s1p. Since s1 is the first time that the flow line through p hits γ, we know that
k ≤ 3 + L

T0
. In other words, for this k we have:

d(RkαF
s1p, F `q) = d(FLp, q)

Since rotations are isometries, and F `q is in the Rα orbit of F s2q, there exists some
j ≥ 0 so that

d(Rk−jα F s1p, F s2q) = d(FLp, q).

If L is large enough (depending on ε), we then have a contradiction of our claim
that F s1p, F s2q are B-badly approximable. �

Next, observe that there exists B > 0 so that the rotation Rξ for any ξ whose
continued fraction expansion terminates in all 1’s is B-badly approximable. Note
that such ξ are dense in the reals.

Now, suppose we are given the torus ωT . Pick a transversal γ so that the first
return map for the vertical straight line flow on ωT defines a rotation on γ, and
furthermore the return time is between 1

C|γ| and C
|γ| .
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By changing the preferred direction on the torus8 we may assume that this
rotation (when rescaling the transversal to have length 1) is in fact B–badly ap-
proximable by the density observation above.

These flows are now B
C -badly approximable by the Sublemma.

It remains to modify the points. Given q1, ..., qk we choose p1, ..., pk that are the
first times the vertical flows from the qi intersect our transversal. By Corollary 3.10
we may choose p′1, ..., p

′
k in a δ neighborhood of these points and on the transversal

that are ( 1
4·4·4 )3(k−1)-badly approximable for the rotation (thought of as being on

[0, 1)). Applying the vertical flow (which is minimal) in the backwards direction,
we can obtain q′1, .., q

′
k, in a δ neighborhood for q1, ..., qk, which are pairwise c-badly

approximable for the flow for any c < ( 1
4·4·4 )3(k−1) 1

C (by our choice of transversal).
�

Finally, we need the following density statement for (ε, B)–torus good ω:

Proposition 3.12. The set of (ε, B)–torus good ω with respect to qi is dense in

Ω̃(S, {qi}).

Proof. First note that the set of all ω which are lifts of Abelian differentials on tori

branched over one point are dense in the space Ω̃(S, {qi}). Namely, this notion is
invariant under the action of Diff(S, {qi}), and the desired density is true for strata
of Abelian differentials in the Hodge bundle over Teichmüller space.

The desired density now follows from Proposition 3.11, since being torus good is
invariant under pullback by differentials: if ω is torus good, and φ is a diffeomor-
phism, then φ∗ω is also torus good. �

3.5. Point-pushing and torus good differentials. Next, we describe construc-
tions which allows us to modify a given (ε, B)–torus good ω in a simple way. In its
description, we think of simple closed curves as actual maps from S1 = R/Z to S,
and not their isotopy classes.

Definition 3.13. We say that a simple closed curve α on S is clean for ω ∈ Ω̃(S)
if

(1) α is disjoint from all zeroes of ω.
(2) α is transverse to the horizontal and vertical foliation of ω.

Observe that if α is clean, it intersects every horizontal or vertical segment (in
the metric given by ω) in finitely many points, since the angle to the horizontal or
vertical direction is bounded away from zero on the compact curve α.

Lemma 3.14. For every ω ∈ Ω̃(S) there is a clean α. Given any clean α there is

an open neighbourhood Uω,α of ω ∈ Ω̃(S), so that α is clean for every η ∈ Uω,α.

Proof. This follows from Lemmas 4.2 and 4.7 of [LS1]. �

Definition 3.15. Suppose that α is a differentiable, simple closed curve on S which

is clean for some ω ∈ Ω̃(S). We say that α is parametrised with constant horizontal

8technically, postcomposing the flat charts with a rotation matrix in SL2(R) close to the
identity.
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speed if, in the flat charts defined by ω, the horizontal deriviative α(t) is constant
in t.

Observe that any clean α admits a parametrisation with constant horizontal
speed, since by the definition of clean α is nowhere vertical in the flat charts.

Proposition 3.16. Suppose that ω is (ε, B)–torus good with respect to marked
points q1, . . . , qk, and that α is a simple closed curve on S with the following prop-
erties

(1) α is clean for ω, and parametrised with constant horizontal speed.
(2) There are ti so that qi = α(ti).

Then for all B′ < B and any s ∈ R, we have that ω is (ε, B′)–torus good with
respect to the marked points α(t1 + s), . . . , α(tk + s).

Proof. Put q′i = α(ti + s). Since the torus is a homogeneous space we may as-
sume without loss of generality q1 = q′1 and that therefore, by the choice of our
parametrization, q′j is a translate along a vertical leaf from qj for all j > 1; Let γ′ be
a curve connecting q′i to q′j and γ be the curve connecting qi = q′i to qj by traversing

γ′ and then the vertical segment of length `. Because |guγ′| ≥ |guγ|−e−
t
2 ` we have

the the proposition. �

Next, we want to re-interpret the families of (ε, B)–torus good differentials con-

structed in Proposition 3.16 as paths in Ω̃(S, z). It will be useful to describe this
construction slightly more generally.

To begin, recall from e.g.[LS1, Section 4.2] that associated to a simple closed
curve α there is an isotopy Dα,t : S → S which “pushes along the curve α”, i.e.
Dα,t(α(s)) = α(t + s). Observe that such a diffeomorphism Dα,t preserves the
curve α setwise. Furthermore, note that any diffeomorphism F : S → S defines by

pullback a map Ω̃(S)→ Ω̃(S), which induces a map

Ω̃(S, z)→ Ω̃(S, F−1(z))

that preserves geometric properties like being (eventually) strongly ε–thick, or hav-
ing a vertical foliation with all leaves closed.

Since Dα,t is a smoothly varying family of diffeomorphisms, for any Abelian
differential ω, the assignment

t 7→ D−1α,tω

defines a continuous path C(α, ω) of Abelian differentials in Ω̃(S). Furthermore,
this path depends continuously on the initial differential ω.

As α is a closed curve, the endpoint D−1α,1 is actually a diffeomorphism fixing

(q1, . . . , qk). Hence, the endpoint of C(α, ω) is obtained from the initial point by

pulling back the differential by that diffeomorphism. This path in Ω̃(S) depends on
the choice of the isotopy Dα,t. Note that the mapping class of S − {q1, . . . , qk} de-

fined byD−1α,1 depends only on the homotopy class of α relative to the set {q1, . . . , qk}
and not the actual curve. We call this mapping class a multi-point-push, and denote
it by Pα. Observe that if α is embedded, then Pα is a product of Dehn twists about
curves to either side of α. In particular, results in Section 2 proved for (multi-)Dehn
twists also apply for these Pα.
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We summarize some more basic properties of these paths in the following propo-
sition.

Proposition 3.17. Suppose that ω is an Abelian differential on S, and α is a clean
simple closed curve which is parametrised with constant horizontal speed. Suppose
that qi = α(ti) are points on the curve. Then there is a continuous path c : [0, 1]→
Ω(S, {q1, . . . , qk}), whose endpoint c(1) is the image of c(0) under the multi-point-
push along α. Furthermore, we have

(1) If ω is (ε, B)–torus good with respect to q1, . . . , qk, then any point on c is
eventually strongly δ–thick with respect to q1, ..., qk.

(2) If ω has vertical foliation a weighted multicurve, then the same is true for
every point on c.

(3) The path c depends (for a fixed α9) continuously on the initial differential
ω.

Proof. (1) If we suppose that ω, q1, . . . , qk and α satisfy the requirements of
Proposition 3.16 then, for any t, the differential D−1α,tω is (ε, B)–torus good

with respect to (q1, . . . , qk)10, by Proposition 3.16.
(2) If the vertical foliation of ω is a multicurve C, and φ is any diffeomorphism,

then the vertical foliation of φ∗ω is φ(C). In particular, the vertical foliation
of φ∗ω is also a multicurve. This implies the desired statement.

(3) This follows because the diffeomorphisms D−1α,t act continuously on Ω̃(S),

vary smoothly in t, and the map Ω̃(S)→ Ω(S, {q1, . . . , qk}) is continuous.

�

Lemma 3.18. Suppose that qi, α are as in Proposition 3.17, but that ω is an
Abelian differential whose vertical foliation is a multicurve δ. Consider the path in
Ω(S, {q1, . . . , qk}) from Proposition 3.17. Then, only a finite number of weighted
multicurves appear along this path as vertical foliations.

Proof. The fact that every vertical foliation along the path is a (weighted) mul-
ticurve follows from Proposition 3.17. Pick regular leaves γ1, . . . , γn, so that the
vertical foliation of ω consists exactly of cylinders around the γi (seen as a foliation
on S − {q1, . . . , qk}). Consider a time s so that

D−1α,s (∪γi) ∩ {q1, . . . , qk} 6= ∅.

Since Dα,s preserves α, and all qi are contained in α, for such an s there has to be
a point α(t0) ∈ γi (for a suitable i) so that α(t0 + s) = qj (for a suitable j). Hence,
each such time s corresponds to one of the finitely many intersection points of α
with ∪γi and a choice of qj – in particular there are only finitely many such times,
say sj , j = 1, . . . , J . Observe that for t ∈ (sj , sj+1) the multicurves

t→ D−1α,t (∪γi) , t ∈ (sj , sj+1)

are then all disjoint from the points qi by definition of the times sj , and thus freely
homotopic multicurves on the surface S − {q1, . . . , qk}

9Strictly, the curve is only fixed up to reparametrisation; for any ω one has to choose a constant

horizontal speed parametrisation.
10The covers certifying torus goodness vary in t, by pullback under the D−1

α,t
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The multicurve defined by the vertical foliation of D−1α,tω is exactly D−1α,t (∪γi),
seen as a foliation on S−{q1, . . . , qk}, and it is therefore constant (up to homotopy)
for all t ∈ (sj , sj+1).

This shows that the multicurve defined by the vertical foliation of D−1α,tω can
only change at t = sj for some j, and therefore only takes finitely many values. �

Definition 3.19. A twisting pair for an Abelian differential ω and a number of
marked points q1, . . . , qk is a pair of curves α, β so that

(1) α, β fill S.
(2) α, β are clean.
(3) There are numbers ti, si so that qi = α(ti) = β(si).

Arguing exactly as in the proof of [LS1, Lemma 4.2], we see the following.

Lemma 3.20. Let S be a closed surface of genus at least 2, and with some number

of marked points q1, . . . , qk. For every ω ∈ Ω̃(S) there is a twisting pair (α, β).

Given any twisting pair (α, β) there is an open neighbourhood Uω,α,β of ω ∈ Ω̃(S),
so that (α, β) is a twisting pair for every η ∈ Uω,α,β.

As an immediate consequence of Proposition 3.17 and the fact that the product of
multi-point-pushes around filling curves are pseudo-Anosov, we have the following
result, analogous to [LS1, Lemma 4.5].

Corollary 3.21. Let (q1, . . . , qk) be points on S. Suppose that ω is an Abelian
differential and α, β is a twisting pair for ω. Then, for any j, define the diffeomor-
phism ψ(j) = P jα(PαP

−1
β )P−jα .

Let F be the vertical foliation of ω. Then, there is a point push path

P (F,ψ(j)F )

joining F to ψ(j)F . If ω is (ε, B)–torus good with respect to (q1, . . . , qk), then any
point on P (F,ψ(j)F ) is a cobounded foliation. If F is a multicurve, then there is a
finite set of multicurves Fi so that every point on P (F,ψ(j)F ) consists of a weighted
multicurve homotopic to one of the Fi (with varying weights).

Proof. The idea is to apply Proposition 3.17 2j+ 2 times to join ω to Ψ(j)ω (where
Ψ(j) is a diffeomorphism defining the multi-point-push ψ(j)), and then obtain P as
the associated path of vertical foliations. To make this precise, denote by Pα, Pβ
point pushing diffeomorphisms around α, β, and denote by C(η, P∗η) the path of
Abelian differentials guaranteed by applying Proposition 3.17. We now form the
concatenated path

C := C(ω, Pαω) ∗ C(Pαω, P
2
αω) ∗ . . .

C(P jαω, P
j+1
α ω) ∗ C(P j+1

α ω, P j+1
α P−1β ω)∗

C(P j+1
α P−1β ω, P j+1

α P−1β P−1α ω) ∗ . . .

C(P j+1
α P−1β P−j+1

α ω, P j+1
α P−1β P−jα ω).
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Taking the vertical foliations, we then obtain a path

(10)

P := P (F, PαF ) ∗ P (PαF, P
2
αF ) ∗ . . .

P (P jαF, P
j+1
α F ) ∗ P (P j+1

α F, P j+1
α P−1β F )∗

P (P j+1
α P−1β F, P j+1

α P−1β P−1α F ) ∗ . . .

P (P j+1
α P−1β P−j+1

α F, P j+1
α P−1β P−jα F )

of foliations joining the vertical foliation F of ω to ψ(j)(F ). Proposition 3.17, if
ω was (ε, B)–torus good, the same is true for any point on the path C, hence P
consists of cobounded foliations. If F was a multicurve, the claim follows from
Lemma 3.18. �

Corollary 3.22. Suppose that qi, ω, α, β and ψ(j) are as in Corollary 3.21, and
suppose that ω is (ε, B)–torus good. Then the concatenation

P (F,ψ(j)F ) ∗ ψ(j)P (F,ψ(j)F ) ∗
(
ψ(j)

)2
P (F,ψ(j)F ) ∗ . . .

extends to a continuous path of cobounded foliations connecting F to the stable
foliation of ψ(j).

Proof. First observe that P (F,ψ(j)F ) is disjoint from the unstable foliation of ψ(j)

for all j. Namely, the unstable foliation of ψ(j) has an angle-π singularity, since
it is a point-pushing map (compare [LS1, Lemma 2.2]), whereas F (and any point
push of it) as a lift of a foliation on a torus has no such singularities. Now, the
corollary is an immediate consequence of the fact that pseudo-Anosov maps act on
PMF with north-south dynamics. �

Proposition 3.23. Let (q1, . . . , qk) be points on S. Suppose that ω is an Abelian
differential whose vertical foliation is a multicurve, and let α, β be a twisting pair
for ω. Then, for any j, define the mapping class ψ(j) = P jα(PαP

−1
β )P−jα .

(1) There is a constant C = C(ω, α, β) > 0, so that the union of the sets of
multicurves appearing in paths P (F,ψ(j)F ) from Corollary 3.21 (over all
j) has diameter at most C in the curve graph.

(2) If ωn is a sequence of Abelian differentials converging to ω, with vertical
foliations Fn, then the paths P (Fn, ψ

(j)Fn) converge to P (F,ψ(j)F ).

Proof. (1) We inductively consider the terms used in the proof of Equation (10)
in Corollary 3.21. Let δ be one of the curves in the multicurve F . By Lemma
3.18 only finitely many curves appear in P (F, PαF ); call that set of curves
G0. In the next terms

P (P iαF, P
i+1
α F ) = P iαP (F, PαF )

the curves that appear are the images of G0 under powers of a Dehn mul-
titwist, and as these act on the curve graph by isometries with fixed points
(elliptically), all curves that appear are contained in a C0–neighbourhood
of δ. The curves appearing in the next two terms:

P (P jαF, P
j+1
α F ) ∗ P (P j+1

α F, P j+1
α P−1β F ) = P jα(P (F, PαF ) ∗ P (PαF, PαP

−1
β F ))
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are images under P jα of the (finitely many) curves appearing in
P (F, PαF ) ∗ P (PαF, PαP

−1
β F ), and are therefore also contained in some

C1–neighbourhood of δ. Finally, in the terms of the third type

P (P j+1
α P−1β P−iα F, P j+1

α P−1β P−i−1α F ) = P j+1
α P−1β P−iα P (F, P−1α F )

we argue similarly. The path P (F, P−1α F ) involves finitely many curves,
which remain in a C3–neighbourhood of δ by application of any power
P−iα . Let C4 = 2C3 + d(δ, P−1α Pβδ). Then the image of the C3–
neighbourhood around δ is mapped by the pseudo-Anosov P−1α Pβ into the
C4–neighbourhood around δ.

Finally, letting C5 = 2C4 + d(δ, α), the C4-neighbourhood around δ is
sent to a C5–neighbourhood around δ by the application of any further
power of P jα. Hence, C5 has the desired property.

(2) This is a consequence of the fact that diffeomorphisms act continuously on
the space of Abelian differentials; compare Proposition 3.17 (3).

�

4. Paths in the punctured case, and Islands of point-pushes

We now come to the main technical connectivity result for (ε, B)–torus good
foliations. Let S be a surface, and fix a finite set of curves z 6= ∅.

Suppose (ε, B) are given so that there is a (ε, B)–torus good ω on S with respect
to z. We begin by defining T G to be the set of all vertical foliations on S of all
ω which are (ε, B)–torus good. Since being (ε, B)–torus good is invariant under
diffeomorphisms preserving z, T G is a mapping-class-group invariant set, and thus
dense in F(S, z).

We begin with the following easy lemma, which is completely analogous to the
argument used to prove Theorem 1.1 for z 6= ∅ in [LS1, Section 4.4].

Lemma 4.1. Suppose that F, F ′ ∈ T G are arbitrary. Then, there are

(1) A finite number of simple closed curves αi, βi, i = 1, . . . , N − 1,
(2) numbers ε, B > 0,
(3) Abelian differentials ω1, . . . , ωN ,
(4) Abelian differentials ω̂1, . . . , ω̂N ,
(5) and multicurves δ1, . . . , δN ,

so that the following hold:

i) The vertical foliation of ω1 is F , and the vertical foliation of ωN is F ′.
ii) The curves (αi, βi) are a twisting pair for both ωi, ω̂i and ωi+1, ω̂i+1.

iii) All ωi are (B, ε)–torus good, given by pullbacks of ωiT along a cover pi : S → T ,
iv) all ω̂i are pullbacks of Abelian differentials ω̂iT whose vertical foliation is a

single cylinder.
v) the multicurves δi are the core curves of the vertical cylinders of the ω̂i.

Proof. Let F, F ′ ∈ T G be given. By definition of T G, they are vertical foliations
of (ε, B)–torus good Abelian differentials ω1, ωN . Note that these satisfy i) and iii)

by choice. Choose a path γ(t) from ω1 to ωN in Ω̃(S). For every γ(t) there is a
twisting pair α(t), β(t) for γ(t) by Lemma 3.20. In fact, by the same lemma, there
is a small open neighbourhood Ut so that the curves α(t), β(t) are twisting pairs for
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all differentials in Ut. By compactness of the path γ, a finite number U1, . . . , UN of
such neighborhoods suffice to cover the path γ. We let ωi ⊂ Ui ∩ Ui−1 be (ε, B)–
torus good (which is possible since (ε, B)–torus good differentials are dense), and
pi : S → T the defining covering. This implies the existence of the desired objects
(1) through (3) with properties i) through iii).

It remains to show the existence of Abelian differentials and curves as in (4),(5)
with properties iv) and v). Let ωiT be the differential so that ωi is the pullback
of ωiT by pi. As the Ui are open, and cylinder directions are dense, there is a
differential ω̂iT on T which has vertical direction a simple closed curve δ′i ⊂ T , and
so that the pullback p∗i ω̂

i
T = ω̂i is also contained in Ui ∩ Ui−1. By the definition

of that set, (αi, βi) and (αi−1, βi−1) are then twisting pairs for ω̂i, so they satisfy
iii). Furthermore, the vertical foliation of ω̂i is the multicurve p−1i (δ′i) = δi. Hence,
ω̂i, δi satisfy properties iv) and v). �

Using the output of Lemma 4.1, we can construct paths between torus good
foliations in the following way.

Definition 4.2. Let ωi, (αi, βi), pi, ω
i
T be as in Lemma 4.1. For each i choose a

number Ki and a corresponding mapping class

ψ
(Ki)
i = PKiαi (PαiP

−1
βi

)P−Kiαi

which we call the peak pseudo-Anosovs, and for each i = 2, . . . , N − 1 choose a
cobounded foliation Fi which is a lift of a foliation under pi, which we call the base
foliations, so that the (αi, βi) are a twisting pair for that lift. Put F = F1, F

′ = FN .

The associated push-and-peak-path is then the path γ obtained as a concatena-
tion

γ = γ+1 ∗ γ
−
2 ∗ γ

+
2 · · · ∗ ∗γ

+
N−1 ∗ γ

−
N ,

where · denotes the path with opposite orientation, in the following way:

(1) γ+i is the path starting in Fi, and ending in the stable foliation of ψ
(Ki)
i

which is obtained as the concatenation

P (Fi, ψ
(Ki)
i Fi) ∗ ψ(Ki)

i P (Fi, ψ
(Ki)
i Fi) ∗

(
ψ
(Ki)
i

)2
P (Fi, ψ

(Ki)
i Fi) ∗ . . .

of images of the point-push path P (Fi, ψ
(Ki)
i Fi) (compare Corollary 3.21

and 3.22) under ψ
(Ki)
i .

(2) γ−i is the path starting in Fi, and ending in the stable foliation of ψ
(Ki−1)
i−1

which is similarly obtained as the concatenation

P (Fi, ψ
(Ki−1)
i−1 Fi) ∗ ψ(Ki−1)

i−1 P (Fi, ψ
(Ki−1)
i−1 Fi) ∗

(
ψ
(Ki−1)
i−1

)2
P (Fi, ψ

(Ki−1)
i−1 Fi) ∗ · · ·

Observe that peak-and-push paths are defined using Abelian differentials, but
really depend only on the choice of suitable F1, ..., FN ; α1, β1, ..., αN , βN and
K1, ...,KN .

Corollary 4.3. Any two points in T G ⊂ PMF can be joined by a path of cobounded
foliations.

Proof. Let F, F ′ ∈ T G be given. Apply Lemma 4.1 to obtain ωi, (αi, βi), pi, ω
T
i .

Construct the push-and-peak path as in Definition 4.2. First observe that by using
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Corollary 3.22, we see that this is indeed a continous path of cobounded foliations.
It joins F to F ′ by construction. �

We now use the machinery developed in Section 2.2 in order to contract suitable
point-push-paths into small neighbourhoods of uniquely ergodic foliations. We
briefly recall the setup from that section. Namely, suppose that (τn) is a full
splitting sequence in the direction of a uniquely ergodic foliation F , and let (fm, km)
be an associated Mod-sequence.

Recall from Section 2 that there are (nested) neighbourhoods Un(F, τ), so that⋂
n

Un(τ, F ) = {F}

and finitely many “model neighbourhoods” U (k), so that

fn

(
U (k(n))

)
= Un(τ, F ).

The following theorem is concerned with finding paths P which connect two
points in a model neighbourhood U (k), and which are also moved by the fn into
smaller and smaller neighbourhoods of F (even though the path P may leave U (k)!).

Theorem 4.4. Suppose that (τn) is a full splitting sequence in the direction of a
uniquely ergodic foliation F , and let (fm, km) be an associated Mod-sequence.

Fix an essential type k, and let F, F ′ ∈ T G ∩ U (k) be two foliations defined by
torus good Abelian differentials ω, ω′. Furthermore let δ, δ′ be lifts of simple closed
curves on the base tori. Assume that

(∗): U (k) contains every foliation which is a lift of the torus covers defined by
ω, ω′.

Then for any n there is a number m0 with the following property. For any m > m0

with km = k there is a peak-and-push path γ connecting F to F ′, so that fmγ is
completely contained in Un(τ, F ).

Without property (∗) the conclusion remains true for F, F ′ which are sufficiently
close (depending on m) to the curves δ, δ′.

Proof. We begin by noting that due to property (∗), the initial segment γ+1 and

terminal segment γ−N are automatically contained in U (k), independent of all other
choices. Hence, for any m > n with km = k, the images of these segments under
fm are contained in Un(τ, F ), by Equation (3) of the associated sequence. If (∗)
does not hold, we will argue for the initial/terminal segment exactly as below.

We will now explain how to construct the path segments γ+i of the push-and-
peak-path; the segments γ−i will be constructed analogously. Whenever a constant
Ki is chosen, it needs to be chosen to be large enough for the construction of both
γ+i and γ−i+1.

Let ωi, (αi, βi), δi be the objects guaranteed by Lemma 4.1 applied to F, F ′.
Consider the point-pushing pseudo-Anosov map

ψ
(Ki)
i = PKiαi PαiP

−1
βi
P−Kiαi .

By Proposition 3.23 there are numbers Ci so that for any choice of the numbersKi in

the construction of the peak-and-push paths, every point on the paths P (δi, ψ
(Ki)
i δi)
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corresponds to a multicurve which is contained in the Ci–neighbourhood of δi in
the curve graph. Let Gi be the set of all multicurves appearing on such paths. The
(finite) union

G =

N⋃
i=1

Gi

also has finite diameter. We can therefore choose a number d large enough so that
for all i, every curve in G has distance at most d from αi.

By increasing d, we may also assume that (for any choice of powers Ki in the

push-and-peak-paths), the quasi-axes of ψ
(Ki)
i pass within distance d of αi as well.

Indeed, if ρ is a quasi-axis for ψ
(0)
i then PKiαi ρ is a quasi axis for ψ

(Ki)
i , and the

claim follows since Pαi fixes αi.

Apply Proposition 2.20 with this d to PαiP
−1
βi

as the pseudo-Anosov, and V =

Un(τ, F ) as the neighbourhood and any curve in G as the curve β0 for every i to
get a constant N = Ni. Let m0 be the maximum of these constants.

Let now m > m0 be given. Then Proposition 2.20 yields11 that if we choose the

powers Ki in the definition of ψ
(Ki)
i large enough, the images of the point-pushing

paths
(
ψ
(Ki)
i

)j
P (δi, ψ

(Ki)
i δi),

(
ψ
(Ki−1)
i−1

)j
P (δi, ψ

(Ki−1)
i−1 δi) under fm are contained

in Un(τ, F ) for all j.

As we let Ki →∞, the stable foliation of ψ
(Ki)
i converges to αi. Hence, we can

choose numbers Ki large enough, so that the stable foliation of ψ
(Ki)
i is sent into

Un(τ, F ) by fm (in addition to the previous constraints).

Since the pseudo-Anosov ψ
(Ki)
i acts on PMF with north-south-dynamics, and

the (compact) path P (δi, ψ
(Ki)
i δi) does not intersect the unstable foliation of ψ

(Ki)
i

(as the path consists only of multicurves), there is a number ε > 0 and J > 0 so

that the ε–neighbourhood of P (δi, ψ
(Ki)
i δi) is mapped into Un(τ, F ) by fm

(
ψ
(Ki)
i

)j
for all j > J .

By continuity of the maps fmψ
(Ki)
i , ..., fm

(
ψ
(Ki)
i

)J
, we may therefore choose

Fi close enough to δi so that in fact the path P (Fi, ψ
(Ki)
i Fi) is contained in the

ε–neighbourhood of P (δi, ψ
(Ki)
i δi), and therefore

fm

(
ψ
(Ki)
i

)j
P (Fi, ψ

(Ki)
i Fi)

is contained in Un(τ, F ) for all j > J .

By the continuity of the maps ψ
(Ki)
i ,

(
ψ
(Ki)
i

)2
, ...,

(
ψ
(Ki)
i

)J
we can choose

the foliation Fi even closer to δi, to ensure that for all j ≥ 0, since the paths

fm

(
ψ
(Ki)
i

)j
P (δi, ψ

(Ki)
i δi) are all contained in Un(τ, F ). Repeating the same argu-

ment for all i, and analogously for the paths for γ−i finishes the argument. �

11noting that since multi-point pushing maps are multitwists, we can apply that Proposition
in this situation
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The following corollary will allow us to use the paths given by the previous
Theorem to build paths of foliations on surfaces without punctures.

Corollary 4.5. Suppose that S is a surface with marked points, which is a branched
cover over a torus. Suppose further that Ŝ is a closed surface and p : Ŝ → S is
a properly branched cover, with branching set z equal to the marked points of S.
Suppose that τn is a splitting sequence of train tracks on Ŝ in the direction of a
uniquely ergodic foliation Ê. Let f1, . . . be an associated Mod-sequence.

Fix an essential type k, and let F̂ = p−1(F ), F̂ ′ = p−1(F ′) ∈ U (k) be lifts under
p of torus good foliations F, F ′ on (S, z) , defined by Abelian differentials ω, ω′, and
let δ, δ′ be lifts of simple closed curves on the base tori. Assume that

(∗): U (k) contains every lift under p of a foliation on S which is a lift of the
torus covers defined by ω, ω′.

Then for any n there is a number m0 with the following property. For any m > m0

with km = k there is a peak-and-push path γ connecting F to F ′, which lifts under
p to a path γ̂ of cobounded foliations, and so that fmγ̂ is completely contained in
Un(τ, F ).

Without property (∗) the conclusion remains true for F̂ , F̂ ′ which are sufficiently

close (depending on τ) to lifts δ̂, δ̂′ of the curves δ, δ′.

Proof. This follows exactly like the previous proof, using that the lifting map
PMF(S)→ PMF(Ŝ) is continuous. �

As an application of Theorem 4.4, we can now prove the main theorem in the
case of punctured surfaces.

Theorem 4.6. Suppose that Σ is a surface of genus g ≥ 2 and with p ≥ 3 punctures.
Then the set of uniquely ergodic foliations on Σ is path-connected.

To prove the theorem, the main step is to show that one can connect an arbitrary
uniquely ergodic foliation F to a torus good foliation. In order to do this, we use
the connection to splitting sequences described in Section 2.

To this end, let τ be a maximal train track carrying F , and τs a full splitting
sequence in direction of F . We let (fn, kn) be an associated Mod-sequence. First,
we need the following statement, purely about the model neighbourhoods.

Lemma 4.7. Given any k there is a torus cover pk : Σ → T , so that the lift of
every foliation from T via pk is contained in U (k).

Proof. Let p : Σ → T be any branched torus cover, and let L ⊂ PMF be the set
of all lifts of foliations on T via p. Precomposing the cover p by a mapping class
ϕ−1 replaces L by ϕ(L).

Choose a pseudo-Anosov ϕ whose attracting foliation is contained in the (open)
set U (k), and whose repelling foliation is not contained in L. As pseudo-Anosovs
act on PMF with north-south dynamics, there is a power N so that ϕN (L) ⊂ U (k),
which shows the existence of the desired cover. �

From now on, we fix for each k covers pk as in Lemma 4.7. Furthermore we
choose, once and for all, torus good foliations F (k) ∈ U (k) which are defined by
these covers pk.
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Recall that the associated Mod-sequence has the property that

Us(τ, F ) = fs(U (ks)).

In particular, the (torus good) foliations fs
(
F (ks)

)
converge to F . Our strat-

egy will be to find paths γs of cobounded foliations which connect fs
(
F (ks)

)
to

fs+1

(
F (ks+1)

)
, so that the concatenated paths

cn = γ1 ∗ γ2 ∗ · · · γn
converge, as n→∞, to a path connecting the torus good foliation f1

(
F (k1)

)
to F .

Recall from Lemma 2.6 that there is a finite set M of mapping classes, so that
for all n we have

f−1n fn+1 ∈M.

The following corollary of Theorem 4.4 is what makes our construction of paths
work:

Corollary 4.8. Given any n, there is a number m with the following property: if
s > m, then there is a path γs with the following properties:

(1) γs joins fs
(
F (ks)

)
to fs+1

(
F (ks+1)

)
,

(2) γs consists only of cobounded foliations, and
(3) γs ⊂ Un(τ, F ).

Proof. Since we only make a claim about large s, we may assume without loss of
generality that every type ks for s > m is essential.

We will then find γs as

γs = fsιs.

In order to satisfy (1), the path ιs needs to join F (ks) to f−1s fs+1

(
F (ks+1)

)
. Note

that by the second claim of Lemma 2.6 (Equation (5)) we have

f−1s fs+1

(
U (ks+1)

)
⊂ U (ks)

and therefore we have that

F (ks), f−1s fs+1

(
F (ks+1)

)
∈ U (ks).

In fact, as the foliations F (ks) are defined by the covers from Lemma 4.7, the
foliations F = F (ks), F ′ = f−1s fs+1

(
F (ks+1)

)
are defined by Abelian differentials

ω, ω′ which satisfy condition (∗) in Theorem 4.4 by the comment right after the
proof of Lemma 4.7.

Hence, for any essential type k and s with ks = k, we can apply Theorem 4.4
to Un(τ, F ) and pairs of foliations (F (k), f−1s fs+1

(
F (ks+1)

)
), to obtain thresholds

m0(k, F (k), f−1s fs+1

(
F (ks+1)

)
). Note that since there are finitely many F (i) and for

all s, f−1s fs+1 ∈M for the finite set M from Lemma 2.6, there is a number

m = maxm0(k, F (k), f−1s fs+1

(
F (ks+1)

)
).

We claim that this has the desired property. Namely, suppose that s > m.
Then, let k = ks be the type of the index s. By our choice of m the foliations
F (ks), f−1s fs+1

(
F (ks+1)

)
and the number s then satisfy the prerequisites of Theo-

rem 4.4, and we can choose ιs to be the path guaranteed by that theorem. Since
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peak-and-push-paths consist only of cobounded foliations, and this property is in-
variant under the mapping class group, fsιs then satisfies (1) and (2). Property (3)
is directly guaranteed by Theorem 4.4. �

Proof of Theorem 4.6. In order to show the theorem, in light of Corollary 4.3 it
suffices to show that any uniquely ergodic foliation F can be joined to a torus good
foliation. We will do this by using the construction outlined above.

Namely, apply Corollary 4.8 for every n to get a sequence mn of threshold indices.
We may assume without loss of generality that mn is increasing in n. For s ≤
m1, choose γs to be any path of cobounded foliations connecting fs

(
F (ks)

)
to

fs+1

(
F (ks+1)

)
(which is possible by Corollary 4.3). For mn+1 ≥ s > mn, let γs

be the result of applying Corollary 4.8. We then have that γs ⊂ Un(τ, F ) for
mn+1 ≥ s > mn.

Consider now the paths

cr = γ1 ∗ · · · ∗ γr,
and note that they join the torus good foliation f1

(
F (k1)

)
to fr+1

(
F (kr+1)

)
. For

any s < r, let

is,r = γs+1 ∗ · · · ∗ γr,
so that

cr = cs ∗ is,r.
By our construction of the γs, we have that for any n there is some mn, so that for
all r > s > mn:

is,r ⊂ Un(τ, F )

As by Corollary 2.4 we have that⋂
n

Un(τ, F ) = {F},

this shows that since cr ⊂ Un for all r > mn, the infinite concatenation

c∞ = c1 ∗ c2 ∗ · · · ∗ cn ∗ · · ·

extends to a continuous path with endpoints f1
(
F (k1)

)
, F , finishing the proof. �

5. Paths in the closed case, and Islands of branched covers

Theorem 5.1. Suppose that Σ is a closed surface of genus g ≥ 5. Then the set of
uniquely ergodic foliations on Σ is path-connected.

To prove this theorem, we want to run the strategy of the proof of Theorem 4.6,
with the addition of using branched covers to lift paths from punctured to closed
surfaces.

The first ingredient is the following theorem, which follows from the methods
developed in [LS1].

Proposition 5.2. Suppose that g ≥ 5. Then there is an involution σ of the closed
surface Σg with the following properties.

i) Σg/σ is a surface of genus at least 2 with several marked points.
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ii) For any conjugate σ̂ of σ in the mapping class group there is a sequence σi so
that

σ = σ1, . . . , σn = σ̂,

and for any i the group Gi = 〈σi, σi+1〉 is a finite group so that Σg/Gi is a
torus with four marked points. In that case we also say that σ, σ̂ are a good
pair.

In the proof we need the notion of Humphries generators for the mapping class
group. We refer the reader to [FM1, Chapter 4] for a detailed discussion, and only
recall the definition for convenience. Namely, a Humphries generating set for the
mapping class group of a genus g surface consists of Dehn twists about curves12

αi, i = 1, . . . , 2g + 1 so that

• α1, . . . , α2g form a chain, i.e. αi, αj intersect in one point if |i− j| = 1, and
are disjoint otherwise.
• α2g+1 is disjoint from all αi except α4, which it intersects in a single point.

The crucial result [FM1, Theorem 4.14] is that Dehn twists about any such set of
curves generate the mapping class group.

Proof of Proposition 5.2. When g is even this is [LS1, Theorem 5.3]. The case of
odd genus is a fairly straightforward modification which is below.

The strategy is as follows. We show that for f1, . . . , fn a suitably chosen generat-
ing set for Mod(Σg) and σ a suitably chosen involution we have that σ, fiσf

−1
i are

a good pair. Since whenever σ, σ′ are good pair, gσg−1 and gσ′g−1 are as well, we
have that by induction of the word length in f1, . . . , fn, σ can be joined to fσf−1

for any mapping class f .

To construct σ and σ′, we use the following setup (compare Figure 1). We realise

Figure 1. The setup for Proposition 5.2: realising the dihedral
group action

12In the terminology of [FM1, Theorem 4.14], also referring to [FM1, Figure 4.5], the curves
α1, . . . , α2g are the curves m1, a1, c1, a2, c2, . . . , cg−1, ag , and the curve α2g+1 is the curve m2.
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the surface S of genus 2k + 1 as a union

S =

2k−1⋃
i=0

Hi

where each Hi is a torus with two boundary components, and the two boundaries
of Hi are glued to Hi+1, Hi−1 in a ring (compare Figure 1). Denote by δ0, . . . , δ2k−1
the boundary curves of the Hi, so that ∂Hi = δi∪δi+1. The dihedral group of order
4k embeds into the mapping class group of S, generated by an order 2k element r
and an order 2 element σ. We have that r(Hi) = Hi+1, r(δi) = δi+1 (where indices
are taken mod 2k), and σ can be described in the following way: the curves δ0, δk
cut S into two subsurfaces S+, S−, each of which has genus (g − 1)/2 and has two
boundary components. The involution σ will exchange S+ and S− and fix both
boundary components of S+ setwise.

Intuitively, we imagine S as a symmetric, thickened 2k-gon in three-space, with
a torus in each corner. The element r then rotates the 2k-gon by π/k around its
center, while σ rotates by π about an axis through δ0, δk (compare Figure 1).

We then define σ′ = rσr−1. We claim that Σg/〈σ, σ′〉 is a torus with four marked
points. Indeed, 〈σ, σ′〉 contains r2 (recall that σ, r generate a dihedral group), and
thus

H0 ∪H1 → Σg/〈σ, σ′〉
is already surjective. Since σ′ exchanges H0 and H1, even

H0 → Σg/〈σ, σ′〉

is already surjective. In fact, Σg/〈σ, σ′〉 is obtained from H0 by identifying two
halves of δ0 with each other (via the action of σ) and identifying two halves of δ1
with each other (via the action of σ′). This shows that Σg/〈σ, σ′〉 is indeed a torus
with four marked points (coming from the fixed points of σ, σ′ in H0).

Next, we claim that there are simple closed curves αi with the following proper-
ties:

a) Dehn twists about the αi form a (Humphries) generating set for the mapping
class group of Σg.

b) Each αi is either contained in one of the S±, or is invariant under σ.
c) If αi ⊂ S±, then it is nonseparating in that subsurface.
d) There is one αj0 which is contained in S− and which is invariant under σ′.

That such a set of curves exists is an exercise using Figure 2.

Now, from property c) we get the following:

(11) ∀αi not invariant under σ ∃φi ∈ Mcg(Σg) : [φi, σ] = 1, φi(αj0) = αi.

Namely, suppose first that αi ⊂ S−. Then, since both αi, αj0 are nonseparating in
S−, there is a mapping class f of S− fixing ∂S− which sends αj0 to αi. Extend
f to a mapping class φi of S by setting it to be σfσ on S+. This has the desired
property. In the case where αi ⊂ S+, we start with f which sends σαi to αj0 as
above, and let φi be σf on S− and fσ on S+.

We claim that for any of the Humphries generators T = Tαi we can connect σ
to TσT−1 with a path as in ii) of the statement of the Proposition.
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Figure 2. The setup for Proposition 5.2: γ1, γ2, γ3 are the curves
which are not in S± and they are invariant under σ. The curve γ′

is invariant under σ′.

For twists about curves αi which are invariant under σ there is nothing to show,
as such twists commute with σ, and therefore the trivial path connects σ and
TαiσT

−1
αi = σ. If αi is not invariant, let φi be the mapping class guaranteed

by (11). We claim that

σ1 = σ,

σ2 = φiσ
′φ−1i ,

σ3 = TαiσT
−1
αi

is a path as desired. To begin with, note that

G1 = 〈σ, φiσ′φ−1i 〉 = 〈φiσφ−1i , φiσ
′φ−1i 〉 = φi〈σ, σ′〉φ−1i ,

since φi commutes with σ. As by assumption σ, σ′ is a good pair, G1 is a group as
desired.

Next, observe that

φiTαj0φ
−1
i = Tφiαj0 = Tαi

and therefore

[Tαi , φiσ
′φ−1i ] = [φiTαj0φ

−1
i , φiσ

′φ−1i ] = φi[Tαj0 , σ
′]φ−1i = 1,

since σ′ preserves αj0 and therefore commutes with the Dehn twist about αj0 . As
G1 is generated by a good pair, so is

Tαj0G1T
−1
αj0

= 〈Tαj0σT
−1
αj0

, Tαj0φiσ
′φ−1i T−1αj0

〉 = 〈Tαj0σT
−1
αj0

, φiσ
′φ−1i 〉 = 〈σ3, σ2〉.

Hence, σ1, σ2, σ3 is indeed a path as desired. �
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For the remainder of this section, we fix σ to be as in the conclusion of Propo-
sition 5.2. Say that a foliation F is lifted torus good, if F is the lift of a torus good
foliation on Σg/σ̂ for σ̂ a conjugate of σ in Mod(S) (possibly by the identity).

The following will replace Lemma 4.1.

Lemma 5.3. Suppose that F, F ′ are lifted torus good. Then there are

(1) Involutions σ1, . . . , σN , which are conjugate to σ,
(2) Abelian differentials ωi, i = 1, . . . , N on Σg,

so that the following hold:

i) For any i, the group 〈σi, σi+1〉 is finite and Ti = Σg/〈σi, σi+1〉 is a torus with
four marked points.

ii) The differential ωi is a lift of a torus good differential on the torus Ti (with
marked points).

Proof. Suppose that F is a lift of a foliation on Σg/σ and F ′ is a lift of a foliation
on Σg/σ

′. Apply Proposition 5.2 to σ, σ′ to find the involutions σi with property
i). The differentials ω1, ωN are chosen to be the ones defining F, F ′; the other ωi
can be chosen as arbitrary lifts of torus good differentials on Ti. �

Finally, the following will replace Theorem 4.4.

Theorem 5.4. Suppose that (τn) is a full splitting sequence in the direction of a
uniquely ergodic foliation F , and let fm be an associated Mod-sequence.

Fix an essential type k and let E,E′ ∈ U (k) be two lifted torus good foliations
lifted from covers Σg/σ,Σg/σ

′. Assume that

(∗): U (k) contains every foliation which is a lift of the cover defined by
Σg/σ,Σg/σ

′.

Then for any n there is a number m0 with the following property. Suppose that
m > m0 and that km = k. Then there is an path γ connecting F to F ′, so that
fmγ is completely contained in Un(τ, F ), and consists only of cobounded foliations.

Proof. Suppose that E,E′ are given as in the theorem. First, apply Lemma 5.3 to
obtain a sequence of involutions σ1, ..., σN . We now have two sequences of covers

pi : Σg → Σg/σi

and

ti : Σg → Σg/〈σi, σi+1〉
which are compatible in the sense that ti factors through both pi and pi+1:

Σg

Σg/σi Σg/σi+1

Σg/〈σi, σi+1〉

pi pi+1

ti
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Now for each i, let δi be a lift of a simple closed curve on the four times punctured
torus Σg/〈σi, σi+1〉 by the map ti, and let µi be a lift of a simple closed curve from
Σg/σi by the map pi. We will next construct lifted torus good foliations Bi, I

+
j , I

−
j ,

and the desired path as a concatenation

γ = γ+1 ∗ γ
−
2 ∗ γ02 ∗ γ

+
2 ∗ · · · ∗ γ

−
N−1 ∗ γ

0
N−1 ∗ γ+N−1 ∗ γ

−
N

where · denotes the path with opposite orientation, and

(1) γ+j is a path starting in I+j , and ending in Bj+1,

(2) γ0j is a path starting in I−j , and ending in I+j ,

(3) γ−j is a path starting in I−j , and ending in Bj−1,

All γ∗j will be produced by using Corollary 4.5.

Namely, put I+0 = E, I−N = E′, and choose Bi, I
+
j , I

−
j lifted torus good foliations

(for the covers pi, tj , tj respectively) close enough to δi, µj so that Corollary 4.5.
(to Theorem 4.4), in the version without (∗) except at the endpoints applies in all
three cases mentioned above. This can e.g. be achieved by starting with any lifted
torus good foliations, and Dehn twisting them about the δi, µj .

Now, Corollary 4.5 yields, for a pair i, j, paths γ+j , γ
0
j , γ
−
j which are contracted

into Un(τ, F ) by fm for m > m0(i, j, ∗), ∗ ∈ {−,+, 0}. By choosing m0 to be the
largest of those finitely many m0(i, j, ∗), the desired property holds. �

With this in place, we can finish the proof of Theorem 5.1 exactly as in the case
of Theorem 4.6.

In fact, the proof shows something a little bit stronger, which will be useful to
show local path-connectivity.

Corollary 5.5. Suppose τ is a train track carrying a uniquely ergodic foliation F ,
and suppose that τn is a splitting sequence in the direction of F . Then for any n
there is a m = m(τ, n, F ) with the following property. If E is any uniquely ergodic
foliation contained in Um(τ, F ), then there is a path of uniquely ergodic laminations
connecting F to E completely contained in Un(τ, F ).

Proof. In the case of a punctured surface, i.e. Theorem 4.6, all bounds on m
come from applying Proposition 2.17 or 2.20 within the proof of Theorem 4.4. By
Lemma 2.21 we can choose these bounds to be independent of the actual foliation
guiding the splitting sequence, as long as the foliation is contained in Uk(τ, F ) for
k large enough. The bounds in Theorem 5.1 come from applying Theorem 4.4 and
its Corollary 4.5, and so the same is true there. �

6. Local Path Connectivity

In this section, we improve the Theorem from the last section to the following.

Theorem 6.1. If g ≥ 5 or g ≥ 2, p ≥ 3, the set of uniquely ergodic foliations on
Sg,p is locally path-connected.

Given a uniquely ergodic foliation F and a full splitting sequence (τs)s towards
F . For any n, we let m(τ, n, F ) the number guaranteed by Corollary 5.5. Define

Gn(τ, F ) = Um(τ,n,F )(τ, F ).
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Corollary 5.5 guarantees that for any F ′ ∈ Gn(τ, F ) there exists a path PF,F ′ of
cobounded foliations joining F to F ′, which is contained in Un(τ, F ).

Let Ĝn(τ, F ) be the intersection of Gn(τ, F ) with the set of uniquely ergodic
foliations. For any point p ∈ PF,F ′ , we can define a neighbourhood

Gn(p, τ)

as above, i.e. with the property that p can be joined to any p′ ∈ Gn(p, τ) by a path
of cobounded foliations which is contained in Un(τ, F ).

Also observe that

(12) Ui(τ, p) ⊂ Ui(τ, F )

for all i ≤ n.

Define
N (1)(F, n) :=

⋃
F ′∈Ĝn(τ,F )

⋃
p∈PF,F ′

Gn(p, τ).

Inductively, put

N (r+1)(F, n) =
⋃

p∈N(r)(F,n)

N (1)(p, n).

Also observe that we have N (r)(F, n) ⊂ Un(τ, F ) by Equation (12), whenever
F ′ ∈ Gn(τ, F ).

Proposition 6.2. Any point in N (r)(F, n) is connected to F by a path of uniquely
ergodic foliations, which is contained in in N (r+1)(F, n).

Proof. We prove this by induction.

Base case: If p ∈ N (1)(F, n) then we can connect it to F by a path in N (2)(F, n).

Proof. If p ∈ PF,F ′ this is obvious. Otherwise p ∈ Gn(p̂, τ) for some p̂ ∈ PF,F ′

where F ′ ∈ Gn(τ, F ). By definition we have that there exists a path of cobounded
foliations contained in Gn(p̂, τ) connecting p to p̂. Concatenating this with the
segment of PF,F ′ connecting p̂ to F connects p to F . The first segment of the path

is in N (1)(p̂, n) and so the whole thing is in N (2)(F, n). �

Inductive step: Assume p ∈ N (r)(F, n) and that any point in N (r−1)(F, n) is
connected to F by a path of cobounded foliations in N (r)(F, n). We will now show
that p is path connected by cobounded foliations in N (r+1)(F, n) to F .

Proof. Because p ∈ N (r)(F, n) we know (by definition of N (r+1)) p ∈ N (1)(p̂, n)
for some p̂ ∈ N (r−1)(F, n). By the base case of induction applied to p̂ it is con-
nected to p̂ by a path in N (2)(p̂, n) = ∪p′∈N(1)(p̂,n)N

(1)(p′, n). This is contained

in ∪p′∈N(r)(F,n)N
(1)(p′, n) = N (r+1)(F, n). To finish linking p to F we use our

inductive assumption to link p̂ to F by a path in N (r−1+1)(F, n). �

�

Corollary 6.3. For any uniquely ergodic foliation F , and any n, the set⋃
r≥1

N (r)(F, n)

 ∩ UE
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is an open neighbourhood of F in UE, which is path-connected and contained in
Un(τ, F ).

Proof. The set is open as a union of open subsets. It is contained in Un(τ, F ), since
all N (r)(F, n) have this property. It is path-connected by Proposition 6.2. �

By Corollary 2.4, the Un(τ, F ) are a basis for neighbourhoods of F in UE , and
thus this finishes the proof of Theorem 6.1.
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