EXERCISES 1 (INTERSECTION THEORY)

Let A be a noetherian commutative ring with unit, and M a finitely generated

A-module.
Exercise 1. The length function is additive.

Exercise 2. The length of any maximal (i.e. saturated) chain of submodules of
M is equal to the length of M.

A prime p of A is associated with M if there is an element m € M such that
p = Ann(m) = {z € Alzm = 0}. We write Ass(M) for the set of associated
primes of M.

Exercise 3. (i) We have p € Ass(M) if and only if M contains a submodule
isomorphic to A/p.
(ii) Let I be a maximal element of the set {Ann(m)|m € M — {0}}. Then I is
a prime ideal.
(iii) We have M = 0 if and only if Ass(M) = @.
(iv) Let p be a prime of A. Then Ass(A/p) = {p}.
Exercise 4. Consider an exact sequence of finitely generated A-modules
0= M —M— M —0.
Then Ass(M') C Ass(M) C Ass(M') U Ass(M").
Exercise 5. There is a chain of submodules
such that M;/M; 1 ~ A/p; with p; prime, for i = 1,--- ;n. We have
Ass(M) C {p1, -+ ,pn}-
Exercise 6. Assume that A is local. Then the following are equivalent
(i) {a(M) < .
(ii) There is n € N such that (m4)"M = 0.
(iii) We have dim M < 0.

Exercise 7. Consider an exact sequence of finitely generated A-modules
0— M — M— M" —0.
Then Supp(M) = Supp(M’) U Supp(M”).
Exercise 8. Show that the primes p; of Exercise 5 belong to Supp(M).
Exercise 9. Let p € Spec A. We view Spec A, as a subset of Spec A. Then
Assy, (M,) = (Spec Ay) N Ass(M).

Exercise 10. We have Ass(M) C Supp(M), and these sets have the same minimal
elements.

Exercise 11. The set Ass(M) is finite, and so is the set of minimal primes in
Supp(M).
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Exercise 1. When F is a coherent Ox-module, we define
Ass(F) = {z € X|m, € Asso,, (F2)}.

(Here m, denotes the maximal ideal of the local ring Ox ,.)

A closed embedding Z — X is called locally principal if there is a covering by
open affine subschemes U; = Spec A; and elements s; € A; such that Z N U; =
Spec(AZ/slA,)

(i) If X = Spec A, and M = H°(X, F), show that Ass(M) = Ass(F).

(ii) Show that a closed embedding D — X is an effective Cartier divisor if and
only if:
— D — X is locally principal,
—and DN Ass(Ox) = 2.
(iii) Let f: Y — X be a morphism, and Z — X a locally principal closed em-
bedding. Then show that f~'Z — Y is a locally principal closed embedding.
(iv) Let f: Y — X be a morphism, and D — X an effective Cartier divi-
sor. Show that f~'D — Y is an effective Cartier divisor if and only if
f(Ass(Oy))ND = @.
(v) Assume that f is flat. Show that f(Ass(Oy)) C Ass(Ox).
(vi) Explain how we can reprove the lemma concerning pull-backs of effective
Cartier divisors.

Exercise 2. (i) Let M be a finitely generated A-module (A noetherian). Show
that the following morphism is injective:

M- P M,
peAss(M)

Let X be a variety.

(ii) Show that every generic point of X is in Ass(Oyx).

(iii) Show that X is reduced if and only if :
— for every generic point x € X, the ring Ox , is reduced,
— and Ass(Ox) is the set of generic points.

Exercise 3. Let us denote by P the closed point 0 € A2 = Spec k[z,y], that is,

the integral closed subscheme defined by the ideal (x,y). Find closed subschemes
71, Zy of A2 such that

(2] = [Z5] = 3[P) € Z(A}),
but Z; % Z, as schemes (and thus as closed subschemes of A?).

(more exercises next page)
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Exercise 4. (i) Let f: Y — X be a closed immersion. Show that f is an
isomorphism if and only if there is an open subscheme U of X containing
Ass(Ox) such that Y NU — U is an isomorphism.

(ii) Find a closed immersion Y — X and an open dense subscheme U of X such
that Y N U — U is an isomorphism (and thus [Y] = [X] € Z(X)), but
Y £ X.
Exercise 5. Let R = k[z,y, 2]/(zz, zy) and X = Spec R. Let D be the closed
subscheme of X defined by (z — x).

(i) Show that D — X is an effective Cartier divisor.

(ii) What is the multiplicity m; of X at each irreducible component X; of X7
(iii) Compare [D] and ), m;[D N X;] in Z(X).
(iv) Is this compatible with Proposition 1.3.57

Exercise 6. Prove the snake lemma: A commutative diagram of A-modules

0 M’ M M" 0
EEREF
0 N’ N N 0

with exact rows induces a long exact sequence of A-modules

0 — ker ¢' — ker ¢ — ker ¢ — coker ¢’ — coker p — coker ¢ — 0.

Exercise 7. Prove the going-down theorem: If Y — X is flat, then every irre-
ducible component of Y dominates an irreducible component of X.

Exercise 8. Let f: Y — X be a flat morphism, with X irreducible and Y
equidimensional. Show that f has relative dimension dimY — dim X.

Exercise 9. Let f: Y — X be a finite morphism such that the Ox-module f,Oy
is locally free of rank d > 0. Show that f is flat of relative dimension 0, and that
f« o f* is multiplication with d on Z(X).
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Exercise 1. We will view Al = Speck[t] as the open complement of oo in P!
This defines an element ¢ € k(P') such that divt = [0] — [0o] € Z(P!).
(i) Let Z be an integral variety and f: Z — P! a morphism whose image is
not contained in {0,00}. Denote by f*t the image of ¢ under the induced
morphism k[t,t™'] — k(Z). Show that

div f*t = [f7'0] — [f oo] € Z(2).

(ii) Let X be an integral variety, and ¢ € k(X)*. Show that there is an integral
closed subscheme Z of X x; P! such that p: Z — X is birational, the image
of f: Z — P! is not contained in {0, 00}, and

divp = p, odiv f*t € Z(X).

(iii) Let X be a variety. Let Z(X;P') be the set of integral closed subschemes Z
of X x;, P!, such that the morphism f: Z — P! is dominant. For x € {0, oo},
show that f~'x may be identified to a closed subscheme of X, that will be
denoted by Z(x).

(iv) Let X be a variety. Show that the subgroup of rationally trivial classes
R(X) C Z(X) is generated by the elements [Z(0)] — [Z(o0)], where Z runs
over Z(X;Ph).

Exercise 2. Let X be an integral variety, and £ an invertible Ox-module.
(i) Show that we have a correspondence

with Z ¢ P(1), Z ¢ P(L),

Integral closed subschemes Z C P(L @ 1), {
and Z — X birational.

regular meromorphic
sections of L.

(ii) Let s be a regular meromorphic section of £, and Z C P(1 & L) the corre-
sponding closed subscheme, with morphism p: Z — X. Show that

divyc(p*s) = [ZNP()] - [ZNP(L)] € Z2(2).

(iii) Show that Z NP(1) (resp. Z NP(L)) may be viewed as a closed subscheme
Z(1) (resp. Z(L)) of X, and that we have

dive(s) = p[Z2 NP(L)] = p[Z NP(L)] = [2(1)] = [Z(L)] € Z(X).
Exercise 3. Prove directly (that is, without using Chapter 3 of the lecture) Weil’s
reciprocity law: For any ¢ € k(P')*, we have

degodivp = 0.
Exercise 4. Let i: D — X be an effective Cartier divisor, f: X — S a flat

morphism with a relative dimension. Assume that foi: D — S is flat and has a
relative dimension. Show that

i*o f*=(foid)": CH(S) — CH(D)
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Exercise 1. Let A be a commutative ring. A characteristic class ¢ is the data
of a group endomorphism ¢(E) of CH(X) ® A for every vector bundle £ — X,
such that for every flat morphism f: Y — X having a relative dimension,

Frop(E)=p(f'E)of: CH(X)® A— CHY)® A.

(i) Assume that a vector bundle E has a filtration by sub-bundles FE, ., C E,
such that L,, = E,/FE, 1 is a line bundle. Express the i-th Chern class ¢;(E)
in terms of the classes ¢i(Ly,).

(ii) Let F' € Alzy, -+ ,x,] be a symmetric polynomial. Show that there is a
unique characteristic class ¢ such that whenever F is a vector bundle with
a filtration with successive quotients line bundles Lq,--- , L,,, then

p(E) = F(ci(L), -+, er(Lm))-
(iii) Let P € A[[t]] a power series. Show that there is unique characteristic class
mp such that
e [f0 - F — F — G — 0 is an exact sequence of vector bundles, then
7TP<E) o) 7TP<G) = 7TP<F).
o If L — X is a line bundle, then 7p(L) = P(c1(L)).
(iv) Let P € A[[t]] a power series. Show that there is unique characteristic class
~vp such that
e [f0 - F — F — G — 0is an exact sequence of vector bundles, then
p(E) +7p(G) = vp(F).
e If . — X is a line bundle, then vp(L) = P(ci(L)).

(v) When A =Q, and
P(t) =) _t"/nl,
n>0
we define the Chern character ch = yp. Show that
ch(E ® F) = ch(E) o ch(F)
for any vector bundles F, F.

Exercise 2. Let X be a smooth (or more generally locally factorial) variety.
Show that the morphism Pic(X) — CH'(X) mapping L to ¢;(L)[X] is a group
isomorphism.

Exercise 3. When F is a vector bundle of rank r, its determinant det E is the
line bundle A"E. We say that E is orientable if det E' is the trivial line bundle.

(i) Consider an exact sequence of vector bundles
O—+FE—F—=L—=0

where L is a line bundle. Show that (det £') ® L ~ det F'.

(ii) Show that ¢;(det ) = ¢;(FE) for any vector bundle £, and deduce that
c1(E) = 0 when FE is orientable.

(iii) Conversely, show that a vector bundle E over a smooth variety X is ori-
entable as soon as ¢ (F)[X] = 0.



