
Homological methods in commutative algebra (SS17) Exercises 1

The letter R denotes a (commutative unital) noetherian ring.

Exercise 1. Let M1 and M2 be two finitely generated R-modules. Show that

Supp(M1 ⊗R M2) = Supp(M1) ∩ Supp(M2).

Exercise 2. Consider the Z-module N =
⊕

k∈N Z/pk. Compute SuppZ(N) and AnnZ(N).

Exercise 3. Let M be a finitely generated R-module and p ∈ Spec(R). Show that

p ∈ Supp(M)⇐⇒ HomR(M,R/p) 6= 0.

Exercise 4. Let k be a field, and S = k[X1, X2, · · · ]/(X2
1 , X

2
2 , · · · ). Show that S is not noethe-

rian. Compute Assk(S) and AssS(S) (the definition of an associated prime immediately extends
to non-noetherian rings).

Exercise 5. Let x ∈ R. For a prime p of R, we denote by x(p) ∈ κ(p) = Rp/(pRp) the image
of x. To what (simple) condition on x is each of the following conditions equivalent?

• x(p) = 0 for all p ∈ Ass(R).

• x(p) 6= 0 for all p ∈ Ass(R).

Exercise 6. (Primary decomposition) Let M be a finitely generated R-module. We are trying
to find submodules Q(p) ⊂M for p ∈ Ass(M) satisfying

Ass(M/Q(p)) = {p} and
⋂

p∈Ass(M)

Q(p) = 0.

(i) Assuming that the Q(p)’s exist, compute Ass(Q(p)).

(ii) Show that the Q(p)’s exist.

(iii) If S ⊂ R is a multiplicatively closed subset, show that we have in S−1M⋂
p∈Ass(M)
p∩S=∅

S−1Q(p) = 0.

(iv) If p ∈ Ass(M) is minimal, show that Q(p) = ker(M →Mp).

Exercise 7. Let M,N be R-modules, with M finitely generated. Show that

Ass(HomR(M,N)) = Supp(M) ∩Ass(N).

(You may observe that HomR(M,N) is a submodule of Nn = N ⊕ · · · ⊕N for some n.)

Exercise 8. Let ϕ : R→ S be a ring morphism, and N an S-module. Show that

AssR(N) = {ϕ−1q | q ∈ AssS(N)}.

Exercise 9. (*) Let R→ S be a flat ring morphism, and M an R-module. Show that

AssS(M ⊗R S) =
⋃

p∈AssR(M)

AssS(S/pS).
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The letter R denotes a (commutative unital) noetherian ring.

Exercise 1. Let M be a nonzero finitely generated R-module. Prove directly (using Zorn’s
Lemma) that Supp(M) possesses a minimal element.

Exercise 2. Let M be a finitely generated R-module, and let x ∈ R. Show that the following
are equivalent:

(i) Multiplication by x is a nilpotent endomorphism of M .

(ii) The element x belongs to every prime of Ass(M).

Exercise 3. Let M be a finitely generated R-module, and Mi ⊂ Mi+1 a chain of submodules
such that Mi/Mi+1 ' R/pi with pi a prime of R. Let p be a minimal element of Supp(M).
Show that the number of indices i such that pi = p does not depend on the choice of the chain,
and express this number purely in terms of M .

Exercise 4. Let M be an R-module.

(i) Show that p ∈ Supp(M) if and only if there is a submodule N ⊂ M such that p ∈
Ass(M/N). (Hint: take N of the form pm for a well-chosen m ∈M).

(ii) Assume that M is finitely generated, and let p ∈ Supp(M). Show that there is a chain of
submodules 0 = M0 ( · · · ( Mn = M such that Mi/Mi−1 ' R/pi with pi ∈ Spec(R) and
moreover p ∈ {p1, . . . pn}.
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The letter R denotes a (commutative unital) noetherian ring.

Exercise 1. Let ϕ : A → B be a morphism of local noetherian rings making B a finite type
A-module. Show that ϕ is a local morphism.

Exercise 2. Let ρ : R → S be a flat morphism and M a finitely generated R-module. Show
that the map Spec(S)→ Spec(R) maps AssS(S ⊗R M) into AssR(M).

Exercise 3. Assume that dimR ≥ 2. Show that SpecR is infinite.

Exercise 4. (i) Let p be a prime of R. Show that the ideal pR[t] of R[t] is prime.

(ii) Show that dimR[t] ≥ 1 + dimR

(iii) Show that dimR[t1, · · · , tn] = n+ dimR.

Exercise 5. Let p ∈ Spec(R) and consider the n-th symbolic power

p[n] = {u ∈ R | su ∈ pn for some s ∈ R− p}.

(i) Show that Ass(R/pn) may differ from {p} by considering the case R = k[x, y]/(xy) with k
a field, and p = xR.

(ii) Show that Ass(R/p[n]) = {p}, and that p[n] is minimal among the ideals I containing pn

and satisfying Ass(R/I) = {p}.

Exercise 6. (i) Show that every prime of R has finite height.

(ii) Let M be a possibly non-finitely generated R-module. Assume that M 6= 0. Show that
Supp(M) admits at least one minimal element.
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Exercise 1. (i) Let M be an R-module such that idM is in the image of the natural morphism

HomR(M,R)⊗R M → HomR(M,M).

Show that M is projective.

(ii) Let M,N,Q three R-modules. Assume that Q is flat, M is finitely generated, and R is
noetherian. Show that the natural morphism

HomR(M,N)⊗R Q→ HomR(M,N ⊗R Q)

is bijective. (Hint: Introduce a finite presentation of M , that is, an exact sequence F1 →
F0 →M → 0, with F0, F1 free and finitely generated R-modules).

(iii) Assume that R is noetherian and let M is a finitely generated flat R-module. Show M is
projective.

(iv) Give an example of a flat, non-projective, Z-module.

Exercise 2. Let x be a nonzerodivisor in R. Express Tor1(R/x,M) in an elementary way in
terms of x and M .

Exercise 3. Let I, J be two ideals in a ring R. Express TorR1 (R/I,R/J) in an elementary way
in terms of R, I, J .

Exercise 4. (i) Show that M is flat, resp. projective, if and only if Tor1(N,M) = 0, resp.
Ext1(M,N) = 0, for every module N .

(ii) Let 0 → M ′ → M → M ′′ → 0 be an exact sequence. Assume that M ′ and M ′′ are
projective, resp. flat, and show that M is projective, resp. flat.

Exercise 5. Let M,N two R-modules. Assume that R is noetherian and that M is finitely
generated. Show that Torn(M,N) and Extn(M,N) are finitely generated.

Exercise 6. Let R→ S be a flat ring morphism, and M,N two R-modules.

(i) Show that
TorRn (M,N)⊗R S ' TorSn(M ⊗R S,N ⊗R S).

(ii) Assume that R is noetherian, and M finitely generated. Show that

ExtnR(M,N)⊗R S ' ExtnS(M ⊗R S,N ⊗R S).

Exercise 7 (Yoneda description of Ext1). We fix two modules A and B. Given an exact
sequence α of type

0→ B → X → A→ 0

we define [α] ∈ Ext1(A,B) to be the image of idA under the morphism HomR(A,A) →
Ext1(A,B) (which is part of the long exact sequence of Ext-groups associated with the short
exact sequence α).

(i) We say that α splits if there is a morphism A→ X such that the composite A→ X → A
is the identity. Show that α splits if and only if [α] = 0.
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We say that two exact sequences 0→ B → X → A→ 0 and 0→ B → X ′ → A→ 0 are Yoneda
equivalent if there is an isomorphism X → X ′ fitting in the commutative diagram

B //

=

��

X

��

// A

=

��
B // X ′ // A

(ii) Show that a sequence splits if and if it is Yoneda equivalent to the sequence 0 → B →
A⊕B → A→ 0.

(iii) We let E(A,B) be the set of exact sequences 0 → B → X → A → 0 modulo Yoneda
equivalence. Show that α 7→ [α] induces a map E(A,B)→ Ext1(A,B).

We construct a map Ext1(A,B) → E(A,B) as follows. Take an exact sequence 0 → K →
F → A→ 0 with F free. An element u ∈ Ext1(A,B) is represented by a morphism ϕu : K → B.
Let Xu be the cokernel of the morphism K → F ⊕ B given by k 7→ (j(k),−ϕu(k)) where j is
the injective morphism K → F .

(iv) Show that we have an exact sequence 0 → B → Xu → A → 0, and therefore an element
of E(A,B).

(v) Show that this gives a map Ext1(A,B)→ E(A,B).

(vi) Show that Ext1(A,B) and E(A,B) are in bijection.

(vii) Let α, β ∈ E(A,B). Describe the element γ ∈ E(A,B) such that [γ] = [α] + [β]. Describe
the functorialities of E(A,B) in A and B.
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Exercise 1. Let C,D be two chain complexes of R-modules. Their tensor product C ⊗R D is
defined as follows. We let

(C ⊗R D)n =
⊕
i∈Z

Ci ⊗R Dn−i

and for x ∈ Ci and y ∈ Dn−i, the differential is given by

dC⊗RD
n (x⊗ y) = dCi (x)⊗ y + (−1)ix⊗ dDn−i(y).

(i) Show that (C ⊗R D, dC⊗RD) defines a chain complex.

(ii) Show that the complexes C ⊗R D and D ⊗R C are isomorphic.

Exercise 2. Let f : B → C be a morphism of chain complexes. We let

cone(f)n = Bn−1 ⊕ Cn

and define a morphism dn : cone(f)n → cone(f)n−1 by

dn(b, c) = (−dBn−1(b), dCn (c)− fn−1(b)).

(i) Show that (cone(f), d) defines a chain complex.

(ii) Show that we have an exact sequence of complexes

0→ C → cone(f)→ B[−1]→ 0,

where B[−1] is the complex defined by B[−1]n = Bn−1 and d
B[−1]
n = −dBn−1.

(iii) Deduce that we have a long exact sequence

· · · → Hn+1(cone(f))→ Hn(B)
δ−→ Hn(C)→ Hn(cone(f))→ . . .

(iv) Show that the morphism δ : Hn(B)→ Hn(C) may be chosen to coincide with the morphism
induced by f .

(v) Deduce that f is a quasi-isomorphism if and only if cone(f) is exact.
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Let R be a ring, and x1, · · · , xn ∈ R. We construct the associated Koszul complex as follows.
Let e1, · · · , en be the standard basis of the R-module Rn. Let p ∈ Z. For p ∈ {1, . . . , n}, we
let Kp be the free R-module with the basis consisting of the elements ei1 ∧ · · · ∧ eip where
1 ≤ i1 < · · · < ip ≤ n. We let K0 = R, and Kp = 0 when p 6∈ {0, . . . , n}. We define a R-linear
morphism d : Kp → Kp−1 using the formula

dp(ei1 ∧ · · · ∧ eip) =

p∑
r=1

(−1)r−1xir · ei1 ∧ · · · ∧ eir−1
∧ eir+1

∧ · · · ∧ eip .

(the vector eir is omitted.) When p = 1, the above formula must be understood as

d1(ei) = xi ∈ R = K0.

Exercise 1. Show that dp−1 ◦ dp = 0.

This gives a chain complex K(x1, · · · , xn) = (K, d). Let M be an R-module. We de-
note by K(M ;x1, · · · , xn) the complex K(x1, · · · , xn) ⊗R M . Its p-th homology is denoted
Hp(M ;x1, · · · , xn).

Exercise 2. (i) Express H0(M ;x1, · · · , xn) and Hn(M ;x1, · · · , xn) directly in terms of M
and x1, · · · , xn.

(ii) Describe the complex K(M ;x1).

Exercise 3. (i) Show that the complexes K(M ;x1, · · · , xn) and K(x1)⊗R · · ·⊗RK(xn)⊗RM
are isomorphic.

(ii) Let L be a chain complex of R-modules and x ∈ R. Show that we have an exact sequence
of chain complexes of R-modules

0→ L→ K(x)⊗R L→ L[−1]→ 0,

(where L[−1]n = Ln−1 and d
L[−1]
n = −dLn−1) and deduce and exact sequence of R-modules

0→ H0(Hp(L);x)→ Hp(K(x)⊗R L))→ H1(Hp−1(L);x)→ 0.

Exercise 4. LetA be a local (noetherian) ring, M a finitely generatedA-module, and x1, · · · , xn ∈
m.

(i) Assume that (x1, · · · , xn) is an M -regular sequence. Show that Hi(M ;x1, · · · , xn) = 0 for
i > 0.

(ii) Assume that H1(M ;x1, · · · , xn) = 0. Show that (x1, · · · , xn) is an M -regular sequence.

Exercise 5. Let A be a local (noetherian) ring, and M a finitely generated A-module. Assume
that (x1, · · · , xn) is an M -regular sequence.

(i) Let σ be a permutation of {1, · · · , n}. Show that (xσ(1), · · · , xσ(n)) is an M -regular se-
quence.

(ii) Let t1, . . . , tn be integers ≥ 1. Show that (xt11 , . . . , x
tn
n ) is a regular M -sequence.

Exercise 6. (i) Let L be a complex of R-modules and x ∈ R. Show that x ·Hp(K(x)⊗RL) =
0.
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(ii) Let x1, · · · , xn ∈ R, and I be the ideal generated by these elements. Let M be an R-
module. Show that I ·Hp(M ;x1, · · · , xn) = 0.

Exercise 7. (Depth sensitivity of the Koszul complex) Let A be a local ring, and {x1, · · · , xn}
a generating set for its maximal ideal. Let M be a nonzero finitely generated A-module. Show
that

depthM = n−max{i|Hi(M ;x1, · · · , xn) 6= 0}.

(use Exercise 6.)

Exercise 8. (A more functorial approach) Let U be a finitely generated free R-module. For an
R-module, we denote by V ∨ = HomR(V,R) its dual. We consider the R-module

T (U) =
⊕
p≥0

U⊗p = R⊕ U ⊕ (U ⊗R U)⊕ · · · .

The R-module Λ(U) is the quotient of T (U) by the submodule generated by elements x1⊗· · ·⊗xp
which are such that xi = xj for some i 6= j. It is naturally graded; we denote by ΛpU the image
of U⊗p and by u1 ∧ · · · ∧ up the image of u1 ⊗ · · · ⊗ up. An isomorphism U ' Rn induces an
isomorphism ΛpU ' Kp.

(i) Show that the natural morphism ρp : Λp(U∨)→ (ΛpU)∨ is an isomorphism.

(ii) Let u ∈ U , and ϕu : ΛpU → Λp+1U be defined by ϕu(v) = u ∧ v. Show that if e1, · · · , en
is a basis of the R-module U∨, and (x1, · · · , xn) are the coordinates of u in the dual basis
of U , then the differential d of the Koszul complex may be identified with

Λp+1(U∨)
ρp+1−−−→ (Λp+1U)∨

(ϕu)
∨

−−−−→ (ΛpU)∨
ρ−1
p−−→ Λp(U∨).

(iii) Reprove without computation that d ◦ d = 0.


