
ON THE EQUATION OF DEGREE NINE.

D. HILBERT (GÖTTINGEN).

The majority of the problems which I addressed in my lecture “Mathematical
Problems”1 , and which belong to various areas of mathematics, have since been
successfully addressed in manifold ways. In this note I want to return to some
of these problems; in particular to those which require for their solution purely
algebraic tools and methods, although the statements arise in other, non-algebraic
disciplines.

A first class of such problems concerns finiteness questions of certain complete
systems of functions – a question which we owe to the theory of algebraic invariants.
The easiest problem of this sort seems to me to be the following.

Let a number m of rational integral functions X1, . . . , Xm of a variable x be
given; then clearly any rational integral combination of the X1, . . . , Xm will after
substitution of the expressions again be a rational integral function in x. Neverthe-
less, there may well be rational fractional combinations of the X1, . . . , Xm which
yield, after the substitution, also a rational integral function of x.

The problem now consists in showing that one can find a finite number of such
fractional functions of X1, . . . , Xm from which, together with the X1, . . . , Xm them-
selves, every other such rational fractional function can be combined in a rational
integral way2.

This problem is an example which demonstrates that the situation, in which a
question is very easy to state and yet presents considerable difficulty in answering,
which is so common in arithmetic, can also occur in pure algebra.

A different class of algebraic problems of this sort can be found when one tries
to algebraically realise topologically important curves, surfaces or other geometric
objects, which might also be equipped with extra structures of the sort which
current topological enquiries study3.

A very simple example of this is the problem of projecting the projective plane
bijectively and everywhere regularly into finite space. In three-dimensional space
this is facilitated by the surface found by Boy in his dissertation – a surface which
intersects itself in a space curve with a triple point. The question arises if in
four-dimensional space there is a two-dimensional, singularity-free surface of such
connection and without self-intersection.

This question has a positive answer in the simplest way by the observation that
already a surface which is simply defined by quadratic functions allows the desired

1Given at the International Congress of Mathematicians at Paris: Nachrichten der Gesellschaft

der Wissenschaften zu Göttingen, sowie Archiv der Mathematik und Physik. 1900.
2Compare Problem 14 of the lecture cited above.
3This question should be seen as a generalisation of the 16th problem of my lecture
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map to the projective plane; namely the surface defined by the following formulas:

x = ηζ,

y = ζξ,

z = ξη,

t = ξ2 − η2,
ξ2 + η2 + ζ2 = 1;

here x, y, z, t denote the rectilinear coordinates of a four-dimensional space, and
the parameters ξ, η, ζ the rectilinear coordinates in a three-dimensional space. The
surface described by these formulas clearly is everywhere regular in four-dimensional
space, and since a point ξ, η, ζ of the sphere in three-dimensional point defines the
corresponding point x, y, z, t of the surface, as does its antipodal point −ξ,−η,−ζ,
the surface in the four-dimensional space does indeed have the connection of the
projective plane. It therefore only remains to show that the surface considered
does not have self-intersections, i.e. that to every point x, y, z, t of the surface
corresponds only one pair of value triples ξ, η, ζ and −ξ,−η,−ζ.

For this demonstration we observe that due to the formula

t2 + 4z2 = (ξ2 + η2)2

t and z uniquely determine ξ2 + η2, and since t itself is ξ2 − η2, from t and z the
values of ξ2 and η2 are uniquely determined, say = p and q respectively.

Assuming first that p > 0, we obtain using the equations

z = ξη and y = ζξ

for ξ, η, ζ the triples

ξ =
√
p, η =

z
√
p
, ζ =

y
√
p

and

ξ = −√p, η = − z
√
p
, ζ = − y

√
p

and therefore the claim is proved. If on the other hand p = 0 then we consider the
value q for η2. Is q > 0, we obtain using the equation

x = ηζ

for ξ, η, ζ the triples

ξ = 0, η =
√
q, ζ =

x
√
q

and

ξ = 0, η = −√q, ζ = − x
√
q

which again corresponds to the claim. If finally we also have q = 0 then we obtain
from the equation

ξ2 + η2 + ζ2 = 1

for ξ, η, ζ only the triples

ξ = 0, η = 0, ζ = 1

and

ξ = 0, η = 0, ζ = −1

and we observe that the claim is always true.
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The surface constructed by Boy which we mentioned above has recently been
presented in a very beautiful and intuitive way by F. Schilling; trying to represent
this surface algebraically in the simplest possible way belongs to the realm of our
problems.

A third class of problems of the described sort arises from nomography4. This
discipline suggests to characterise if functions of an arbitrary number of arguments
can be combined from functions of a certain fixed number of arguments.

From functions of a single argument we obtain by composition again only always
functions of a single argument. If we want to obtain functions of several variables,
then it is required to adjoin to the domain of functions of one argument at least one
function of two variables. We choose to this end the sum u+ v of the variables u, v
and immediately observe that the other three basic operations: subtraction, multi-
plication and division now also belong to the domain of the executable operations
– after all, they can be combined from functions of one argument and sum in the
following way;

u− v = u+ (−v),

u · v =
1

4
{(u+ v)2 − (u− v)2},

u

v
= u · 1

v
.

The first question that arises is if apart from the sum there even are any other
analytic functions which are essentially of two arguments, i.e. analytic functions
which cannot be combined from functions of a single argument and the sum. The
proof of the existence of such functions can be given in different ways. The most
far-reaching results in this direction are due to A. Ostrowski5. His results imply
that in particular the function of the two variables u, v

ζ(u, v) =
∑

n=1,2,3,...

un

nv

is one that cannot be combined from analytic functions of one argument and alge-
braic functions of an arbitrary number of arguments.

Another question concerns the existence of algebraic functions of this sort, i.e.
the question if there is an algebraic function which cannot be obtained from func-
tions of one argument and the sum.

In this direction the method of Tschirnhausen transformations gives some im-
portant insights. The method is as follows.

Let the equation of degree n

xn + u1x
n−1 + u2x

n−2 + · · ·+ un = 0

be given. To write the root x as a function of the n variables u1, u2, . . . , un, we use
the ansatz with indetermined coefficients

X = xn−1 + t1x
n−2 + · · ·+ tn−1

4compare Problem 13 of my lecture
5Compare his article: “Über Dirichletsche Reihen und algebraische Differentialgleichungen”,

Math. Zeitschrift 8, S. 241
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and derive the equation for X; which is

Xn + U1X
n−1 + · · ·+ Un = 0

where in general

Uh = Uh(t1, . . . , tn−1)

is a function of degree h in t1, . . . , tn−1. If one then determines the parameters
t1, . . . , tn−1 in such a way that

U1 = 0, U2 = 0, U3 = 0

holds, then our original equation can be modified to have the form

Xn + U4X
n−4 + U5X

n−5 + . . .+ Un = 0

using only rational processes and roots. Finally, putting

X = n
√
UnY,

we obtain for the new variable Y an equation of degree n, in which not only the
coefficients of Y n−1, Y n−2, Y n−3 have become zero, but also the first and last co-
efficient have become 1.

Therefore the equations of degrees five to nine take the following normal forms

x5 + ux+ 1 = 0,

x6 + ux2 + vx+ 1 = 0,

x7 + ux3 + vx2 + wx+ 1 = 0,

x8 + ux4 + vx3 + wx2 + px+ 1 = 0,

x9 + ux5 + vx4 + wx3 + px2 + qx+ 1 = 0.

Since the operation of taking a root is also a function of a single variable, we
observe immediately that obtaining these normal forms requires only functions of
a single argument and the sum. Concerning our question about algebraic functions
essentially of two arguments, the equation of degree five can not yield such an
example; since the normal form above of degree five contains only a single parameter
u, obviously also the general equation of degree five can be solved using functions
of a single argument and the sum.

For the normal form of degree six

x6 + ux2 + vx+ 1 = 0

it seems that attempts to solve it using only functions of a single argument and the
sum fail; it therefore stands to reason to conjecture that the root of this equation
of degree six yields a function of the desired type.

Concerning the equation of degree seven

x7 + ux3 + vx2 + wx+ 1 = 0

I have already conjectured during the lecture mentioned in the beginning of this note
that it is not even solvable using arbitrary continuous functions of two arguments;
this conjecture also still requires proof.

Similarly, the root of the equation of degree eight can probably not be combined
from functions of three arguments, rather it seems that the normal form of degree
eight given above is a function essentially of the four arguments u, v, w, p.
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In light of this, it seems even more remarkable to me that due to a combination
of several factors, the general equation of degree nine can also be resolved using
only functions of four arguments, because the five coefficients u, v, w, p, q of the
normal form above allow a reduction to four variables and therefore are not essential
variables in our sense.

To prove this, we apply the method of Tschirnhausen transformation and arrive
at an equation for X of the form

X9 + U1X
8 + U2X

7 + . . .+ U9 = 0,

where U1, U2, . . . , U9 are integral rational functions of t1, . . . , t8. We now express
the parameter t8 in terms of the other parameters t1, . . . , t7 using the equation

U1(t1, . . . , t8) = 0

which is linear in t1, . . . , t8. Substituting the resulting value of t8 into U2, U3, U4

yields expressions U ′2, U
′
3, U

′
4, which are of degree two, three and four in t1, . . . , t7,

respectively.

By then writing U ′2 as the sum of eight squares of linear functions L1, . . . , L8 of
the parameters t1, . . . , t7 in the following way

U ′2(t1, . . . , t7) = L2
1 + L2

2 + . . .+ L2
8,

we observe that the equation

U ′2(t1, . . . , t7) = 0

can be solved using the ansatz

L1 + iL2 = 0,

L3 + iL4 = 0,

L5 + iL6 = 0,

L7 + iL8 = 0.

These are four linear equations of the parameters t1, . . . , t7. Using these, we express
t4, t5, t6, t7 in terms of t1, t2, t3 and substitute the thus obtained values, which are
linear in t1, t2, t3, into U ′3, U

′
4: obtaining expressions

U ′′3 (t1, t2, t3) and U ′′4 (t1, t2, t3)

which are cubic, respectively bi-quadratic, in t1, t2, t3. Now it remains to determine
t1, t2, t3 in such a way that these two expressions vanish as well.

To this end, we observe that the equation

U ′′3 (t1, t2, t3) = 0

determines a cubic two-dimensional surface in the three-dimensional t1t2t3–space.
On such a surface there are 27 straight lines. To find one of them, one needs to solve
a question of degree 27, whose coefficients depend rationally on the coefficients of
U ′′3 = 0.

We want to study how to reduce the number of coefficients of the equation
U ′′3 = 0. As is well known, an integral rational function of degree three in three
variables can always be written as a sum of five cubes as follows:

U ′′3 (t1, t2, t3) = M3
1 +M3

2 +M3
3 +M3

4 +M3
5 ,
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where the M1,M2,M3,M4,M5 are linear functions of t1, t2, t3. This description
is essentially unique: the cubes M3

1 ,M
3
2 ,M

3
3 ,M

3
4 ,M

3
5 are roots of an equation of

degree five, whose coefficients can be expressed rationally in the coefficients of the
cubic function U ′′3 .

From this we observe that to describe the cubes M3
1 ,M

3
2 ,M

3
3 ,M

3
4 ,M

3
5 , and thus

also the linear functions M1,M2,M3,M4,M5 themselves, we require apart from the
sum only functions of one argument. If we now introduce, instead of t1, t2, t3 the
linear fractional values

m1 =
M1

M4
, m2 =

M2

M4
, m3 =

M3

M4
,

as new variables, the equation U ′′3 = 0 becomes an equation of the form

m3
1 +m3

2 +m3
3 + 1 + (V1m1 + V2m2 + V3m3 + V4)3 = 0,

which only contains the four parameters V1, V2, V3, V4 in its coefficients. This implies
that, if the equations

t1 = ρ1s+ σ1,

t2 = ρ1s+ σ1,

t3 = ρ3s+ σ3

with the variable s describe one of the 27 straight lines of our surface U ′′3 = 0,
then the coefficients ρ1, ρ2, ρ3, σ1, σ2, σ3 are also algebraic functions of the four
parameters V1, V2, V3, V4.

Substituting finally also in U ′′4 instead of t1, t2, t3 the linear functions of s given
above, then the equation

U ′′4 (t1, t2, t3) = 0

will become the bi-quadratic equation

U ′′′4 (s) = 0

of s, and solving this again requires apart of the sum only functions of one argument.

The Tschirnhausen transformation we found now yields, if we make the cor-
responding substitutions in U5, U6, U7, U8, U9, instead of the original equation of
degree nine an equation of the form

X9 + U∗5X
4 + U∗6X

3 + U∗7X
2 + U∗8X + U∗9 = 0

and, applying the substitution
X = 9

√
U∗9Y,

we arrive at an equation of the form

Y 9 +W1Y
4 +W2Y

3 +W3Y
2 +W4Y + 1 = 0,

in which only the four parameters W1,W2,W3,W4 appear. The solution of the
general equation of degree nine therefore requires only algebraic functions of four
arguments, and in fact functions of a single argument, the sum and two more special
algebraic functions of four arguments are sufficient. It is improbable that for the
general equation of degree nine the number of arguments can be reduced even
further.

Obviously, for equations of higher degree there is a corresponding reduction in
the number of arguments.


