
EXERCISES 1 (INTERSECTION THEORY)

Let A be a noetherian commutative ring with unit, and M a finitely generated
A-module.

Exercise 1. The length function is additive.

Exercise 2. The length of any maximal (i.e. saturated) chain of submodules of
M is equal to the length of M .

A prime p of A is associated with M if there is an element m ∈ M such that
p = Ann(m) = {x ∈ A|xm = 0}. We write Ass(M) for the set of associated
primes of M .

Exercise 3. (i) We have p ∈ Ass(M) if and only if M contains a submodule
isomorphic to A/p.

(ii) Let I be a maximal element of the set {Ann(m)|m ∈ M − {0}}. Then I is
a prime ideal.

(iii) We have M = 0 if and only if Ass(M) = ∅.
(iv) Let p be a prime of A. Then Ass(A/p) = {p}.
Exercise 4. Consider an exact sequence of finitely generated A-modules

0→M ′ →M →M ′′ → 0.

Then Ass(M ′) ⊂ Ass(M) ⊂ Ass(M ′) ∪ Ass(M ′′).

Exercise 5. There is a chain of submodules

0 = M0 ( M1 ( · · · ( Mn = M

such that Mi/Mi−1 ' A/pi with pi prime, for i = 1, · · · , n. We have

Ass(M) ⊂ {p1, · · · , pn}.
Exercise 6. Assume that A is local. Then the following are equivalent

(i) lA(M) <∞.
(ii) There is n ∈ N such that (mA)nM = 0.

(iii) We have dimM ≤ 0.

Exercise 7. Consider an exact sequence of finitely generated A-modules

0→M ′ →M →M ′′ → 0.

Then Supp(M) = Supp(M ′) ∪ Supp(M ′′).

Exercise 8. Show that the primes pi of Exercise 5 belong to Supp(M).

Exercise 9. Let p ∈ SpecA. We view SpecAp as a subset of SpecA. Then

AssAp(Mp) = (SpecAp) ∩ Ass(M).

Exercise 10. We have Ass(M) ⊂ Supp(M), and these sets have the same minimal
elements.

Exercise 11. The set Ass(M) is finite, and so is the set of minimal primes in
Supp(M).



EXERCISES 2 (INTERSECTION THEORY)

Exercise 1. When F is a coherent OX-module, we define

Ass(F) = {x ∈ X|mx ∈ AssOX,x
(Fx)}.

(Here mx denotes the maximal ideal of the local ring OX,x.)
A closed embedding Z → X is called locally principal if there is a covering by

open affine subschemes Ui = SpecAi and elements si ∈ Ai such that Z ∩ Ui =
Spec(Ai/siAi).

(i) If X = SpecA, and M = H0(X,F), show that Ass(M) = Ass(F).
(ii) Show that a closed embedding D → X is an effective Cartier divisor if and

only if:
— D → X is locally principal,
— and D ∩ Ass(OX) = ∅.

(iii) Let f : Y → X be a morphism, and Z → X a locally principal closed em-
bedding. Then show that f−1Z → Y is a locally principal closed embedding.

(iv) Let f : Y → X be a morphism, and D → X an effective Cartier divi-
sor. Show that f−1D → Y is an effective Cartier divisor if and only if
f(Ass(OY )) ∩D = ∅.

(v) Assume that f is flat. Show that f(Ass(OY )) ⊂ Ass(OX).
(vi) Explain how we can reprove the lemma concerning pull-backs of effective

Cartier divisors.

Exercise 2. (i) Let M be a finitely generated A-module (A noetherian). Show
that the following morphism is injective:

M →
⊕

p∈Ass(M)

Mp.

Let X be a variety.
(ii) Show that every generic point of X is in Ass(OX).

(iii) Show that X is reduced if and only if :
— for every generic point x ∈ X, the ring OX,x is reduced,
— and Ass(OX) is the set of generic points.

Exercise 3. Let us denote by P the closed point 0 ∈ A2
k = Spec k[x, y], that is,

the integral closed subscheme defined by the ideal (x, y). Find closed subschemes
Z1, Z2 of A2

k such that

[Z1] = [Z2] = 3[P ] ∈ Z(A2
k),

but Z1 6' Z2 as schemes (and thus as closed subschemes of A2
k).

(more exercises next page)
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Exercise 4. (i) Let f : Y → X be a closed immersion. Show that f is an
isomorphism if and only if there is an open subscheme U of X containing
Ass(OX) such that Y ∩ U → U is an isomorphism.

(ii) Find a closed immersion Y → X and an open dense subscheme U of X such
that Y ∩ U → U is an isomorphism (and thus [Y ] = [X] ∈ Z(X)), but
Y 6' X.

Exercise 5. Let R = k[x, y, z]/(zx, zy) and X = SpecR. Let D be the closed
subscheme of X defined by (z − x).

(i) Show that D → X is an effective Cartier divisor.
(ii) What is the multiplicity mi of X at each irreducible component Xi of X?

(iii) Compare [D] and
∑

i mi[D ∩Xi] in Z(X).
(iv) Is this compatible with Proposition 1.3.5?

Exercise 6. Prove the snake lemma: A commutative diagram of A-modules

0 // M ′ //

ϕ′

��

M

ϕ

��

// M ′′ //

ϕ′′

��

0

0 // N ′ // N // N // 0

with exact rows induces a long exact sequence of A-modules

0→ kerϕ′ → kerϕ→ kerϕ′′ → cokerϕ′ → cokerϕ→ cokerϕ′′ → 0.

Exercise 7. Prove the going-down theorem: If Y → X is flat, then every irre-
ducible component of Y dominates an irreducible component of X.

Exercise 8. Let f : Y → X be a flat morphism, with X irreducible and Y
equidimensional. Show that f has relative dimension dimY − dimX.

Exercise 9. Let f : Y → X be a finite morphism such that the OX-module f∗OY

is locally free of rank d > 0. Show that f is flat of relative dimension 0, and that
f∗ ◦ f ∗ is multiplication with d on Z(X).
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Exercise 1. We will view A1 = Spec k[t] as the open complement of ∞ in P1.
This defines an element t ∈ k(P1) such that div t = [0]− [∞] ∈ Z(P1).

(i) Let Z be an integral variety and f : Z → P1 a morphism whose image is
not contained in {0,∞}. Denote by f ∗t the image of t under the induced
morphism k[t, t−1]→ k(Z). Show that

div f ∗t = [f−10]− [f−1∞] ∈ Z(Z).

(ii) Let X be an integral variety, and ϕ ∈ k(X)×. Show that there is an integral
closed subscheme Z of X ×k P1 such that p : Z → X is birational, the image
of f : Z → P1 is not contained in {0,∞}, and

divϕ = p∗ ◦ div f ∗t ∈ Z(X).

(iii) Let X be a variety. Let Z(X;P1) be the set of integral closed subschemes Z
of X×kP1, such that the morphism f : Z → P1 is dominant. For ? ∈ {0,∞},
show that f−1? may be identified to a closed subscheme of X, that will be
denoted by Z(?).

(iv) Let X be a variety. Show that the subgroup of rationally trivial classes
R(X) ⊂ Z(X) is generated by the elements [Z(0)]− [Z(∞)], where Z runs
over Z(X;P1).

Exercise 2. Let X be an integral variety, and L an invertible OX-module.

(i) Show that we have a correspondence Integral closed subschemes Z ⊂ P(L ⊕ 1),
with Z 6⊂ P(1), Z 6⊂ P(L),
and Z → X birational.

←→
{

regular meromorphic
sections of L.

}
(ii) Let s be a regular meromorphic section of L, and Z ⊂ P(1 ⊕ L) the corre-

sponding closed subscheme, with morphism p : Z → X. Show that

divp∗L(p∗s) = [Z ∩ P(1)]− [Z ∩ P(L)] ∈ Z(Z).

(iii) Show that Z ∩ P(1) (resp. Z ∩ P(L)) may be viewed as a closed subscheme
Z(1) (resp. Z(L)) of X, and that we have

divL(s) = p∗[Z ∩ P(1)]− p∗[Z ∩ P(L)] = [Z(1)]− [Z(L)] ∈ Z(X).

Exercise 3. Prove directly (that is, without using Chapter 3 of the lecture) Weil’s
reciprocity law: For any ϕ ∈ k(P1)×, we have

deg ◦ divϕ = 0.

Exercise 4. Let i : D → X be an effective Cartier divisor, f : X → S a flat
morphism with a relative dimension. Assume that f ◦ i : D → S is flat and has a
relative dimension. Show that

i∗ ◦ f ∗ = (f ◦ i)∗ : CH(S)→ CH(D)
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Exercise 1. Let A be a commutative ring. A characteristic class ϕ is the data
of a group endomorphism ϕ(E) of CH(X) ⊗ A for every vector bundle E → X,
such that for every flat morphism f : Y → X having a relative dimension,

f ∗ ◦ ϕ(E) = ϕ(f ∗E) ◦ f ∗ : CH(X)⊗ A→ CH(Y )⊗ A.
(i) Assume that a vector bundle E has a filtration by sub-bundles En+1 ⊂ En

such that Ln = En/En+1 is a line bundle. Express the i-th Chern class ci(E)
in terms of the classes c1(Ln).

(ii) Let F ∈ A[x1, · · · , xn] be a symmetric polynomial. Show that there is a
unique characteristic class ϕ such that whenever E is a vector bundle with
a filtration with successive quotients line bundles L1, · · · , Lm, then

ϕ(E) = F (c1(L1), · · · , c1(Lm)).

(iii) Let P ∈ A[[t]] a power series. Show that there is unique characteristic class
πP such that
• If 0 → E → F → G → 0 is an exact sequence of vector bundles, then
πP (E) ◦ πP (G) = πP (F ).
• If L→ X is a line bundle, then πP (L) = P (c1(L)).

(iv) Let P ∈ A[[t]] a power series. Show that there is unique characteristic class
γP such that
• If 0 → E → F → G → 0 is an exact sequence of vector bundles, then
γP (E) + γP (G) = γP (F ).
• If L→ X is a line bundle, then γP (L) = P (c1(L)).

(v) When A = Q, and

P (t) =
∑
n≥0

tn/n!,

we define the Chern character ch = γP . Show that

ch(E ⊗ F ) = ch(E) ◦ ch(F )

for any vector bundles E,F .

Exercise 2. Let X be a smooth (or more generally locally factorial) variety.
Show that the morphism Pic(X) → CH1(X) mapping L to c1(L)[X] is a group
isomorphism.

Exercise 3. When E is a vector bundle of rank r, its determinant detE is the
line bundle ΛrE. We say that E is orientable if detE is the trivial line bundle.

(i) Consider an exact sequence of vector bundles

0→ E → F → L→ 0

where L is a line bundle. Show that (detE)⊗ L ' detF .
(ii) Show that c1(detE) = c1(E) for any vector bundle E, and deduce that

c1(E) = 0 when E is orientable.
(iii) Conversely, show that a vector bundle E over a smooth variety X is ori-

entable as soon as c1(E)[X] = 0.
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