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1. Introduction

Let S be a closed oriented surface of genus g ≥ 2. A marked complex structure
on S is a pair (X, f), where X is a Riemann surface and f is a marking, that is a
orientation preserving homeomorphism f : S → X. The Teichmüller space T (S) of
S is the space of marked complex structures up to isotopy. This set is made into a
complete metric space by the Teichmüller metric dT . The uniformization theorem
allows us to identify T (S) with the space of marked hyperbolic structures on S.

One can also consider the (finer) notion of complex projective surfaces. A complex
projective surface Z is given by a topological surface S, together with an atlas for
S whose charts have values in the Riemann sphere CP 1, and such that the chart
transition maps are (locally) restrictions of Möbius transformations. Following the
definition of Teichmüller space, one considers the space P(S) of marked complex
projective structures up to isotopy. Since Möbius transformations are biholomor-
phic, any complex projective surface also is a Riemann surface, and thus we obtain
a (forgetful) projection

π : P(S) → T (S)

On the other hand, by the uniformization theorem any Riemann surface X of genus
g ≥ 2 can be written as X = H2/Γ, where H2 is the upper half plane and Γ is
a discrete subgroup of PSL2(R). The covering projection H2 → H2/Γ induces a
natural projective structure on X which we call the Fuchsian projective structure.
In other words, we obtain a map

s : T (S) → P(S)

such that π◦s is the identity. Thus T0(S) := s(T (S)) ⊂ P(S) is a copy of Teichmüller
space in the space of projective structures.

Associated to a complex projective surface Z is its holonomy representation ρZ :
π1(S) → PSL2(C) (for details, see for example [Thu, section 3.5] or [McM2]). We
say a projective surface Z has Fuchsian holonomy if ρZ : π1(S) → PSL2(C) is an
isomorphism onto (a conjugate of) a Fuchsian group. A basic example of projec-
tive surfaces with Fuchsian holonomy is given by the Fuchsian projective structures
defined above – the holonomy group of s(H2/Γ) is just Γ.

One can describe all projective surfaces having Fuchsian holonomy explicitly using
grafting along weighted geodesic multicurves. Informally, to obtain the grafting
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GrtγX of X along the weighted geodesic tγ one inserts a flat euclidean cylinder of
height t at γ (cf. figure 2) to obtain a new projective structure from the Fuchsian
one (see [Tan] or [McM2] for details). For weighted multicurves t1γ1 + . . .+ tnγn one
cuts X at all γi and glues in the flat cylinders γi × [0, ti] at the respective boundary
components.

Goldman’s theorem ([Gol]) states that a projective structure Z ∈ P(S) has Fuch-
sian holonomy if and only if it is of the form Z = GrλX for some hyperbolic surfaceX
and an integral lamination λ, that is a weighted multicurve λ = 2πn1γ1+. . .+2πnrγr

with ni ∈ N. Thus the projective structures with Fuchsian holonomy – the “holo-
nomy lifts” of Teichmüller space – are given by

Tλ(S) := Grλ(T (S))

for integral laminations λ. A general classification theorem for projective structures
(see [KT]) implies that the map IL(S) × T (S) → P(S) given by grafting is injec-
tive, where IL(S) is the space of integral laminations. Thus the holonomy lifts of
Teichmüller space are disjoint slices in P(S). From the same classification theorem
it also follows that for any integral λ, Grλ : T (S) → P(S) is a homeomorphism onto
its image, and thus the slices Tλ(S) are copies of Teichmüller space.

As the conformal grafting map grλ = π ◦ Grλ : T (S) → T (S) also is a home-
omorphism for any integral lamination λ by a result of Tanigawa ([Tan], see also
[McM2] and [SW]) a holonomy lift Tλ(S) of Teichmüller space inherits from T (S)
two natural parametrizations: On the one hand, we have the grafting coordinates
Z = GrλX 7→ X, and on the other hand there are the conformal coordinates
Z 7→ π(Z). To understand the relation of these two coordinate systems, one has to
study the conformal grafting map.

In this paper we consider the lifts of Teichmüller geodesics into the slices Tλ(S).
For a hyperbolic surface X ∈ T (S) and a simple closed curve γ on S, let lX(γ) be
the length of the hyperbolic geodesic on X in the free homotopy class of γ. We
say that a (weighted) multicurve λ = a1γ1 + . . . arγr has length less than ǫ on X if
lX(γi) < ǫ for all i = 1, . . . , r.We obtain the following

Theorem 1.1. There is a number ǫ > 0 such that the following holds. Let δ > 0
and an integral lamination λ be given. Consider the set U ⊂ T (S) of all hyperbolic
surfaces on which λ has length less than ǫ and each simple closed curve disjoint from
λ has length at least δ.

Then there is a number r > 0, such that for each X ∈ U and n ∈ N the holonomy
lift

gn(s) = grnλ (ρλ,X(s))

of the Teichmüller geodesic ρλ,X through X in direction λ is contained in the r-tube
around the geodesic ρλ,X .

Thus, the conformal grafting map (or “holonomy lift map”) is well behaved on
Teichmüller geodesics once the curves are short: grafting in the direction of the ray
basically moves forward on the geodesic.
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The theorem is proved by studying the behaviour of the holonomy lift map on
grafting rays. A grafting ray is a curve of the form t 7→ grtλX in Teichmüller space.
These curves share many properties with Teichmüller geodesics. For example, for
any two points X, Y in Teichmüller space, there is a unique grafting ray from X to
Y (this follows from a far more general result in [DW]). Teichmüller geodesics are
contained in Teichmüller disks, grafting rays also naturally define holomorphic disks
in T (S) (complex earthquake disks, cf. [McM2]). Furthermore, grafting rays have
the same asymptotic behaviour as Teichmüller geodesics. Diaz and Kim [DK] have
shown that for any X ∈ T (S) and integral lamination λ, the grafting ray grtλX is
contained in an L-tube around the Teichmüller geodesic ray from X in direction λ,
where L depends on X.

We show the following theorem about holonomy lifts of grafting rays.

Theorem 1.2. There is a number ǫ > 0 such that the following holds. Let X be a
hyperbolic surface and λ be an integral lamination of length less than ǫ on X.

i) There is an r > 0, such that for each n the holonomy lift

gn(s) = grnλ (grsλX)

is contained in the r-tube around the grafting ray s 7→ grsλX.
ii) There is an R > 0 such that the following holds. Let η be an short integral

lamination, disjoint from λ. Then the holonomy lifts

gη(s) = grη (grsλX)

are contained in the R-tube around the grafting ray grsλ(grηX).

The difficult part of this theorem is to establish that the constants r and R do
not depend on n (or η). The translation length of the grafting map X 7→ grn·λX
can be estimated from the length of λ on X and the weights in λ, so each individual
holonomy lift will be contained in a suitable tube around the grafting ray. However,
as the translation length is unbounded in n it is a priori not clear that all holonomy
lifts lie in a single tube.

We also consider grafting rays through holonomy lifts of some starting point X.

Theorem 1.3. Let X be a hyperbolic surface and γ a simple closed geodesic on X.
Consider the grafting rays

cn,m(t) = grtγ(grn
2πmγX).

For large values of n, the cn,m accumulate exponentially fast

dT (cn+1,m(t), cn,m(2πm+ an,mt)) ≤ C · qn

for some 0 < q < 1, an,m > 1 and a constant C depending on X. In particular, these
rays accumulate in the Hausdorff topology on Teichmüller space.

To understand the behaviour of the conformal grafting map on grafting rays,
one needs to understand how grafting behaves under iteration. To this end, note
that grafting does not form a flow, i.e. grtλgrsλX is not the same as gr(t+s)λX –
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even in the case where λ is a single curve. An intuitive reason for this is given by
the following observation: To obtain grtγgrsγX from grsγX, one has to replace the
geodesic representative γ′ of γ on grsγX with a flat cylinder of length t – to obtain
gr(t+s)γX from grsγX on the other hand, one has to make the already inserted
grafting cylinder longer (by t); for example by cutting at the flat core curve δ =
γ × {s/2} of the already glued in grafting cylinder and then pasting in another flat
cylinder γ × [0, t]. However, a priori the curves γ′ and δ may be very different and
thus the two surgery operations will give different results. Also note that even if γ′

and δ were identical curves, the surgery operations would not yield the same result,
as grafting is defined in terms of the cylinder length – and since grafting decreases
the length of the grafting curves, γ′ will be shorter than γ; hence the modulus of a
length t cylinder at γ′ will be larger than the modulus of a length t cylinder at γ.

The following two theorems are the main technical results of this paper.

Theorem 1.4 (Iterating a multicurve). Let S be a closed surface of genus g > 1.
There are constants ǫ̃, C > 0 such that the following holds:

Let λ = t1γ1+. . .+tnγn be a weighted multicurve on S and η = s1γ1+. . .+snγn be
another multicurve with the same supporting curves. Let X ∈ T (S) be a hyperbolic
structure such that the hyperbolic lenghts satisfy lX(γi) ≤ ǫ̃ for all i. Then

dT
(
grη(grλX), grηe+λX

)
≤ C ·

(
max

i=1,...,n
lX(γi)

)1/8

where η+̃λ is a “weighted sum” of λ and η:

η+̃λ =

(
π + t1
π

· s1 + t1

)
γ1 + . . .+

(
π + tn
π

· sn + tn

)
γn

Theorem 1.5 (Splitting a multicurve). Let S be a closed surface of genus g > 1.
There are constants ǫ̃, C > 0 such that the following holds:

Let λ = t1γ1 + . . . + tnγn and η = tn+1γn+1 + . . . tmγm be disjoint weighted mul-
ticurves on S. Let X ∈ T (S) be a hyperbolic structure such that lX(γi) ≤ ǫ̃ for all
i = 1, . . . , m.

Then

dT
(
grη(grλX), grη+λX

)
≤ C ·

(
max

i=1,...,m
lX(γi)

)1/8

Both theorems are proved by explicitly constructing a quasiconformal comparison
map and estimating its dilatation.

After reviewing some basic facts from hyperbolic geometry (section 2) we define
the building blocks for these maps in section 3 and develop formulas to estimate their
dilatation. Section 4 is devoted to showing the main technical results (theorems 1.4
and 1.5 above). These proofs are divided into several steps which are outlined and
explained in section 4.1. In section 5 we then study holonomy lifts and obtain
theorems 1.1 to 1.3. As a last application, we study the asymptotic behaviour
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of grafting sequences grn
λX in section 6. We show that these sequence converge

geometrically to a punctured surface for every base point X.
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2. Some hyperbolic geometry

For convenience we recall some facts from elementary hyperbolic geometry which
we will need in the sequel. In this paper we will always use the upper half plane
model for the hyperbolic plane H2.

ψ

r

(r)

Figure 1. Regular neighbourhoods in H2

The hyperbolic regular r-neighbourhood of the imaginary axis {z ∈ H2, d(z, iR) <
r} is an infinite circle sector bounded by two straight euclidean rays through the
origin. We will call the angle between these rays and the imaginary axis the angle
ψ(r) corresponding to the neighbourhood (cf. figure 1)

Similarly, if A = {z ∈ X, d(z, γ) < r} is a embedded annulus around a sim-
ple closed geodesic γ on a hyperbolic surface X, it can be lifted to a regular r-
neighbourhood of the imaginary axis in H2. We call the angle correponding to this
lifted neighbourhood the angle corresponding to the annulus A.

From elementary hyperbolic geometry we know

ψ(r) = arctan

(
e2r − 1

2er

)
.

We will often need a simple estimate for small r, namely
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Proposition 2.1 (Estimate for annulus angles). If r is small enough, we have

ψ(r) ≤ r

Proof. As tan is increasing, it is enough to show that

e2r − 1

2er
≤ tan(r)

for small r. Taking derivatives we see that both sides agree up to order 2 at r = 0.
However, the third derivative at r = 0 is 1 for the left hand side and 2 for the right
hand side. Thus the inequality holds for small r. �

Recall that there is a function M : R+ → R+ such that if γ is a simple closed
geodesic of length ≤ l on any hyperbolic surface X, the regular M(l)-neighbourhood
of γ is an embedded annulus (this is the classical collar lemma, cf. [Bus]) We call
this annulus the standard hyperbolic collar and denote the corresponding angle by
θ(l). A calculation yields

θ(l) = arccos

(
el − 1

el + 1

)
.

In the sequel we will often have to estimate this quantity, in particular we need

Proposition 2.2 (Estimate for standard collars). For small l we have

π − l

2
≤ θ(l).

Proof. As cos is decreasing for small arguments, it suffices to prove

cos

(
π − l

2

)
≥ el − 1

el + 1

for small l.
Taking derivatives we see that both sides agree up to order 2 at l = 0. The third

derivative of the left hand side is −1/8, while that of the right hand side is −1/4.
Thus the right hand side decreases faster and the inequality holds for small l as
claimed. �

3. Scaling, Shearing and Twisting maps

The quasiconformal maps used in the proof of theorems 4.1 and 4.2 will be con-
stucted out of simple building blocks, which we now describe.

A finite annulus in the complex plane is a open domain A bounded by two non-
intersecting Jordan curves. The domain {z ∈ C, r < |z| < s} bounded by two
round circles is called a round annulus. By the uniformization theorem, any finite
annulus A is biholomorphic to a round annulus. An uniformizing map extends to a
homeomorphism of the closed annuli (cf. for example [LV, chapter I §2.2]). Thus, if
A and B are finite annuli which are biholomorphic to round annuli A′ and B′, any
K-quasiconformal mapping of the closures A′ → B′ gives rise to a quasiconformal
mapping A→ B (of the same dilatation) and vice versa.



ITERATED GRAFTING AND HOLONOMY LIFTS OF TEICHMÜLLER SPACE 7

Recall that the modulus Mod(A) of an annulus A ⊂ C is the extremal length of
the “topological radii” – that is, the familiy of curves connecting the two boundary
curves. The modulus yields a complete classification of finite annuli: A,B are
biholomorphic if and only if they have the same modulus. For a round annulus in
the complex plane we have

Mod ({a < |z| < b}) =
1

2π
log

(
b

a

)
.

Also recall the formula Mod(A) = π/l, where l is length of the simple closed geodesic
with respect to the complete hyperbolic metric on A.

3.1. Scaling. Suppose A,B ⊂ C are two round annuli. The problem of finding the
optimal quasiconformal map A → B is classical. We want to describe its solution,
which we call the scaling map sA,B.

To do so, it is useful to introduce logarithmic coordinates for round annuli. Con-
sider the holomorphic map

fa : (0, a) × R → C, (t, x) 7→ et+2πi·x

This map is a holomorphic universal covering map of the annulus A = {1 < |z| <
ea}. A fundamental domain is of the form (0, a) × [0, 1]. We will call the induced
coordinates on the annulus A logarithmic coordinates for A. Note that a = Mod(A)
and that the x is nothing but the argument of fa(t, x) ∈ C. Also note that these
coordinates extend to give coordinates of the closed annulus.

In logarithmic coordinates, the scaling map is given by

(0, b) × R → (0, a) × R, (t, x) 7→
(a
b
t, x
)

Clearly, this map has quasiconformality constant max(a, b)/min(a, b) and is thus
optimal (due to the geometric classification of quasiconformal maps).

3.2. Shearing. Now let A be a round annulus in the complex plane. We want to
construct a quasiconformal self-map of the closure A of A realizing a given angular
distortion on the outer (or inner) boundary circle, while fixing the other boundary.
More precisely

Proposition 3.1 (Shearing maps). Suppose A ⊂ C is a round annulus of modulus
a > 1. Let f : [0, 1] → [0, 1] be a B-bilipschitz, increasing continuously differentiable
map with B < 2, f(0) = 0, f(1) = 1.

Then there is a quasiconformal homeomorphism Sf : A→ A satisfying

i) Sf fixes the inner boundary: Sf (0, x) = (0, x) (in logarithmic coordinates)
ii) Sf realizes the distortion f on the outer boundary: Sf(a, x) = (a, f(x))
iii) The quasiconformality constant of Sf satisfies

log(K(Sf)) ≤ C · (B − 1)

for some universal constant C.



8 SEBASTIAN W. HENSEL

The same result holds by symmetry if we reverse the roles of inner and outer bound-
ary.

Proof. We define the map on a fundamental domain [0, a] × [0, 1] in logarithmic
coordinates for (the closure of) A:

Sf : (t, x) 7→
(
t,

(
1 − t

a

)
x+

t

a
f(x)

)

and continue cyclically.
First we note that Sf actually is a homeomorphism: Sf is differentiable with lin-

early independent partial derivatives (see below), so it is locally a homeomorphism;
furthermore it is bijective, as

(
1 − t

a

)
x + t

a
f(x) is strictly increasing in x for each

fixed t – and thus bijective.
To estimate the quasiconformality constants, we compute

d

dt
Sf =

(
1,
f(x) − x

a

)

d

dx
Sf =

(
0,

(
1 − t

a

)
+
t

a
f ′(x)

)

Therefore (∂, ∂ denote Wirtinger derivatives)

∂Sf =
1

2

(
1 + 1 − t

a
+
t

a
f ′(x),

f(x) − x

a

)
=

1

2

(
2 − 1 − f ′(x)

a
t,
f(x) − x

a

)

∂Sf =
1

2

(
1 − 1 +

t

a
− t

a
f ′(x),

f(x) − x

a

)
=

1

2

(
1 − f ′(x)

a
t,
f(x) − x

a

)

Now we need to estimate
|∂Sf |
|∂Sf | . To this end, note that as f is B-bilipschitz and

monotonically increasing, we have B−1 ≤ f ′(x) ≤ B for all x. Thus, writing B =
1 + ǫ,

1 − f ′(x) ≤ 1 − B−1 = 1 − 1

1 + ǫ
=

ǫ

1 + ǫ
≤ B − 1

f ′(x) − 1 ≤ B − 1

and thus, |1 − f ′(x)| ≤ B − 1 and

|f(x) − x| ≤ (B − 1)|x|
Using this we obtain (recall that a > 1)

|∂Sf |2
|∂Sf |2

=
(1 − f ′(x))2 t2

a2 + (f(x)−x)2

a2

(2 − (1 − f ′(x)) t
a
)2 + (f(x)−x)2

a2

≤ (B − 1)2 + (B − 1)2

(2 − (B − 1))2

This shows, that the map has an (analytic) quasiconformality constant of less than

k =
√

2
B − 1

3 − B
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From this, we obtain the geometric quasiconformality constant as K = 1+k
1−k

. Thus
we have

K =
3 −B +

√
2(B − 1)

3 − B −
√

2(B − 1)
= 1 +

2
√

2B − 2
√

2

(3 +
√

2) − (1 +
√

2)B

Using log(1 + y) ≤ y this yields the claim. �

Conversely, we need a way to estimate the shearing introduced by univalent maps
of annuli. Let

As = {z ∈ C, s < |z| < 1}
denote a round annulus in the complex plane.

Lemma 3.2 (Controlling boundary distortion). Suppose f : Ar → As is a univalent
holomorphic map preserving the outer boundary (f(S1) = S1).

Then f |S1 is K-Lipschitz with respect to the angular metric on S1, where K =
Mod(As)/Mod(Ar).

Proof. Using the Schwarz reflection principle we first extend f to a holomorphic
map

F : A+
r → A+

s

where A+
r = {z ∈ C, r < |z| < r−1}.

Now it suffices to show that F ′|S1 ≤ K – indeed (by precomposiong with a rota-
tion) we only need to show it for F ′(1). Furthermore we can assume that F (1) = 1
(by postcomposing with a rotation).

The universal covering map for A+
r , πr(z) : H

2 → A+
r is given by

πr(z) = exp

(
log(−i · z)2π

l
i

)
= exp

(
log(−i · z) · 2Mod(A+

r ) · i
)

π′
r(z) = exp

(
log(−i · z) · 2Mod(A+

r ) · i
)
·
(
−i 1

−iz · 2Mod(A+
r )

)

where log is any branch of the natural logarithm on H2 and l the hyperbolic length
of the core curve of A+

r .

Lift F to a map F̃ : H2 → H2 of the universal covers fixing i: F̃ (i) = i. As the
universal covering map is locally biholomorphic, we can compute the derivative of
F as

F ′(1) = (πs)
′(i)F̃ ′(i)(π′

r)
−1(1).

However, by the usual Schwarz lemma, we have |F̃ ′(i)| ≤ 1, and thus

|F ′(1)| ≤ |π′
s(i)| · |π′

r(i)|−1.

But,

|π′
r(i)| = 2Mod(A+

r ) = 4Mod(Ar)

and thus the lemma follows. �
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3.3. Twisting. Again, let A be some round annulus in the complex plane. We want
to find a quasiconformal model for a twist on A.

Proposition 3.3 (Twist maps). Suppose A is a round annulus of modulus a and
let k ∈ R (the amount of twisting) be given. Then there is a map Tk : A → A such
that

• Tk fixes the inner boundary: Tk(0, x) = (0, x) (in logarithmic coordinates)
• Tk realizes a twist by k: Tk(a, x) = (a, x+ k)
• The quasiconformality constant of Tk satisfies

log(K(Tk)) ≤
2√

1 + 4
(

a
k

)2 − 1

Proof. The twist map in logarithmic coordinates is given by

Tk : (t, x) 7→
(
t, x+

t

a
k

)

To prove the proposition we now perform a computation similar to the one in the
proof of proposition 3.1. In particular, we see

d

dt
Tk =

(
1,
k

a

)
,

d

dx
Tk = (0, 1)

∂Tk =
1

2

(
1 + 1,

k

a

)
, ∂Tk =

1

2

(
1 − 1,

k

a

)

|∂Tk(∂Tk)
−1|2 =

k2

a2

4 + k2

a2

=
1

1 + 4a2

k2

This gives

K =

√
1 + 4a2

k2 + 1
√

1 + 4a2

k2 − 1
= 1 +

2√
1 + 4a2

k2 − 1

which, again using log(1 + y) ≤ y, yields the result. �

4. The iteration and splitting theorems

In this section we prove the two main technical results concerning iterated grafting
along a short multicurve.

Theorem 4.1 (Iterating a multicurve). Let S be a closed surface of genus g > 1.
There are constants ǫ̃, C > 0 such that the following holds:

Let λ = t1γ1+. . .+tnγn be a weighted multicurve on S and η = s1γ1+. . .+snγn be
another multicurve with the same supporting curves. Let X ∈ T (S) be a hyperbolic
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structure such that the hyperbolic length of the geoodesics γi satisfies lX(γi) ≤ ǫ̃ for
all i. Then

dT
(
grη(grλX), grηe+λX

)
≤ C ·

(
max

i=1,...,n
lX(γi)

)1/8

where η+̃λ is a “weighted sum” of λ and η:

η+̃λ =

(
π + t1
π

· s1 + t1

)
γ1 + . . .+

(
π + tn
π

· sn + tn

)
γn

Theorem 4.2 (Splitting a multicurve). Let S be a closed surface of genus g > 1.
There are constants ǫ̃, C > 0 such that the following holds:

Let λ = t1γ1 + . . . + tnγn and η = tn+1γn+1 + . . . tmγm be disjoint weighted mul-
ticurves on S. Let X ∈ T (S) be a hyperbolic structure such that lX(γi) ≤ ǫ̃ for all
i = 1, . . . , m.

Then

dT
(
grη(grλX), grη+λX

)
≤ C ·

(
max

i=1,...,m
lX(γi)

)1/8

4.1. Notation and outline of the proof. To prove the theorems, we will explicitly
construct a comparison map from grη(grλX) to grηe+λX (from grηgrλX to grη+λX
respectively) and estimate its dilatation.

Before beginning with a formal proof, we first outline the main ideas in the case
of theorem 4.1 as well as introduce certain notation for curves which will be used
throughout the proofs. The construction of the comparison map is devided into
several steps. We first look at the situation after grafting along λ (cf. figure 2
for the case where λ is a simple closed curve). X ′ = grλX is obtained from X by
cutting at the hyperbolic geodesics γi in the support of λ and gluing in the flat
cylinders γi × [0, ti]. We call these cylinder the grafting cylinders on X ′ and the
curve γi × {ti/2} the flat core curve δi of the grafting cylinder corresponding to γi.
Denote by γ′i the geodesic representative of δi in the hyperbolic metric on X ′. To
obtain grη(grλX) from X ′, we have to cut X ′ at the γ′i and insert flat cylinders,
whereas to obtain grηe+λX from X ′, we have to cut at the δi.

Thus the first step is to see that γ′i and δi are close to each other in the hyperbolic
metric on X ′. In section 4.2 we show that there is a bounding annulus of small,
controlled modulus around γ′i which contains δi. This is done by showing that the
length of δi can be bounded from above, while the length of the geodesic γ′i is
bounded from below – and thus, by elementary hyperbolic geometry, they need to
be close to each other.

Now we consider the situation at one grafting cylinder (and, for sake of simpler
notation, we will drop the index i from the curves). Let α1 and α2 be the boundary
curves of the standard hyperbolic collar around γ′ on X ′ (cf. figure 2). Once γ is
short, the bounding annulus will be contained in this collar.

Thus we can construct pre-annulus maps φj, sending the annulus bounded by αj

and γ′ to the annulus bounded by αj and δ, which restrict to the identity on αj.
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tgr

γ

X

δ

X

δ

X’

uniformize

γ

graft

γ’

α1 2α

Figure 2. Grafting step

(section 4.3). By gluing these maps to the identity mapping on the complement of
the standard hyperbolic collar, we obtain a quasiconformal map

X ′ \ γ′ → X ′ \ δ
with controlled dilatation (here, X ′ \ γ denotes the Riemann surface with boundary
obtained by cutting at γ). We then have to care about three issues.

First, the two pre-annulus maps φ1 and φ2 have to be modified to take the same
values on γ′ so that they can be glued to form a map of the surfaceX ′ to itself. Then,
as we want to obtain a map from grη(grλX) to grηe+λX without losing control over
the quasiconformality constants, the pre-annulus maps have to be further modified
to send γ′ to δ in a way that is compatible with the respective grafting operations
(what this precisely means will be explained in detail in section 4.3). These two
issues will be handled simultaneously by shearing φj by an appropriate amount,
obtaining annulus maps Φj (section 4.3)

Finally, to estimate Teichmüller distance using this map, we have to make sure
that it preserves the marking on X ′. The construction of the annulus maps may
introduce a quite large unwanted twist – which we compensate in a last step using
an appropriate (un-)twist map (section 4.4)

As all constructions took place just in the collar neighbourhood around γ′, we can
repeat the arguments at all curves γi to obtain a comparison map from grη(grλX)
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to grηe+λX. By tracing the error bounds of the involved maps we then conclude the
theorem. The construction for theorem 4.2 is very similar; one procedes by showing
that the curves in η neither change length nor position too much when grafting along
λ and then constucting a comparison map as before.

4.2. Lengths estimates and bounding annuli. We now construct the bounding
annuli as sketched before. To do this we need to control the length of the grafting
curves after grafting along them once. For the proof it is convenient to show several
statements simultaneously

Lemma 4.1 (bounding lemma). Let X be a hyperbolic surface and γ1, . . . , γn be
simple closed geodesics on X. Let λ = t1γ1 + . . . + tnγn be a weighted multicurve.
On the grafted surface grλX, consider the flat core curves δi of the grafting annuli
and the hyperbolic geodesics γ′i in the free homotopy class of γi.

Then there are constants K1, K2, K3 > 0, depending only on the lengths of the γi

on X such that the following statements hold.

i) length estimate: For all i = 1, . . . , n we have

K1 ·
2θ

2θ + ti
· lX(γi) ≤ lgrλX(γ′i) ≤ lgrλX(δi) ≤

π

π + ti
· lX(γi)

where θ is the angle corresponding to the standard collar neighbourhood around
γi on X. If γi is short enough, one can replace K1 with 1/(1 + lX(γi)).

ii) δ-bounding annulus: δi is contained in a hyperbolic Ri-tube around γ′i on
grλX. Here, Ri depends only on the length of γi and if γi is short enough,
we have Ri ≤ K2 · lX(γi)

1/4.

iii) seperation: Let γ is a simple closed curve on X disjoint from λ. Denote
by γ∗ the hyperbolic geodesic in the free homotopy class of γ with respect to
the hyperbolic metric on grλX.

Then the hyperbolic standard collar neighbourhood around γ∗ is disjoint
from all grafting cylinders on grλX and

K1 · lX(γ) ≤ lgrλX(γ∗) ≤ lX(γ)

If γ is short enough, one can replace K1 by 1/(1 + lX(γ)).

iv) γ-bounding annulus: γ is contained in a R∗-tube around γ∗ with respect
to the hyperbolic metric of grλX, where R∗ depends only on the length of γ
and satisfies R∗ ≤ K3 · lX(γ)1/4.

Proof. The lemma is proved by induction on the number of curves n in the multic-
urve. One procedes as follows

i) for n = 1
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1

c

α
δ

γ’

2

1

c2

α

Figure 3. The situation in lemma 4.1 ii). This figure depicts the
(hyperbolic) annular cover of grλX corresponding to γ′i (dotted central
circle). α1 and α2 are the boundary curves for the standard collar
around γ′i. c

1 and c2 are the boundary curves of the δ-bounding an-
nulus

This is a length estimate obtained by Diaz and Kim (Proposition 3.4 in [DK]).
They show that

2θ

2θ + max(ti)
· lX(γi) ≤ lgrλX(γ′i) ≤

π

π + ti
· lX(γi)

which coincides with our (stronger) claim for n = 1 and yields the upper bound on
lgrλX(γ′i) for all n. For convenience (and to emphasize why their length estimate also
works for δi) we will shortly summarize the proof given in [DK].

To see the upper bound one constructs an embedded holomorphic disc in the
universal cover of grλX, such that the imaginary axis is sent to a lift of the curve
δi. Identify the universal cover of X with the hyperbolic plane H2 and assume that
the imaginary axis is a lift of γi. To obtain the universal cover of grλX from H

2, we
have to cut along the imaginary axis and insert the sector {r · eiϕ, r > 0, π/2 ≤ ϕ ≤
π/2 + ti} (the resulting surface is to be understood multi-sheeted for large values
of ti) and then repeat the same picture equivariantly at other lift of all of the γj.

In particular, the map z 7→ z
π+ti

π yields an embedding of H2 in the universal cover

of grλX. The image of the straight arc connecting i and e
π

π+ti
lX(γi)i under this map

projects to δi on grλX. As holomorphic maps are contracting with respect to the
hyperbolic metrics, this gives the estimate

l(δi) ≤
π

π + ti
lX(γi)
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which yields the upper bound.
The lower bound follows by explicitly constructing a quasiconformal mapping be-

tween grλX and X (by collapsing the grafting cylinders) to estimate the Teichmüller
distance and then using a lemma by Wolpert ([Wol, lemma 3.1]) to relate Teichmüller
distance and hyperbolic length ratios and obtain the claim.

i) for some n ⇒ ii) for n
The fact that δi and γ′i are freely homotopic allows us to estimate the distance

from any point δi(s) on δi to γ′i in terms of their lengths (cf. [McM1, Chapter 2,
Theorem 2.23])

cosh2 d(δi(s), γ
′
i) ≤

cosh2(l(δi)/2) − 1

cosh2(l(γ′i)/2) − 1

In particular, with the upper bounds for l(δi) and the lower bounds for l(γ′i) from i),
we can use this formula to obtain the constants Ri which define the neighbourhoods
with the claimed property.

It remains to show the estimate for Ri. To this end, recall the estimate for θ
obtained in Proposition 2.2 to find using i)

l(γ′i) ≥ K1 ·
2θ

2θ + ti
li ≥ K1 ·

π − li
π − li + ti

where li = lX(γi). For the rest of the computation, we will drop the index i of l, t, γ
and δ to make the formulae easier to read. We claim that there is a K such that

cosh2(l(δ)/2) − 1

cosh2(l(γ′)/2) − 1
≤
(
1 +K

√
l
)2

Note that comparing derivatives at x = 0 yields

1 + x2 ≤ cosh2(x) ≤ 1 + x2 +
1

2
x4

near x = 0 and thus

cosh2(l(δ)/2) − 1

cosh2(l(γ′)/2) − 1
≤ (l(δ)/2)2 + 1

2
(l(δ)/2)4

(l(γ′)/2)2
.

Using the estimate above and l(δ) ≤ π/(π + t) · l we obtain

≤
(

π
π+t

)2 ( l
2

)2
+ 1

2

(
π

π+t

)4 ( l
2

)4

K2
1

(
π−l

π−l+t

)2 ( l
2

)2 =
1

K2
1

·
(

π
π+t

)2
+ 1

2

(
π

π+t

)4 ( l
2

)2
(

π−l
π−l+t

)2

Next, we note that
(

π

π + s

)(
π + s− l

π − l

)
≤ π

π − l
= 1 +

l

π − l
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and that 1/K2
1 ≤ (1 + l)2 for short curves γ (compare i)). This allows to further

estimate

cosh2(l(δ)/2) − 1

cosh2(l(γ′)/2) − 1
≤ (1 + l)2

((
1 +

l

π − l

)2

+
1

2

(
π

π + t

)2(
1 +

l

π − l

)2(
l

2

)2
)

As γ is assumed to be short, l is bounded, and thus the right hand side is smaller
than 1 +K ′ · l for some K ′ (independent of t, as π/(π + t) ≤ 1). But then there is

a K such that 1 +K ′ · l ≤ (1 +K
√
l)2 which proves our claim. From what we have

seen up to now we know that

Ri ≤ arccosh
(
1 +K

√
l
)

But cosh(x) ≥ 1 + 1
2
x2, and thus

1 +K
√
l ≤ cosh

(
K2 · l1/4

)

for an appropriate K2 – which proves statement ii).

i), ii) for some n ⇒ iii) for n
The idea is to show that the grafting cylinders around δi are contained in the

hyperbolic collar neighbourhoods of the γ′i. By the usual collar lemma this shows
that the collar around γ∗ is disjoint from the grafting cylinders. To do so, we estimate
the hyperbolic width of the grafting cylinders and compare this to the width of the
standard collars.

Let Ci be the extended grafting cylinder around γ′i – the union of the standard
hyperbolic collar neighbourhood of γi with the grafting cylinder. Its modulus is
given by

Mod(Ci) =
2θ + ti
lX(γi)

This can be seen by considering the universal covering of X by H2 such that the
imaginary axis is a lift of γi. Then the collar neighbourhood lifts to a regular
neighbourhood of this axis (which is a infinite circle segment with vertex angle 2θ).
Grafting at γi by ti amounts to inserting “lunes” at each lift of the γi (see section
2 of [McM2]). At the imaginary axis, such a lune is just an euclidean circle sector
with vertex angle ti, and therefore the extended grafting cylinder is obtained as the
projection of a circle sector of vertex angle 2θ+ti. As the modulus of such a cylinder
is given by log(w)/φ where w is the euclidean width and φ the total angle, the claim
follows. Also note that the core geodesic with respect to the complete hyperbolic
metric of Ci is just δi and the grafting cylinder is a round subannulus of Ci. In the
following, we will again drop the index i and denote lX(γi) by l.

For the complete hyperbolic metric of the extended grafting cylinder, the length
of the core curve is given by

l̃ := lC(δ) = π/Mod(C) =
π

2θ + t
l
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Consider now the universal covering H2 → C such that the imaginary axis is a lift
of the core curve δ. The grafting cylinder in C then lifts to a regular neighbourhood
of this axis (as it is a round subannulus). If 2ϕ denotes the vertex angle of this

segment, the modulus of the grafting cylinder is given by 2ϕ/l̃. As we know the
modulus of the grafting cylinder (ti/l) we obtain

ϕ =
π

2
· t

t+ 2θ
, φ := π/2 − ϕ =

π

2
· 2θ

2θ + t

Therefore the hyperbolic distance of δ to the boundary curves (in the complete
metric of the extended grafting cylinder) is given by

B := log
cos(φ/2)

sin(φ/2)

However, as holomorphic maps between complete hyperbolic surfaces are contract-
ing, B also bounds the distance of δ to the boundary of the grafting cylinder in the
hyperbolic metric of grλX.

On the other hand, the width of the standard collar is given by (see e.g. section
3.8 of [Hub])

M(x) =
1

2
log

cosh(x/2) + 1

cosh(x/2) − 1

By i) we know that lgrλX(γ′i) ≤ l′ := π
π+t

l and thus the collar width is larger than

M(l′). By ii) we know that δ ⊂ UR(γ′) where R = K2 ·l1/4 and therefore the grafting
cylinder is contained in a (B +R)-neighbourhood of γ′. Thus we are done once we
show that R+B ≤M(l′). Explicitly, this means

log

(
cosφ/2

sin φ/2

)
+K2 · l1/4 ≤ 1

2
log

cosh(l′/2) + 1

cosh(l′/2) − 1

⇔ e2K2·l1/4 1

(tan(φ/2))2
≤ cosh(l′/2) + 1

cosh(l′/2) − 1

Note that (tan2)′′ > 0 globally, and thus tan(x)2 ≥ x2. On the other hand, defining

h(x) =
cosh(x/2) − 1

cosh(x/2) + 1

we find h(0) = 0, h′(0) = 0, h′′(0) = 1/8, h′′′(0) = 0 and h(iv)(0) < 0 and therefore,
for small x, we have h(x) ≤ 1

16
x2. Hence it suffices to show

e2K2·l1/4 4

φ2
≤ 16 · l′−2 ⇔ e2K2·l1/4

l′2 ≤ 4φ2

Recalling the definitions of l′ and φ, this follows once

e2K2·l1/4

(
π

π + t

)2

l2 ≤ 4
π2

4

(
2θ

2θ + t

)2
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As θ < π/2 this is true, once e2K2·l1/4

l2 ≤ (2θ)2 – which will be satisfied, once l is
small enough.

It remains to show the length estimate. To this end, denote the hyperbolic stan-
dard collar around γ∗ on grλX by A. The modulus of A is determined by the length
of γ∗ alone, more precisely we have

Mod(A) = π

(
1 − 4

π
arctan

(
el/2 − 1

el/2 + 1

))
· 1

l

where l = lgrλX(γ∗), as can be checked using the explicit form of M given above.
As A is disjoint from all grafting cylinders, we see the same annulus on X: there

is a holomorphic inclusion A → X (by removing the grafting cylinders). As holo-
morphic maps are contracting, we have

lX(γ) ≤ lA(γ∗) =
π

Mod(A)
≤ lgrλX(γ∗)

K

with K = K(l) = 1 − 4
π

arctan
(

el/2−1
el/2+1

)
; so lgrλX(γ∗) ≥ K · lX(γ).

The equation lX(c) ≥ lgrλX(c) is true for any curve c which does not intersect λ
(see e.g. theorem 3.1. in [McM2]).

Finally, we need to prove that K ≥ 1
1+l

for short γ. But this follows, as K(0) = 1
and K ′(0) = −1/π, which shows the claim for small l.

i), iii) for some n ⇒ i) for (n+1)
As explained in the step i) for n = 1, the right hand side inequality in i) is

already known for all n.. It remains to show the left hand side. To this end, write
λ = λ′ + s · γ where λ′ is a multicurve with n curves and γ is disjoint from λ′.

By collapsing the extended grafting cylinder to the standard collar, one sees

dT (grλX, grλ′X) ≤ 1

2
log

(
2θ

2θ + s

)

By a lemma of Wolpert [Wol, lemma 3.1] this implies for the lengths

lgrλX(γ) ≥ 2θ

2θ + s
lgr′λX(γ)

But, as γ is disjoint from λ′ the length estimate from iii) yields

lgrλX(γ) ≥ K1
2θ

2θ + s
lX(γ)

By applying the argument to all γ in λ the claim follows.

i), iii) for some n ⇒ iv) for n
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This claim is proven analogous to the step i) for n ⇒ ii) for n. We know that
lgrλX(γ) ≤ lX(γ) =: l and lgrλX(γ∗) ≥ K1 · lX(γ). One now computes

cosh2(l(γ)/2) − 1

cosh2(l(γ∗)/2) − 1
≤ (l(γ)/2)2 + 1

2
(l(γ)/2)4

(l(γ∗)/2)2

≤
(

l
2

)2
+ 1

2

(
l
2

)4

K2
(

l
2

)2 ≤ (1 + l)2

(
1 +

1

2

(
l

2

)2
)

≤ 1 + C · l.

From here, one concludes the proof exactly as in the step i) ⇒ ii). �

Statements ii) (respectively iv)) of the preceding lemma show that from the point
of view of the hyperbolic metric on the grafted surface, the γ′i and δi (respectively
γ and γ∗) are not far apart.

We will need another formulation of this fact in terms of moduli. To this end,
note that the Ri (respectively R∗) neighbourhood will be an embedded annulus
once Ri (R∗) is small enough. As the collar width increases for shorter curves, while
Ri and R∗ decrease, there is a constant ǫ > 0 such that for ǫ-short curves the Ri

(R∗) neighbourhoods will be embedded annuli in the hyperbolic collars. For the
construction of the comparison maps we will always assume that this condition is
satisfied. In the sequel, we will call these neighbourhoods bounding annuli.

The boundary {z ∈ grλX, d(z, γ
′
i) = Ri} of such an annulus then consists of two

curves, which in the sequel we will denote by c1i and c2i (or, c1∗, c
2
∗ in the γ∗-bounding

case). Furthermore, denote the boundary curves of the hyperbolic collar around γ′i
(resp. γ∗) by α1

i and α2
i in such a way, that c1i (c1∗) is the component which is closer

to α2
i in the standard hyperbolic collar (also cf. figure 3)

Using this notation, we obtain

Lemma 4.2 (Modulus of bounding annuli). i) Let Cj
i be the annulus bounded by

α1
i and cj.
The moduli of Cj

i satisfy (for small lX(γi))

Mod(C1
i ) ≤

θ(l′i) +Ri

l′i
, Mod(C2

i ) ≥
θ(l′i) − Ri

l′i

where l′i = lgrsλ
(γi) and li = lX(γi) and Ri is the constant from lemma 4.1 ii).

In particular

Mod(C1
i )

Mod(C2
i )

≤ θ(li) +Ri

θ(li) −Ri

By symmetry, the same result holds if we replace α1
i by α2

i and switch the
roles of C1

i and C2
i .

ii) Let Cj
∗ be the annulus bounded by α1

∗ and cj. Then the inequalities from i) hold,
replacing Ri by R∗, where R∗ is the constant from 4.1 iv).
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Proof. Recall that ψ(r) denotes the angle corresponding to an diameter-2r-annulus
(cf. section 2). Then by definition of c1i and c2i and 4.1 ii) we have (as all involved
annuli are round subannuli of the annular cover, and thus moduli behave additively)

Mod(C1
i ) =

θ(l′i) + ψ(Ri)

l′i
, Mod(C2

i ) =
θ(l′i) − ψ(Ri)

l′i

As ψ(r) ≤ r for small r (cf. proposition 2.1) we see the first claim. Then we also
have

Mod(C1
i )

Mod(C2
i )

≤ θ(l(γ′i)) +Ri

θ(l(γ′i)) − Ri

But, as the map x 7→ (x+ 1)/(x− 1) is decreasing, and θ(l(γ′)) ≥ θ(l), we conclude
i). The statement in ii) follow in the exact same way, using 4.1 iv) instead of ii). �

4.3. (Pre-)Annulus maps. Now we are set to construct the pre-annulus and an-
nulus maps as sketched in section 4.1. We handle the cases for theorem 4.1 and 4.2
simultaneously. In order to do so, let us fix some notation for the rest of this section.

Suppose X is a hyperbolic surface, λ = t1γ1 + . . . + tnγn a weighted multicurve.
Let X ′ = grλX. Let γ be either one of the γi or a simple closed geodesic disjoint
from λ. Denote by δ either the flat core curve of the grafting cylinder corresponding
to γ = γi or the (image of the) curve γ on X ′ respectively.

Let γ′ be the hyperbolic geodesic on X ′ in the free homotopy class of γ. Denote
the boundary curves of the standard hyperbolic collar around γ′ by α1 and α2. (also
cf. figure 3 and 4) Suppose the length of γ is short enough to ensure that the
bounding annulus on X ′ is contained in this standard hyperbolic collar around γ′.

Using this notation, we have

Lemma 4.3 (pre-annulus maps). There are maps φj (j = 1, 2) with the following
properties

i) φj is defined on the (closed) annulus bounded by αj and γ′

ii) φj is an homeomorphism onto the annulus bounded by αj and δ.
iii) φj restricted to αj is the identity.
iv) φj is quasiconformal, with quasiconformality constant K satisfying

log(K) ≤ C · lX(γ)1/4

for some universal constant C.

Proof. To describe the construction of the map, we look at the hyperbolic annu-
lar cover of X ′ corresponding to γ′ (as depicted in figure 3). The annular cover
is the unique holomorphic covering map p : X ′

γ′ → X ′ with π1(X
′
γ′) = Z and

im(p∗(π1(X
′
γ′))) = 〈[γ′]〉 ⊂ π1(X

′).
As X ′

γ′ is an annulus, it can be (biholomorpically) embedded into C as a round
annulus. This embedding yields coordinates for the hyperbolic collar neighbourhood
which are well-suited for our construction. In these coordinates both α1, α2 and γ′
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correspond to round circles, which (by slight abuse of notation) we will also denote
by the same symbol.

Normalize, such that α1 becomes the unit circle S1 ⊂ C. Then γ′ = r · S1 for
some r < 1.

Denote by f the biholomorphic map sending the annulus bounded by S1 and δ to
a round annulus with S1 as outer boundary circle and s · S1 as inner. By Schwarz
reflection, f extends to a map of the boundary curves (which are analytic) and
without loss of generality, we can assume that f(S1) = S1, f(1) = 1.

1

1
S1

f

A B

c

2

γ

δ

c

’

1

c

S

Figure 4. Constructing the annulus map

Denote the annulus bounded by the unit circle and γ′ = r · S1 (on the left hand
side of figure 4) by A and the one bounded by the unit circle and f(δ) = s · S1 (on
the right hand side) by B.

The annulus map will be defined as a composition of a scaling and a shearing (cf.
section 3), namely

φ1 = f−1 ◦ Sf ◦ sA,B

Here (by abuse of notation) f also denotes the lift of f |S1 to logarithmic coordinates,
and the shearing map is taken with respect to the outer boundary. Note that
f is increasing (in logarithmic coordinates), as it is orientation preserving (as a
biholomorphic map B → f(B)). By our normalization it also fixes 0.

By construction, this map will satisfy conditions i) to iii). By the propositions
from section 3 the quasiconformality constants depend on the quotient of the moduli
of A and B (for the scaling part) and the Bilipschitz constant of f in angular
coordinates (for the shearing).

Now note that
Mod(C2)

Mod(C1)
≤ Mod(B)

Mod(A)
≤ Mod(C1)

Mod(C2)
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where Ci are the annuli bounded by the unit circle and ci (cf. figure 4)
On the other hand, f maps C2 into C1, so by lemma 3.2 (Controlling boundary

distortion), f is Lipschitz on S1 with maximal dilatation Mod(C1)/Mod(C2). f−1

maps B into C1, so the same lemma yields that f−1 is Lipschitz with dilatation
Mod(C1)/Mod(B) ≤ Mod(C1)/Mod(C2). So in fact, f is Bilipschitz with this
constant.

The scaling dilation satisfies

log(K(SA,B)) ≤ log

(
Mod(C1)

Mod(C2)

)
≤ B − 1

for B = Mod(C2)/Mod(C1). The constant for the shearing satisfies (proposition 3.1
(shearing maps))

log(K(Sf )) ≤ (const.)(B − 1)

Using the previous estimates (lemmas 4.2 (Modulus of bounding annuli) and 4.1
(bounding lemma)) we find for the appropriate constant R

B =
Mod(C1)

Mod(C2)
≤ θ(l) +R

θ(l) − R
= 1 +

2R

θ(l) − R
≤ 1 + (const.)l1/4

which yields the desired result. �

The two pre-annulus maps φ1, φ2 constucted in the proof of the previous lemma
glue with the identity on the complement of the standard collar to a map

(grλX) \ γ′ → (grλX) \ δ
of the same quasiconformality constant (here, by Z \ γ we denote the Riemann
surface with boundary obtained by cutting Z at γ) In order to extend these maps
to the corresponding grafting rays, we have to modify them to have a compatible
behaviour in sending γ′ to δ.

Consider first the situation of theorem 4.1. To obtain grηgrλX from grλ, we
have to glue in flat cylinders of height si and circumference l(γ′i) at the hyperbolic
geodesics γ′i (with matching length parameters). To obtain grηe+λX from grλ, we
glue in euclidean cylinders at the flat core curves δi of the already inserted grafting
cylinders (again, with matching length parameters in the flat metric of the grafting
cylinders)

Thus, in the case γ = γi, we want to modify the pre-annulus map φj such that it
sends the curve γ′ parametrized by S1 in constant speed in hyperbolic coordinates
to the curve δ parametrized by S1 in constant speed in the flat metric of the already
inserted grafting cylinder.

Similarly, in the situation of theorem 4.2, we obtain grηgrλX from grλX by in-
serting flat cylinders at the geodesic representatives of η on grλX, whereas to obtain
grη+λX we need to insert them at the “old” geodesic representatives of η given by
the hyperbolic metric on X. Hence, in this case, we want to modify the pre-annulus
map to send γ′ parametrized in constant hyperbolic speed with respect to grλX to
γ parametrized in constant hyperbolic speed with respect to X.
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In both cases, we call parametrizations of γ, γ′ and δ by S1 with constant speed
in the respective metrics the natural parametrizations. Using this terminology, we
have

Lemma 4.4 (annulus maps). There are maps Φj (j = 1, 2) with the following
properties:

i) Φj is defined on the (closed) annulus bounded by αj and γ′

ii) Φj is a homeomorphism onto the annulus bounded by αj and δ.
iii) Φj restricted to αj is the identity.
iv) Φj maps γ′ in its natural parametrization to δ in its natural parametrization
v) Φj is quasiconformal, with quasiconformality constant K satisfying

log(K) ≤ C · l(γ)1/4

for some universal constant C.

1

annular cover
lift into

uniformize

D

E’’

C’’

D’’

B

C

D’

F

γ

δ δ

δ

G’

α1 α

Figure 5. Comparison of the hyperbolic annular cover (upper left
corner) to the natural charts around δ (on the bottom). All labelled
annuli have δ as their inner boundary
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Proof. Consider the setting as depicted in figure 5 and recall the notation from the
proof of lemma 4.3. In addition to the hyperbolic annular cover and the uniformiza-
tion of B, we now need suitable charts for a cylinder C ′′ around δ, in which the
natural parametrization has an easy description.

In the situation where γ is disjoint from λ, one can simply use the hyperbolic collar
neighbourhood of γ on X as C ′′ and obtain charts by biholomorphically embedding
this as a round annulus into C (also see the proof of lemma 4.3).

If γ = γi, one uses the extended grafting half-cylinder as C ′′ – that is the annulus
bounded by δ and the “old” boundary curves for the standard hyperbolic collar
around γ on X.

To obtain charts, note that C ′′ is (projectively) of the form

C ′′ = Sθ
t /
〈
z 7→ el(γ)

〉
, Sθ

t = {r · eiϕ, r > 0, π/2 − θ ≤ ϕ ≤ π/2 + θ + t} ⊂ C
∗

where θ = θ(l) is the angle corresponding to the standard hyperbolic collar on
X. (see the proof of lemma 4.1 and [DK] or [McM2] for more details) This cylinder
carries a natural flat metric realizing it as C ′′ = γ×[−θ, t+θ] such that γ×[0, t] ⊂ C ′′

is exactly the natural flat metric on the grafting cylinder.
It also has an embedding C ′′ → C (using the exponential function) such that

closed geodesics (of the flat metric) parametrized in unit speed correspond to round
circles in C parametrized in constant angular speed.

As C ′′ is an annulus on the surface with core curve homotopic to γ′, we can
biholomorphically lift it into the hyperbolic annular cover (though not necessarily
into the collar) – denote this lift by C.

The pre-annulus map φj sends the hyperbolic geodesic γ′ in natural parametriza-
tion to f(δ) parametrized by constant speed (in the uniformizing chart) as it is the
composition of a scaling and a shearing along αj (which fixes f(δ)), then sends it
back using f−1.

Thus, the distortion we have to compensate is the distortion of F (cf. figure 5)
on the inner boundary circle, where F is the composition of f−1 and the inverse of
the lift map C ′′ → C. Note that F is only defined in some neighbourhood of δ.

We would now like to postcompose the pre-annulus maps with shearing maps
undoing the distortion of F .

However, to apply the estimate from proposition 3.1 (shearing maps), the shear
parameter has to fix a point on the boundary circle.

To ensure this here, we have to apply a twist map of B first, with a twisting
amount of less than 1. Using the estimates for twist maps (proposition 3.3) and
noting that Mod(B) ≥ T/l for some constant T we see

logK =
2√

1 + 4Mod(B)2 − 1
≤ 2

2Mod(B) − 1
≤ 2l

2T − l

which is less than a constant times l.
As the logarithims of quasiconformality constants behave additively under com-

position, we are done once we show that the unshearing map satisfies the desired
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dilatation bound. This however, follows using lemma 3.1 and the following proposi-
tion.

Proposition 4.5 (distortion of F ). The restriction of F to the inner boundary circle
(in above context) is L-bilipschitz with respect to the angular metric, where

L ≤ (const.) · l1/4 + 1

Proof. Let l = lX(γ), l′ = lgrλX(γ′). Denote by A the standard hyperbolic half-
collar on grλX around γ′. Then we have Mod(A) = θ(l(γ′))/l(γ′). Let B (as before)
be the annulus bounded by α1 and δ. By lemma 4.2 (moduli of bounding annulus)
we know for the appropriate R

θ(l′) +R

l′
= Mod(C1) ≥ Mod(B) ≥ Mod(C2) ≥ θ(l′) − R

l′

The modulus of the extended grafting cylinder can be obtained by just adding the
modulus of the collar and the grafting cylinder (see the proof of lemma 4.1). Thus,
in the case where γ = γi, we have

Mod(C) = Mod(C ′′) =
t/2 + θ(l)

l
If on the other hand γ is disjoint from λ and thus C is the “old” collar neighbourhood
of γ, we have

Mod(C) =
θ(l)

l
It is well-known that there is an universal constant κ, such that any annulus of
modulus M in C contains a round subannulus of modulus ≥M−κ (cf. e.g. [McM1,
Chapter 2]) as long as M is large enough (and as l is small we can always assume
this here).

We now constuct another annulus D, distinguishing two cases: if α1 is inside C,
we just set D = B. Otherwise let D be the maximal subannulus in C having a
round outer boundary and δ as inner boundary. In that case, we have Mod(D) ≥
Mod(C) − κ. In both cases, denote the image of D under the uniformizing map by
D′, the preimage under the lift-map by D′′.

The last two annuli we need are the corresponding maximal round subannuli:
E ′′ ⊂ D′′ and G′ ⊂ D′. Now we are set to use lemma 3.2 (controlling boundary
distortion)
F maps G′ holomorphically into D, then into C ′′. Thus on δ it is Lipschitz with

dilatation
Mod(C ′′)

Mod(G′)
≤ Mod(C)

Mod(D) − κ
≤ Mod(C)

Mod(B) − κ
or

Mod(C)

Mod(C) − 2κ

depending how D was defined (see above). Similarly, the inverse mapping F−1 sends
E ′′ into B, thus its Lipschitz constant on δ is

Mod(B)

Mod(E ′′)
≤ Mod(B)

Mod(D) − κ
≤ Mod(B)

Mod(B) − κ
or

Mod(B)

Mod(C) − 2κ
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Obviously there are two types of expressions we have to estimate. Let us start with

L =
Mod(C)

Mod(C) − 2κ
= 1 +

4κ

Mod(C) − 2κ

As Mod(C) ≥ (const.)/l, L−1 in this case is actually smaller than a constant times
l. Similarly, as

Mod(B) ≥ θ(l′) − R(l)

l′
≥ const.

l
we can handle the third expression.

For the other two, we use the estimates for θ and R we have obtained before and
θ(l) ≤ π/2. Consider first the case γ = γi. Then

L =
Mod(C)

Mod(B) − κ
≤

t/2+θ(l)
l

θ(l′)−R
l′

− κ
=

l′

l
(t/2 + θ(l))

θ(l′) − R− κl′
≤

π
π+t

· t+π
2

π
2
− l′

2
− R− κl′

Thus L− 1 is smaller than

L− 1 ≤ (1
2

+ κ)l′ +R
1
2
π − (1

2
+ κ)l′ − R

The nominator is smaller as (const.) · l1/4, and the denominator is larger than a
constant (for small l). This yields the claim. Next, consider the case where

L =
Mod(B)

Mod(C) − 2κ
≤

θ(l′)+R
l′

t/2+θ(l)
l

− 2κ
≤ θ(l′) +R

l′

l
(t/2 + θ(l)) − 2κl′

Recall that (cf. lemma 4.1)

l′

l
≥ K1

2θ

2θ + t
,

l′

l

2θ + t

2
≥ K1θ ≥

1

1 + l
θ ≥ 1

1 + l
· π − l

2

Thus we can further estimate

L ≤ (θ +R)(1 + l)
π−l
2

− 2κl′(1 + l)
≤

π
2

+R+ lθ + l · R
π
2
− l

2
− 2κl′(1 + l)

So at the end, we obtain the estimate

L− 1 ≤ R+ lθ + l · R+ l/2 + 2κl′(1 + l)
π
2
− l

2
− 2κl′(1 + l)

Again, the denominator is larger than some constant, while the nominator can be
estimated as less than a contant times l1/4.

It remains to show the estimates in the case where γ is disjoint from λ. Here we
have

L =
Mod(C)

Mod(B) − κ
≤

θ(l)
l

θ(l′)−R
l′

− κ
=

l′

l
θ

θ − R− l′κ
≤ θ

θ − R− l′κ

and thus

L− 1 ≤ R+ l′κ

θ − R− l′κ
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Again, the denominator is larger than some constant, while the nominator can be
estimated by a constant times l1/4. The final case is

L =
Mod(B)

Mod(C) − 2κ
≤

θ(l′)+R
l′

θ(l)
l
− 2κ

≤
l
l′
(θ(l′) +R)

θ(l) − 2κl′
≤

1
K

(θ(l′) +R)

θ(l) − 2κl′
≤ (1 + l)(π

2
+R)

π−l
2

− 2κl′

Thus,

L− 1 ≤ πl +R+ R · l + 2κl′

π−l
2

− 2κl′

which as above yields the claim. This finishes the proof of proposition 4.5 and lemma
4.4. �

4.4. Controlling the twist. As a last step, we have to bound – and compensate –
the twist induced by the annulus maps Φj . Twist may be introduced by two different
sources.

First, there is the twist created by our basic maps: scaling does not create any
twist, and shearing induces twists of amount strictly less than one. As we use a
definite, finite number of basic maps to construct the annulus maps, we do not care
about these twists – compare the proof of lemma 4.4 to see that the error bounds
for an untwisting of a fixed amount is of the right magnitude.

The other source for twist is the uniformizing map f of the annulus B (recall the
construction in lemma 4.3 (pre-annulus maps) and compare figure 6) To estimate
this twist, we use logarithmic coordinates for the annulus A. Consider a straight
arc c in the (uniformized) annulus B (right hand side of figure 6). The fact that
f induces a twist of amount n is equivalent to saying that lift of f−1 traverses n
fundamental domains.

We can use this formulation to prove

Lemma 4.6 (Twist bound for uniformizing map). In the context of the proof of
lemma 4.3, the map f induces a twist of less than n, where

(n− 2)2 ≤ Mod(C1)2 − Mod(C2)2

Proof. Consider the quadrilateral Q bounded by c, S1 and f(δ) in B. As c is a
straight arc in the round annulus B, we can label the sides of Q such that

Mod(Q) = Mod(B)

As f is biholomorphic on B, the inverse image Q′ = f−1(Q) is a quadrilateral of the
same modulus. Furthermore, the modulus of Q (and Q′) is the extremal length of
the family Γ of curves connecting the top and bottom side of Q (or Q′) with respect
to the chosen labelling. Thus

ext(Γ) = Mod(B) ≤ Mod(C1).

Now consider the metric on Q′ induced by the euclidean metric on C1 (that is, in
logarithmic coordinates). Any arc in Q′ connecting the bottom and top side than
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1

1
S1S

c

A

c

δ
f

B

c

π

h

h1

2

n

γ’

1

c2

Figure 6. Controlling the twist of the uniformizing map f

has to traverse at least n−2 horizontal segments (of length 1), and at least a height
of h2. Thus, the euclidean length l of any such arc satisfies

l2 ≥ (n− 2)2 + h2
2

The area of B in this metric satisfies

area(B) ≤ h1 · 1
Thus, by definition, we know that the extremal length of the family Γ satisfies

ext(Γ) ≥ (n− 2)2 + h2
2

h1

Using the estimate above, we see

(n− 2)2 + h2
2

h1
≤ Mod(C1)

and, recalling that hi = Mod(Ci),

(n− 2)2 ≤ Mod(C1)2 − Mod(C2)2

�
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So we need to compensate a twist of at most
√

Mod(C1)2 − Mod(C2)2 + 2

Again, a constant number of twists yields an error which is of the right magnitude
(≤ C

√
l), so we only have to worry about the first part. To do so, we first estimate

(
Mod(B)

n

)2

≥ Mod(C2)2

Mod(C1)2 − Mod(C2)2
=

1

L− 1

where L = (Mod(C1)/Mod(C2))2. Now we plug this into proposition 3.3 (twist
maps), to obtain that the quasiconformality constant of the untwisting map satisfies

log(K) ≤ 2√
1 + 4 1

L−1
− 1

Using lemma 4.2 and the estimate R ≤ T · l1/4 for the appropriate R (and some
constant T ), as well as θ(l) ≥ π/2 − l/2 we compute

L ≤
(
θ(l′) +R

θ(l′) − R

)2

≤
(
π/2 − l′/2 + T · l1/4

π/2 − l′/2 − T · l1/4

)2

=

(
1 +

2T · l1/4

π/2 − l′/2 − T · l1/4

)2

Furthermore, for small l, we can estimate this to be (for some contants k, k′)

≤ (1 + k · l1/4)2 ≤ 1 + k′ · l1/4.

Thus, √
1 + 4

1

L− 1
≥
√

1 +
4

k′ · l1/4
≥ 2√

k′ · l1/8

This gives
2√

1 + 4 1
L−1

− 1
≤ 2

2√
k′·l1/8

− 1
=

2 · l1/8

2√
k′
− l1/8

≤ C · l1/8.

Summarizing this calculation, we see

Lemma 4.7 (Quasiconformality of untwist map). The quasiconformality constant
K of the untwist map satisfies

logK ≤ C · l1/8

for small l and a universal constant C.

Lemma 4.8 (comparison maps). There is a comparison map Ψ : X → X ′ satisfying

i) Ψ sends γ′ in natural parametrization to δ in natural parametrization.
ii) Ψ preserves the marking on X ′.
iii) Ψ is quasiconformal with dilatation K, and

logK ≤ C · lX(γ)1/8

for some universal constant C.
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Proof. We compose the annulus maps from section 4.3 with the necessary untwist
maps to obtain property ii). By the lemma above, property iii) is satisfied. �

4.5. Finishing the proof. We are now equipped to prove the theorems stated in
section 4.

Proof of the iteration theorem. Let us assume all γi are short enough to apply the
estimates of the preceding sections. This defines ǫ̃. The constant C is given by the
universal constant from corollary 4.8.

Consider the multicurve

Γ =

(
s1 ·

lX(γ1)

lgrλX(γ1)
+ t1

)
γ1 + . . .+

(
sn · lX(γn)

lgrλX(γn)
+ tn

)
γn.

Note that grΓX can be obtained from X ′ by inserting a flat cylinder of circumference

l = lX(γi) and height lX(γi)
lX′ (γi)

·si at the flat core curve δi of the already inserted grafting

cylinder (see section 4.3).
On the other hand, grηX

′ is obtained from X ′ by cutting at γ′i and gluing in a
flat annulus of height si and circumference lX′(γ′i). By the construction of Γ, the
moduli of the glued in cylinders are equal.

Now we use the comparison maps constructed in lemma 4.8. As all the construc-
tions took place in the hyperbolic collar around γ′i, the comparison maps for all γ′i
can be combined to a single map Φ : X → X ′, which has the properties stated in
lemma 4.8 for each γi simultaneously.

Because of property i) of the comparison maps and the fact that the moduli of
the glued in cylinders are equal they extend to a map

grη(grλX) → grΓX

of the same quasiconformality constant – which is of the right magnitude (property
iii)). As the marking is preserved (property ii)), this yields the desired bound on
Teichmüller distance.

It remains to show that grΓX and grηe+λX are close to each other. As both are
obtained as a grafting on the same support, it is enough to compare the heights of
the respective grafting cylinders. But by lemma 4.1 we know

π + ti
π

≤ lX(γi)

lgrλX(γi)
≤ K−1 2θ + ti

2θ
.

Thus, we need to estimate

si ·K−1 2θ+ti
2θ

+ ti

si · π+ti
π

+ ti
=

si

ti
·K−1 2θ+ti

2θ
+ 1

si

ti
· π+ti

π
+ 1

≤ K−1 2θ+ti
2θ

π+ti
π

as (1 + x)/(1 + y) ≤ x/y for x ≥ y. But is is just

K−1 π

2θ

2θ + ti
π + ti

≤ K−1 π

2θ
≤ (1 + li)

π

π − li
≤ 1 + const · l
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Thus, the logarithm of the quasiconformality constant of the rescaling map is smaller
than some constant times l – from which follows the claim. �

Proof of the seperation theorem. Using the argument of the proof above, we find
that

dT (grηgrλX, grΓX) ≤ C ·
(

max
i=1,...,m

lX(γi)

)1/8

where

Γ = η +
lX(γn+1)

lgrλX(γn+1)
· tn+1γn+1 + . . .+

lX(γm)

lgrλX(γm)
· tmγm

However, by lemma 4.1 iii) we know that

1 ≤ lX(γn+i)

lgrηX(γn+i)
≤ 1

K1
≤ 1 + lX(γn+i)

Hence, if we build a quasiconformal map grγX → grη+λX as above which just

rescales the cylinders from height lX(γn+i)
lgrλX(γn+i)

·tn+i to height tn+i, its quasiconformality

constant will be less than 1 + max(lX(γn+1)). This yields the claim. �

5. Holonomy lifts and grafting rays

We now turn to the results on holonomy lifts of Teichmüller space sketched in
the introduction. Recall that the slices Tλ(S) for integral λ are exactly the projec-
tive structures having Fuchsian holonomy by Goldman’s theorem. Also note that
there are two natural parametrizations of the slice Tλ: one can use the geometric
coordinate Grλ(X) = Z 7→ X and the conformal coordinate Grλ(X) = Z 7→ π(Z).
The difference between these coordinates is measured by the conformal grafting map
grλ : T (S) → T (S).

Theorem 5.1 (Holonomy lifts of grafting rays). Let X be a hyperbolic surface and
λ be a short integral lamination on X (i.e. all curves are shorter than the universal
constant from theorem 4.1).

i) There is a r > 0, such that for each n the holonomy lift

gn(s) = grnλ (grsλX)

is contained in the r-tube around the grafting ray s 7→ grsλX.
ii) There is a R > 0 such that the following holds. Let η be an short integral

lamination, disjoint from λ. Then the holonomy lifts

gη(s) = grη (grsλX)

are contained in the R-tube around the grafting ray grsλ(grηX) for each η as
above.
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Proof. The first statement follows by using theorem 4.1. In fact, once the length of
λ is shorter than ǫ̃, we know that

dT (grnλ (grsλX) , gr(nλ)e+(sλ)X) ≤ C · max (lX(γ))1/8

To see that gr(nλ)e+(sλ)X is close to the grafting ray in direction λ, let λ = t1γ1 +
. . .+ tmγm and recall the definition

(nλ)+̃(sλ) =

(
n · t1 ·

π + t1 · s
π

+ s · t1
)
γ1 + . . .

(
n · tm · π + tm · s

π
+ s · tm

)
γm

Thus, the weight of the curve γi is
(
n · π + ti · s

π
+ s

)
ti

We now want to rescale the cylinders as in the proof of theorem 4.1. To this end,
let t = mini(ti) and define f(s) = n · π+t·s

π
+ s. Then the quotients of the heigths

satisfy
n · π+ti·s

π
+ s

f(s)
=
n · π+ti·s

π
+ s

n · π+t·s
π

+ s
≤ π + s · ti

π + s · t ≤ ti
t

and therefore the quotients of the heights can be estimated from the weights of λ
alone. This however implies, that there is a quasiconformal map

gr(nλ)e+(sλ)X → grf(s)λX

whose dilatation is bounded by log maxi ti
mini ti

. This shows the first claim.
The second claim follows by simply applying theorem 4.2 to the situation in

ii). �

Using this theorem we obtain the statement about Teichmüller geodesics men-
tioned in the introduction

Corollary 5.2 (Holonomy lifts of Teichmüller geodesics). There is a ǫ > 0 such
that the following holds. Let δ > 0 and an integral lamination λ be given. Consider
the set U ⊂ T (S) of all hyperbolic surfaces on which λ has length less than ǫ and
each simple closed curve disjoint from λ has length at least δ.

Then there is a r > 0, such that for each X ∈ U and n ∈ N the holonomy lift

gn(s) = grnλ (ρλ,X(s))

of the Teichmüller geodesic ρλ,X through X in direction λ is contained in the r-tube
around the geodesic ρ.

Proof. Let X ∈ U be given. We first show that there is a r = rX > 0 that fulfills
the claim each ray starting in X. Using the triangle inequality it suffices to bound

dT (grnλρλ,X(s), grnλgrs′λ(X)) + dT (grnλgrs′λ(X), grt′λ(X)) + dT (grt′λ(X), ρλ,X(t))

By a theorem of Diaz and Kim [DK, theorem 4.3] there is a R such that for each t
there is a t′ with

dT (grt′λX, ρλ,X(t)) < R
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By the preceding theorem, the middle term is bounded by some uniform constant
(if s′ is chosen appropriate to t′).

Thus, it remains to estimate the first term. To do so, we use Minsky’s product
region theorem [Min, theorem 6.1]. Note that along the grafting ray t 7→ grtλY the
length of each curve disjoint from λ has length bounded from below and above. This
is due to the fact that grafting along λ decreases the length of curves disjoint from
λ (see [McM2, theorem 3.1]). By the collar lemma this also implies that no curve
disjoint from λ can become too short. The same is true for the Teichmüller geodesic
ρλ,X . Hence, the projections Π0(grnλρλ,X(s)) and Π0(grnλgrs′λX) (in the notation of
[Min, theorem 6.1]) are contained in a compact subset of T (S \ λ).

It remains to show that Πi(grnλρλ,X(s)) and Πi(grnλgrs′λX) are close in H2. Using
the theorem of Diaz and Kim again, we see that this is the case for Πi(ρλ,X(s)) and
Πi(grs′λX). However, using lemma 4.1 we see that the quotient

lgrnλρλ,X(s)(γi)

lgrnλgrs′λ(X)(γi)

of the lengths of a curve γi ⊂ λ on grnλgrs′λX and grnλρλ,X(s) is bounded.
On the other hand, lemma 4.6 (or, alternatively, [DK, proposition 3.5]) implies

that the product of the length of γi and the twist around γi on grnλY is bounded
independent of n if λ is short on Y . Therefore, the projections Πi(grnλρλ,X(s)) and
Πi(grnλgrtλX) stay bounded distance apart in H2 for all n. Now the product region
theorem implies the claim.

As all estimates above depend continuously on the geometry of Π0(X), for any
compact K ⊂ T (S \ λ) there is a constant r such that the claim is fulfilled for any
Y ∈ U with Π0(Y ) ∈ K. As the mapping class group of S \ λ acts cocompactly on
Π0(U) the desired statement follows. �

To prove a theorem concerning grafting rays through holonomy lifts, we first
introduce a convenient notation for iterated grafting

grn
λX := grλ(grλ(. . . grλ︸ ︷︷ ︸

n times

(X) . . . ).

Theorem 5.3 (Iterated holonomy lifts). Fix a closed oriented surface S and a
simple closed curve γ. Let X be a hyperbolic structure on S, such that γ is shorter
than ǫ̃. Consider the grafting ray

g0(t) = grtγX

and the iterated holonomy lifts

gn,m(t) = grn
2πmγ(grtγX)

Then for any n,m ∈ N, gn,m is contained in the r-tube around g0, where

r = C · (lX(γ))1/8.
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Proof. Define

ln,m := lgrn
2πmγX(γ)

As each 2πm-grafting decreases the length of γ by at least a factor of 1/3 (compare
lemma 4.1 i)) we have

ln,m ≤
(

1

3

)n

lX(γ)

Using theorem 4.1 we obtain

dT (gn+2,m(t), gr(2πmγ)e+(2πmγ)gn,m(t)) ≤ C · (ln,m)1/8

However, (2πmγ)+̃(2πmγ) = S1γ for some S1. Therefore, we can iterate

dT (grS1γgn,m(t), gr(S1γ)e+(2πmγ)gn−1,m(t)) ≤ C · (ln−1,m)1/8.

By repeating this estimate and combining it with the inequality for ln,m quoted
above, we see

dT (gn+2,m(t), grL(n,m,t)γX) ≤ C · (lX(γ))1/8 ·
n∑

k=0

(
1

31/8

)k

for some L(n,m, t). But, as the geometric series is converging, the sum on the right
hand side of the inequality is uniformly bounded in n and the theorem follows. �

Theorem 5.4. Let X be any hyperbolic structure on S and let m ∈ N be given.
Then there is a R such that for any n ∈ N, gn,m is contained in the R-tube around
g0.

Proof. Once K is big enough, theorem 5.3 yields that gK+n,m is contained in a r-tube
around gK,m.

But dT (X, gr2πmγX) < K(l,m) for some K(l,m) if the length of γ on X is smaller
than l (collapse the extended grafting cylinder to the old collar, see [DK, proof of
proposition 3.4] for more details on this argument). As the length of γ decreases
along the grafting ray (lemma 4.1), this gives that gK,m is contained in some tube
around g0 by the triangle inequality. �

Corollary 5.5 (holonomy lifts follow Teichmüller geodesic ray). The iterated holo-
nomy lifts gn,m of a grafting sequence are contained in a tube around the Teichmüller
geodesic through X defined by γ.

Proof. This follows from theorem 5.3 and the fact that grafting rays are bounded
distance apart from the corresponding Teichmüller geodesic (see [DK, theorem 4.3])

�

If we do not consider the holonomy lifts of a grafting ray, but instead grafting rays
through holonomy lifts of the starting point, we get the following stronger result
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Theorem 5.6 (Grafting rays through holonomy lifts accumulate). Let X be any
hyperbolic surface and γ a simple closed geodesic on X. Consider the grafting rays

cn,m(t) = grtγ(grn
2πmγX).

For large values of n, the cn,m accumulate exponentially fast

dT (cn+1,m(t), cn,m(2π + an,mt)) ≤ C · qn

for some 0 < q < 1, an,m > 1 and a constant C depending on X. In particular, these
rays accumulate in the Hausdorff topology on Teichmüller space.

Looking at this result, one might hope that also the holonomy lifts of grafting rays
as in above theorem actually accumulate in the Hausdorff topology of Teichmüller
space. However, the methods developed in this paper seem unsuitable to prove this.

Proof. The proof is very similar to the preceding one. We use the same notation.
Once ln,m is small enough, theorem 4.1 yields

dT (cn+1,m(t), cn,m(Sn,mt+ 2πm)) ≤ C · (ln−1,m)1/8

Using the estimate

ln,m ≤
(

1

3

)n

lX(γ)

we then see the claim for short ln,m. Furthermore the same estimate also gives that
once n is large enough, ln,m will be arbitrary short, and the claim follows. �

We turn now to the case where we replace the curve γ in above iteration theorems
by a general integral lamination λ = 2πn1γ1 + . . . + 2πnmγm. Here, in general the
statements will be false.

To see this, consider a typical example in the setting of theorem 5.5. Let X be a
hyperbolic surface, and γ1, γ2 be two curves on the surface having equal length. Let
λ = πγ1 + 2πγ2. If we graft along λ, by lemma 4.1 we see for the lengths

K
2θ

2θ + π
≤ lgrλX(γ1)

lX(γ1)
≤ π

π + π
, K

2θ

2θ + 2π
≤ lgrλX(γ2)

lX(γ2)
≤ π

π + 2π

So, in each grafting step, the length of γ1 decreases roughly by a factor of 1/2, while
the length of γ2 gets scaled by 1/3. Thus the quotient of the lengths lgrn

λX(γ2)/lgrn
λX(γ1)

will tend to 0.
On the grafting ray corresponding to λ on the other hand, this length quotient will

be bounded away from 0 (again, using lemma 4.1) and thus, by Wolpert’s theorem,
the rays through the holonomy lifts will move further and further away from the
grafting ray.
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6. Geometric convergence of grafting rays and sequences

As another application of the methods developed above, we want to study geo-
metric limits of grafting rays and sequences. Let us first precisely define what we
mean by geometric convergence.

Definition 6.1 (geometric convergence). Let Z be a marked oriented Riemann
surface of genus g with 2n cusps. We say that a sequence X i of closed marked
oriented Riemann surfaces converges geometrically to Z if:

For any ǫ > 0, and any collection of neighbourhoods U1, . . . , U2n ⊂ Z of the cusps,
biholomorphic to the punctured unit disk ∆∗, there is a number N > 0 such that for
all k > N there are simple closed curves γk

1 , . . . , γ
k
n on Xk and a marked (orientation

preserving) homeomorphism

Fk : Xk \ {γk
1 , . . . , γ

k
n} → Z

(where the marking on Xk \ {γk
1 , . . . , γ

k
n} is the one induced by the marking on Xk)

such that F−1 restricted to Z \ (U1 ∪ . . . ∪ U2n) is (1 + ǫ)-quasiconformal.

Given a hyperbolic surface X and a weighted multicurve λ = t1γ1 + . . . + tnγn,
we now construct a candidate gr∞·λX for the “endpoint” of the grafting ray

Definition 6.2 (Endpoint of grafting ray). Cut X at λ to obtain a hyperbolic
surface Z with 2n boundary curves γ1

i , γ
2
i . Take 2n punctured disks with boundary

∆
∗
i,j = {0 < z ≤ 1} ⊂ C, i = 1, . . . , n, j = 1, 2

and glue S1 ⊂ ∆
∗
i,j (in unit euclidean speed) to γj

i on Z (in constant hyperbolic
speed). We call the resulting punctured Riemann surface gr∞·λ the endpoint of the
grafting ray.

Lemma 6.1 (grafting rays converge). Let X ∈ T (S) be a Riemann surface, λ a
weighted multicurve on X. Then the grafting ray s 7→ grs·λX converges geometrically
to gr∞·λX as s→ ∞.

Proof. We need to show, that for any collection of neighbourhoods Ui,j of the cusps
and for sufficiently large t there is a map

Fs : grsλX \ {γk
1 , . . . , γ

k
n} → gr∞·λX

which is (1 + ǫ)-quasiconformal outside the Ui,j .
Denote the glued in punctured discs on gr∞·λX by ∆∗

i,j as in definition 6.2 and
fix biholomorphic charts {z ∈ C, 0 < z < 1} → ∆∗

i,j. Let Aδ = {z ∈ C, 0 < z < δ}
be the radius-δ punctured discs in these charts.

As any neighbourhood of a cusp contains (the image of) Aδ for sufficiently small
δ, it suffices to constuct the maps Ft in the case where all Ui,j are of the form Aδ.

We now consider the situation around one of the γi. Once s is large enough to
ensure that the modulus of the grafting cylinder Cγi

at γi is larger than the modulus
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of both of the “remaining parts” ∆∗
i,j \ Aδ = {z ∈ C, δ < z < 1} for j=1,2 – that is

Mod(Cγi
) =

s

lX(γi)
≥ 2Mod(∆ \ Aδ)

we can constuct a homeomorphism of Cγi
\γi to ∆∗

i,1∪∆∗
i,2 which is conformal outside

Ui,1 ∪ Ui,2.
To do so, decompose the grafting cylinder into three round annuli

Cγi
= γi × [0, s · ti] = C1 ∪ C2 ∪ C3, Ci = γ × [ai, bi]

such that Mod(C1) = Mod(C2) = Mod(∆ \ Aδ).
Now we can map C1 conformally to ∆i,1 \ Ui,1, and C3 conformally to ∆i,2 \ Ui,2.

Choosing any homeomorphism C2 \ δi → Ui,1 ∪ Ui,2 we obtain the desired map. As
both gr∞·λX and grsλX are obtained by surgeries at γi, we can combine these maps
with the identity on the complement of the grafting cylinders on grsλX and obtain

Fs : grsλX \ δi → gr∞·λX

such that F−1
s is conformal outside the Ui,j . �

Note that the endpoint does not depend on the weigths on λ, but just its support.

We now want to prove a similar result for iterated grafting sequences. Let X ∈
T (S) be a base point and choose a weighted multicurve λ = t1γ1 + . . .+ tnγn on X.
Define the sequence

Xm = grm
λ X

Denote by γm
i the (hyperbolic) simple closed geodesic on Xm in the free homotopy

class of γi and by δm
i the flat core curve of the grafting cylinder around γi on Xm.

As a first step we need to understand how the endpoints of the λ-grafting rays
through the Xm behave.

Proposition 6.2 (comparing endpoints of grafting rays). Let Xm be the iterated
grafting sequence defined above.

Then the Teichmüller distance of the endpoints of the grafting rays through the
terms of the sequence decreases exponentially:

dT (gr∞·λX
m, gr∞·λX

m+1) ≤ C · qm

for some C > 0, 0 < q < 1.

Proof. First we note that any two punctured disks {0 < z ≤ 1} and {0 < z ≤ r} are
biholomorphic. Thus, cutting Xm at γm

i and glueing in two puncured disks yields
the same surface as glueing in a cylinder of length s · ti first and then glue punctured
disks to the core curve of that cylinder.

In other words, the endpoint gr∞·λX
m is biholomorphic to the surface obtained

by cutting grλX
m = Xm+1 at δm

i and glueing punctured disks to the boundary
components.
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Now, using the comparison maps as in the proof of theorem 4.1, we see that

dT (gr∞·λX
m, gr∞·λX

m+1) ≤ C ·
(

max
i=1,...,n

lXm(γi)

)1/8

As the length of γm
i on Xm decreases exponentially (lemma 4.1), we conclude the

proposition. �

Corollary 6.1 (Endpoints converge). The sequence gr∞·λX
m is a Cauchy sequence

in the Teichmüller space of S \⋃ γi.

As the Teichmüller space of a surface of finite type is complete, we see that the
sequence of endpoints gr∞·λX

m has a limit X∞. Now we are equipped to show the
desired convergence theorem.

Theorem 6.2 (Geometric convergence of grafting sequence). The λ-grafting se-
quence Xm converges geometrically to X∞.

Proof. Pick any neighbourhoods Ui,j of the cusps on X∞ and let ǫ > 0 be given.
By the preceding corollary 6.1, there is a M such that gr∞·λX

m has a dis-
tance small enough to X∞, such that there is quasiconformal homeomorphism
fm : gr∞·λX

m → X∞ with dilatation smaller than
√

1 + ǫ for all m > M .
Using theorem 4.1 as in the proof of theorem 5.3, we see that for large K > k

there is a quasiconformal map

gK,k : grK
λ X → grbλgrk

λX

whose quasiconformality constant converges to 1, as k → ∞. Here, λ̂ is some
weighted multicurve (the K − k times iterated weighted sum of λ) with the same
supporting curves as λ and weights which are unbounded in K.

Pick k large enough such that this quasiconformality constant is also less than√
1 + ǫ. Now fix f = fk : gr∞·λX

k → X∞ and set Vi,j = f−1(Ui,j). Recalling the
proof of lemma 6.1, there are weights Ri, such that once ri > Ri we have

Fr1γ1+...+rnγn : grr1γ1+...+rnγn
XN → gr∞·λX

N

such that F−1 is conformal on the complement of
⋃
Vi,j

Now we choose K large enough to ensure that the weights on λ̂ are larger than the
critical Ri. By composing gn,k with Fbλ for n > K we then obtain a map Xn → X∞

which has the desired properties. �
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