Homological methods in commutative algebra (SS17) Exercises 1

The letter R denotes a (commutative unital) noetherian ring.
Exercise 1. Let M7 and M> be two finitely generated R-modules. Show that
Supp(My @g Mz) = Supp(My) N Supp(M2).
Exercise 2. Consider the Z-module N = @, Z/p*. Compute Suppz(N) and Annz(N).
Exercise 3. Let M be a finitely generated R-module and p € Spec(R). Show that
p € Supp(M) <= Hompg(M, R/p) # 0.

Exercise 4. Let k be a field, and S = k[X1, Xo,---]/(X?, X2,---). Show that S is not noethe-
rian. Compute Assy(S) and Assg(S) (the definition of an associated prime immediately extends
to non-noetherian rings).

Exercise 5. Let x € R. For a prime p of R, we denote by z(p) € k(p) = R,/(pR,) the image
of z. To what (simple) condition on z is each of the following conditions equivalent?

e z(p) =0 for all p € Ass(R).
e x(p) #0 for all p € Ass(R).

Exercise 6. (Primary decomposition) Let M be a finitely generated R-module. We are trying
to find submodules Q(p) C M for p € Ass(M) satisfying

Ass(M/Q(p)) = {p} and N Q®=o.

pEAss(M)
(i) Assuming that the Q(p)’s exist, compute Ass(Q(p)).
(ii) Show that the Q(p)’s exist.

(iii) If S C R is a multiplicatively closed subset, show that we have in S~1M

N S'Qp =o.
pEAss(M)
pNS=2

(iv) If p € Ass(M) is minimal, show that Q(p) = ker(M — M,).
Exercise 7. Let M, N be R-modules, with M finitely generated. Show that
Ass(Homp (M, N)) = Supp(M) N Ass(N).
(You may observe that Hompg (M, N) is a submodule of N* = N @ ---@® N for some n.)
Exercise 8. Let ¢: R — S be a ring morphism, and N an S-module. Show that
Assr(N) = {¢ 'q | q € Asss(N)}.
Exercise 9. (*) Let R — S be a flat ring morphism, and M an R-module. Show that

Assg(M ®g S) = U Assg(S/pS).
pEAssr(M)
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The letter R denotes a (commutative unital) noetherian ring.

Exercise 1. Let M be a nonzero finitely generated R-module. Prove directly (using Zorn’s
Lemma) that Supp(M) possesses a minimal element.

Exercise 2. Let M be a finitely generated R-module, and let £ € R. Show that the following
are equivalent:

(i) Multiplication by z is a nilpotent endomorphism of M.
(ii) The element = belongs to every prime of Ass(M).

Exercise 3. Let M be a finitely generated R-module, and M; C M; 1 a chain of submodules
such that M;/M;11 ~ R/p; with p; a prime of R. Let p be a minimal element of Supp(M).
Show that the number of indices ¢ such that p; = p does not depend on the choice of the chain,
and express this number purely in terms of M.

Exercise 4. Let M be an R-module.

(i) Show that p € Supp(M) if and only if there is a submodule N C M such that p €
Ass(M/N). (Hint: take N of the form pm for a well-chosen m € M).

(ii) Assume that M is finitely generated, and let p € Supp(M). Show that there is a chain of
submodules 0 = My € -+ € M,, = M such that M;/M,;_, ~ R/p; with p; € Spec(R) and
moreover p € {p1,...pn}.
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The letter R denotes a (commutative unital) noetherian ring.

Exercise 1. Let ¢: A — B be a morphism of local noetherian rings making B a finite type
A-module. Show that ¢ is a local morphism.

Exercise 2. Let p: R — S be a flat morphism and M a finitely generated R-module. Show
that the map Spec(S) — Spec(R) maps Assg(S ®r M) into Assp(M).

Exercise 3. Assume that dim R > 2. Show that Spec R is infinite.
Exercise 4. (i) Let p be a prime of R. Show that the ideal pR[t] of R[t] is prime.
(ii) Show that dim R[t] > 1+ dim R
(iii) Show that dim R[t1,--- ,t,] =n + dim R.
Exercise 5. Let p € Spec(R) and consider the n-th symbolic power
p"l = {u € R| su € p™ for some s € R — p}.

(i) Show that Ass(R/p™) may differ from {p} by considering the case R = k[x,y]/(xy) with k
a field, and p = zR.

(ii) Show that Ass(R/pl™) = {p}, and that p[") is minimal among the ideals I containing p™
and satisfying Ass(R/I) = {p}.

Exercise 6. (i) Show that every prime of R has finite height.

(ii) Let M be a possibly non-finitely generated R-module. Assume that M # 0. Show that
Supp(M) admits at least one minimal element.
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Exercise 1. (i) Let M be an R-module such that idj; is in the image of the natural morphism
Homp(M,R) ® g M — Homp (M, M).
Show that M is projective.

(ii) Let M, N,Q three R-modules. Assume that @ is flat, M is finitely generated, and R is
noetherian. Show that the natural morphism

Homp(M,N)®r Q — Homgr(M,N ®r Q)

is bijective. (Hint: Introduce a finite presentation of M, that is, an exact sequence F; —
Fy - M — 0, with Fp, F} free and finitely generated R-modules).

(iii) Assume that R is noetherian and let M is a finitely generated flat R-module. Show M is
projective.

(iv) Give an example of a flat, non-projective, Z-module.

Exercise 2. Let x be a nonzerodivisor in R. Express Tor;(R/xz, M) in an elementary way in
terms of x and M.

Exercise 3. Let I,.J be two ideals in a ring R. Express Torf'(R/I, R/.J) in an elementary way
in terms of R, 1, J.

Exercise 4. (i) Show that M is flat, resp. projective, if and only if Tory (N, M) = 0, resp.
Ext' (M, N) = 0, for every module N.

(ii) Let 0 - M’ — M — M"” — 0 be an exact sequence. Assume that M’ and M" are
projective, resp. flat, and show that M is projective, resp. flat.

Exercise 5. Let M, N two R-modules. Assume that R is noetherian and that M is finitely
generated. Show that Tor, (M, N) and Ext" (M, N) are finitely generated.

Exercise 6. Let R — S be a flat ring morphism, and M, N two R-modules.

(i) Show that
Tor®(M,N) @R S ~ Torg(M ®rS,N®grS).

(ii) Assume that R is noetherian, and M finitely generated. Show that

Exti(M,N)®r S ~ Exte(M ®r S,N ®g S).

Exercise 7 (Yoneda description of Ext'). We fix two modules A and B. Given an exact
sequence « of type
0=-B—=-X—=-A-=0

we define [a] € Ext'(A4,B) to be the image of ida under the morphism Hompg(A4,A4) —
Extl(A, B) (which is part of the long exact sequence of Ext-groups associated with the short
exact sequence «).

(i) We say that « splits if there is a morphism A — X such that the composite A - X — A
is the identity. Show that « splits if and only if [a] = 0.
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We say that two exact sequences0 + B — X -+ A —0and 0 - B — X’ — A — 0 are Yoneda
equivalent if there is an isomorphism X — X' fitting in the commutative diagram

B——sX——-A

1Tt

B——sX —+A

(ii) Show that a sequence splits if and if it is Yoneda equivalent to the sequence 0 — B —
A®B— A—0.

(iii) We let E(A, B) be the set of exact sequences 0 - B —+ X — A — 0 modulo Yoneda
equivalence. Show that a — [a] induces a map E(A, B) — Ext'(A, B).

We construct a map Ext'(A, B) — E(A, B) as follows. Take an exact sequence 0 — K —
F — A — 0 with F free. An element u € Ext'(A, B) is represented by a morphism ¢, : K — B.
Let X, be the cokernel of the morphism K — F @ B given by k — (j(k), —¢u(k)) where j is
the injective morphism K — F.

(iv) Show that we have an exact sequence 0 — B — X,, -+ A — 0, and therefore an element
of E(A, B).

(v) Show that this gives a map Ext'(A, B) — E(A, B).
(vi) Show that Ext'(A, B) and E(A, B) are in bijection.

(vii) Let o, 8 € E(A, B). Describe the element v € E(A, B) such that [y] = [a] + [5]. Describe
the functorialities of F(A, B) in A and B.
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Exercise 1. Let C, D be two chain complexes of R-modules. Their tensor product C' ®p D is
defined as follows. We let

(C®@r D)n = @ Ci ®Rr Dn—;
i€z
and for « € C; and y € D,,_;, the differential is given by
AP (2 @ y) = df () @y + (-1)'z @ d}_;(y).
(i) Show that (C ®g D,d“®#P) defines a chain complex.
(ii) Show that the complexes C @ g D and D ® C' are isomorphic.
Exercise 2. Let f: B — C be a morphism of chain complexes. We let
cone(f)p = Bp—1® Cy
and define a morphism d,,: cone(f), — cone(f)n—1 by
dn (b, ¢) = (=dy_(b),d (¢) = fn—1(D)).
(i) Show that (cone(f),d) defines a chain complex.

(ii) Show that we have an exact sequence of complexes
0 — C — cone(f) — B[-1] — 0,

where B[—1] is the complex defined by B[—1], = B,—1 and abl=l = —d5 .

(iii) Deduce that we have a long exact sequence

<+ = Hpy1(cone(f)) = Hp(B) LN H,(C) — Hp(cone(f)) — ...

(iv) Show that the morphism ¢: H,(B) — H, (C) may be chosen to coincide with the morphism
induced by f.

(v) Deduce that f is a quasi-isomorphism if and only if cone(f) is exact.
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Let R be aring, and x1,--- ,x, € R. We construct the associated Koszul complex as follows.
Let eq,- -, e, be the standard basis of the R-module R™. Let p € Z. For p € {1,...,n}, we
let K, be the free R-module with the basis consisting of the elements e;; A --- A ei, where
1<ip<--<ip<n. Welet Ky =R, and K, =0 when p € {0,...,n}. We define a R-linear
morphism d: K, = K,_; using the formula

p
dp(eil Ao A eip) = Z(—l)r_l.’tir . eil JANGRRIAN 6@71 A eir+1 JANCERIVAN eip.

r=1
(the vector e;, is omitted.) When p = 1, the above formula must be understood as
dl(ei) =ux; € R=Kj.
Exercise 1. Show that d,_; od, = 0.

This gives a chain complex K(z1,---,2,) = (K,d). Let M be an R-module. We de-
note by K(M;xy,---,x,) the complex K(x1,---,2,) ®zg M. TIts p-th homology is denoted
Hy(M;zy,- - an).

Exercise 2. (i) Express Ho(M;xz1, -+ ,z,) and H,(M;z1,--- ,x,) directly in terms of M
and z1,- -, Ty

(ii) Describe the complex K (M;xz1).

Exercise 3. (i) Show that the complexes K (M;x1, - ,x,) and K(21)®p- - -QrK(vn)@rM
are isomorphic.

(ii) Let L be a chain complex of R-modules and x € R. Show that we have an exact sequence
of chain complexes of R-modules

0—L— K(z)®g L — L[-1] — 0,

L

(where L[—1],, = L,,—1 and i —dL_ ) and deduce and exact sequence of R-modules

0— Ho(Hp(L);2) = Hp(K(2) ®r L)) = Hi(Hp—1(L);z) — 0.

Exercise 4. Let A be alocal (noetherian) ring, M a finitely generated A-module, and z1, - -- , z,
m.
(i) Assume that (x1,---,x,) is an M-regular sequence. Show that H;(M;xy,--- ,x,) = 0 for
t> 0.
(ii) Assume that Hy(M;xy,--- ,2,) = 0. Show that (x1,---,2,) is an M-regular sequence.

Exercise 5. Let A be a local (noetherian) ring, and M a finitely generated A-module. Assume
that (x1,--- ,x,) is an M-regular sequence.

(i) Let o be a permutation of {1,---,n}. Show that (z,), - ,Zs(n)) is an M-regular se-
quence.
(ii) Let ty,...,t, be integers > 1. Show that (z}',...,2!") is a regular M-sequence.

Exercise 6. (i) Let L be a complex of R-modules and € R. Show that - H,(K(z)®rL) =
0.



Homological methods in commutative algebra (SS17) Exercises 6

(ii) Let 1, -+ ,x, € R, and I be the ideal generated by these elements. Let M be an R-
module. Show that I - H,(M;zq,--- ,2,) =0.

Exercise 7. (Depth sensitivity of the Koszul complex) Let A be a local ring, and {z1, -+ ,z,}
a generating set for its maximal ideal. Let M be a nonzero finitely generated A-module. Show
that

depth M = n — max{i|H;(M;x1, -+ ,x,) # 0}.

(use Exercise 6.)

Exercise 8. (A more functorial approach) Let U be a finitely generated free R-module. For an
R-module, we denote by VV = Hompg(V, R) its dual. We consider the R-module

TWU)=PU*=ReUa(UrU)®---.
p=>0

The R-module A(U) is the quotient of T'(U) by the submodule generated by elements 21 ®- - -®z,,
which are such that z; = z; for some ¢ # j. It is naturally graded; we denote by APU the image
of U®P and by uj A --- A u, the image of u; ® -+ ® up. An isomorphism U ~ R™ induces an
isomorphism APU ~ K.

(i) Show that the natural morphism p,: AP(UY) — (APU)Y is an isomorphism.

(ii) Let u € U, and ¢, : APU — APTIU be defined by ¢, (v) = u Av. Show that if e, -+ e,
is a basis of the R-module UV, and (21, ,x,) are the coordinates of u in the dual basis
of U, then the differential d of the Koszul complex may be identified with

APV L Ay L (argryv Lo pr (),

(i) Reprove without computation that dod = 0.



