Algebraic Number Theory
Olivier Haution Exercises 1 03.05.2022

We fix a field k, and a field extension ¢/k.

Let V' be a k-vector space. Consider the {-vector space V on the basis (ey,v €
V). Let V ®j ¢ be the quotient of V' by the ¢-subspace generated by the elements

e, —eyn, forAekveV,
Cutn — €y — €, Tforu,veV.
For € ¢ and v € V, we denote by v ® u € V ®;, £ the image of pue,.

Exercise 1. Let V' be a k-vector space and W an (-vector space. Let f: V — W
a k-linear map. Show that there exists a unique ¢-linear map

g: Vel —W
such that g(v ® 1) = f(v) for allv € V.

Exercise 2. Let V be a k-vector space. Show that the map V — V ®, ¢ given
by v — v ® 1 is k-linear and injective. (Hint: injectivity is more subtle point.)

Exercise 3. Let V be a k-vector space, and assume that e, ..., e, is a k-basis
of V. Show that e; ® 1,...,e, ® 1 is an f¢-basis of V ®; ¢, and deduce that
dimy, V' = dim,(V ® ).
Exercise 4. Let V,W be a k-vector spaces, and f: V — W a k-linear map.

(i) Show that f induces an ¢-linear map g: V @y £ — W ® L.

(i) If f is surjective, show that g is surjective.

(iii) If f is injective, show that g is injective.

Exercise 5. Let A be a k-algebra.
(i) Show that A ®; ¢ is a naturally an (-algebra.
(ii) Let B be an f-algebra, and f: A — B be a morphism of k-algebras. Show
that the induced f-linear map A ®; ¢ — B is a morphism of (-algebras.
Exercise 6. (i) Let V, W be k-vector spaces. Show that
(VoW)pl~(Vepl) d (W el)

as (-vector spaces.
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(ii) Let A, B be k-algebras. Show that

as (-algebras.

Exercise 7. (i) Show that (k[X]) ®; ¢ ~ ¢[X] as (-algebra.

(ii) Let A be a k-algebra and I an ideal of A. Show that I ®j ¢ may be viewed
as an ideal of A ®y ¢, and that (A/]) @l ~ (AR L)/(I @y L).

(iii) Let P € k[X], and A = k[X]/P. Show that the f-algebra A ® ¢ is naturally
isomorphic to ¢[X]/P.
Exercise 8. Let A be a k-algebra.

(i) If A is an integral domain, is A ®j ¢ an integral domain? Give a proof or a
counterexample.

(i) If A is reduced, is A ®j ¢ reduced? Give a proof or a counterexample.
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Recall that an element = in a (commutative) ring A is called irreducible if

x g€ A x #0, and for all a,b € A
r=ab = a€ A" orbe A*.

Exercise 1. When A is a (commutative) ring, we say that an element p € A is
prime if pA is a nonzero prime ideal of A.

(i) Assume that A is a domain. Show that every prime element of A is irre-
ducible.

(ii) Assume that A is a principal ideal domain. Show that every irreducible
element of A is prime. (Hint: Show that the ideal generated by an irreducible
is maximal.)

Exercise 2. Let A be a principal ideal domain. Let a € A be such that a # 0
and a & A*.

(i) Show that there exist irreducible elements p1, ..., p, in A such that
a=0P1...Pn.

(Hint: Consider the set of ideals generated by elements a ¢ A* U {0} which
admit no such decomposition, and use the fact that A is noetherian.)

(ii) Show that the elements py, ..., p, are uniquely determined by a, up to their
ordering and multiplication by units of A.
Exercise 3. We are going to solve the equation
P =2+ 1, withax,ycZ.
We consider the ring of Gaussian integers Z|i].
(i) Show that the element 1+ ¢ is prime in Z][].

(ii) Let © € Z. Let us pick d € Z[i] such that dZ[i] is the ideal generated by
x—i and z +i. Show that d = u(1 +1¢)", where u € Z[i]*, and n € {0, 1,2}.

(iii) Assume that z,y € Z are such that z? + 1 = y*. Show that the ideal
generated by x + 4 and x — ¢ in Z[¢] is the whole ring Z[i].

(iv) Find all solutions to the equation

P =2 +1, withax,ycZ.
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Exercise 4. Let m € Z[i] be a prime element. Show that there exists a prime
number p € N such that N(7) = p or N(7r) = p?. (Here N: Z[i] — Z is the norm
function defined in the lectures.)

Exercise 5. Consider an integer x € N, and its prime decomposition in Z
n = H pvp(n)7
P

where p runs over the prime numbers, and v,(n) € N.

Show that the following conditions are equivalent:
(a) there exist a,b € N such that n = a* + b2,
(b) for each prime number p congruent to 3 modulo 4, the integer v,(n) is even.

(Hint: Use the previous exercise.)

Exercise 6. Let p € N be a prime number.

(i) If p = 2, show that p € Z[i] can be written as p = ab where a,b € Z[i] are
prime elements generating the same ideal in Z[i].

(ii) If p = 3 mod 4, then p € Z[i] is a prime element. (Hint: Use the results
from the lectures.)

(iii) If p = 1 mod 4, then p € Z[i] can be written as p = ab, where a,b € Z]i]
are prime elements generating different ideals in Z[i].
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Exercise 1. Show that the polynomial ring Z[X] is not a principal ideal domain.

Exercise 2. Let A be a nonzero noetherian ring, and M a free A-module of rank
n. If m is an integer such that the A-module M is free of rank m, show that
m = n. (Hint: consider a maximal ideal of A.)

Exercise 3. Let A be a domain, and P € A[X] a polynomial. Show that A[X]/P
is integral over A if and only if the leading coefficient of the polynomial P is a
unit in A.

Exercise 4. Let A be a domain having only finitely many elements. Show that
A is a field.

Exercise 5. Let A be a domain, with fraction field K. Let L be a field extension
of K having finite degree, and B the integral closure of A in L. Show that L is
the fraction field of B.

Exercise 6. Let A C R be a ring extension. Consider the following conditions
(a) the extension A C R is integral,

(b) the A-module R is finitely generated.

Does (a) implies (b)? Does (b) implies (a)? (Justify your answers, either with
a proof, reference to the lecture, or counterexample). Same questions when the
A-algebra R is additionally assumed to be finitely generated.

Exercise 7. (Time permitting) We let +/—5 € C be one of the roots of the
polynomial X2 4 5, and consider the subset

R =17Z[\V=5| = {a+bv=5la,be Z} c C.

Show that R is a subring of C, and that R is not a principal ideal domain.
(Hint: Assuming that R is a principal ideal domain, consider a prime decomposi-

tion of 1+ +/—5.)
Exercise 8. (Time permitting) Let K be a quadratic field.
(i) Let 0: K — K the nontrivial morphism of Q-algebras. Express the maps
Trg: K —Q and Ngp: K —Q
in terms of o.

(11) Show that NK/Q<OK) C Z.
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Exercise 1. Let A, B be rings. Show that every ideal of the ring A x B is of the
form I x J, where I C A and J C B are ideals.

Exercise 2. Let k be a field. A k-algebra is called diagonalisable if it is isomorphic
to k", for some integer n € N.

(i) Show that a finite-dimensional k-algebra A is diagonalisable if and only if
the k-vector space of linear forms Homy (A, k) is generated by morphisms of
k-algebras.

(ii) Deduce that every k-subalgebra of a diagonalisable k-algebra is diagonalis-
able.

(iii) Show that every diagonalisable k-algebra is generated by idempotent ele-
ments as a k-vector space. (Recall that an element x in a ring R is called
idempotent if 2% = x.)

(iv) Let (eq,...,e,) be the canonical k-basis of k™. For [ C {1,...,n}, set

er = E €;.

el

Show that every idempotent of k™ is of the form e; for some I C {1,...,n}.

(v) Deduce that a diagonalisable k-algebra admits only finitely many k-subalgebras.

Exercise 3. Let A be a k-algebra. We assume that there exists a field extension
¢/k such that the f-algebra A ®j ¢ is diagonalisable. Show that the k-algebra A
is étale. (N.B.: the converse was established in the lectures).

Exercise 4. Let k be a field, and A an étale k-algebra. (Hint for the questions
below: Use the two previous exercises.)

(i) Let B C A be a k-subalgebra. Show that B is an étale k-algebra.

(ii) Let C' be a quotient k-algebra of A (i.e. C = A/I for some ideal I of A).
Show that the k-algebra C' is étale.

(iii) Show that the k-algebra A admits only finitely many subalgebras and quo-
tient algebras.

(iv) Assume that k is infinite. Show that there exists a separable polynomial
P € k[X] such that A ~ k[X]/P. (Hint: to show that A is generated by a
single element as a k-algebra, recall that no k-vector space is a finite union
of proper subspaces.)
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Exercise 5. Let L/K be a field extension of finite degree. We are going to prove
that the following conditions are equivalent:

(a) The K-algebra L is generated by a single element,
(b) There exist only finitely many subextensions of L/K.
We proceed as follows:

(i) Show that (b) implies (a). (Hint: Treat the cases k finite and infinite using
different arguments.)

(ii) Assume that L = K(«) for some o € L. Let E/K be a subextension of
L/K, and let

P=X"+a; 1 X"+ 4a € E[X]

be the minimal polynomial of a over E. Show that E = K(ag,...,aq-1).

(iii) Show that in (ii) the image of P in L[X]| can take only finitely many values,
as E/K varies (the element o being fixed).

(iv) Deduce that (a) implies (b).
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Exercise 1 (Gauss Lemma). Let A be a principal ideal domain, and K its fraction
field. When P € A[X] is a polynomial, we define its content cont(P) as the ideal
generated in A by its coefficients.

(i) Let R € A[X]. Show that there exists a € A and R e A[X] such that
cont(R) = «A and R = aR.

(ii) Let P,@ € A[X] be such that cont(P) = cont(Q)) = A. Show that cont(PQ) =
A. (Hint: Consider a prime ideal p of A, and show that PQ ¢ pA[X].)

(i) Let P,Q € A[X]. Show that cont(PQ) = cont(P) cont(Q).

(iv) Let K be the fraction field of A, and P € A[X] be such that cont(P) = A.
Deduce that P is irreducible in A[X] if and only if it is irreducible in K[X].

Exercise 2. Let A be an integrally closed domain with fraction field K. Let
L/K be a finite field extension. Consider an element a € L, and let P € K[X]
be its minimal polynomial over K. Show that « is integral over A if and only if
P e A[X].

Exercise 3. Let a,b € Q be such that the polynomial P = X" + aX + b is
irreducible in Q[X]. Let o € C be a root of P, and K = Q(«). Show that

Dijo(l,a,...,a" 1) = (=1)" 5 (06" + a™(1 — )" ).
Exercise 4. Let P = X? + X +1 € Z[X].
(i) Show that the polynomial P is irreducible in Q[X].

(ii) Let o € C be a root of P, and consider the subfield K = Q(a) C C. Show
that [K : Q] = 3 and that a € Ok.

(iii) Show that (1, a, a?) is a Z-basis of Ok. (Hint: Use the previous exercise.)

Exercise 5. (Optional) Let n > 2 be an integer, and £ € C a primitive n-th root
of unity. Let P € Q[X] be the minimal polynomial of £ over Q. Let

@, = H(X - Sk)a

kesS

where S C {1,...,n} is the set of elements k with ged(k,n) = 1. We are going to
prove that P = &,

We let p be prime number, and denote @) — @ the reduction modulo p map
Z|X] — F,[X]. Let F' € Q[X] be the minimal polynomial of & over Q.
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(i) Show that P, F € Z[X].

(ii) Show that F and P have a common irreducible divisor in F,[X]. (Hint:
consider the polynomial G = P(X?) € Z[X].)

(iii) Assume that the prime number p does not divide n. Show that F' = P.
(iv) Deduce that @, | P in Q[X].
(v) Show that

¢, =[] 2

dln
and deduce that @, € Z[X].

(vi) Conclude.
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Exercise 1. Let k be a field. Show that £[X, Y] is not a Dedekind domain.
Exercise 2. Let k be a field, and consider the subring A = k[X? X?3] of the
polynomial ring k[X].

(i) Show that A is a noetherian domain, and that every nonzero prime ideal of
A is maximal. (Hint: Use the inclusions k[X?] C A C k[X].)

(ii) Let k(X) be the fraction field of k[X]. Show that k(X) is the fraction field
of A.

(iii) Show that A is not a Dedekind domain.
Exercise 3 (Approximation Lemma). Let A be a Dedekind domain, with fraction
field K. For a nonzero prime ideal q of A, and a element y € K, we define
vq(y) = sup{n € Zly € 9"} € Z U {oo}.
(i) For a,b € A and q a nonzero prime ideal of A, show that

vg(a+b) > min{vg(a),v(b)} and wv4(ab) = vq(a) + vq(b).

Let pq,...,ps be pairwise distinct nonzero prime ideals of A. Let xy,..., x4 €
K and nq,...,ns € N. We are going to prove that we may find x € K such that

Upi(x_mi) an fOI'ie {1""’8}7 and Uq(x) 20 forqg{pla"'vps}’ (*)
(i) If s > 2, show that p}* + p32---p” = A.

(iii) Show that we may find z € A satisfying () when z; € A and zy = --- =
z, = 0.

(iv) Show that we may find = € A satisfying (%) when z4,..., 2, € A.

(v) Show that we may find € K satisfying ().

Exercise 4. (Optional) Let A be a Dedekind domain.

(i) Let py,...,p, be pairwise distinct nonzero prime ideals of A. Let ny,...,ng €
N. Show that we may find an element x € A such that vy, (z) = n; for all
i€{l,...,s}. (Hint: Use the previous exercise.)

(ii) Show that every ideal of A is generated by at most two elements.

(iii) Assume that A has only finitely prime ideals. Reprove (using (i)) that A is
a principal ideal domain.
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Exercise 1. Let K be a number field, and I C Ok a nonzero ideal such that
N(I) = card(Ok/I) is a prime number. Show that the ideal I is prime.

Exercise 2. Let K be a number field and p a nonzero prime ideal of Og. Show
that N(p) = card(Ok/p) € N is a power of a prime number.

Exercise 3. Let A be a local noetherian domain. Assume that the maximal ideal
m of A is principal. We assume that A is not a field.

(i) Show that (1, ym" = 0.

(ii) Let K be the fraction field of A, and 7 € A a generator of m. Show that
every element x € K ~ {0} is of the form & = 7"« for unique elements
u€ A and n € Z.

(iii) Deduce that A is a discrete valuation ring.

Exercise 4. Let A be a discrete valuation ring with fraction field K. Let m be

a uniformising parameter of A. Let m = 7A be the maximal ideal of A, and
k = A/m. We denote by P +— P the reduction map A[X] — k[X].

(i) Let @ € A[X] be such that Q # 0 in k[X]. If U € K[X] is such that
QU € A[X], show that U € A[X].

We now let P € A[X] be a monic polynomial such that P € k[X] is irreducible,
and consider the ring B = A[X]/P.

(ii) Show that the ring B is a domain. (Hint: use (i)).

(iii) Show that the ring B is a discrete valuation ring, with uniformising param-
eter . (Hint: Use Exercise 3.)

(iv) Let
Q =X" + an,anfl + -+ a,o,With ag,...,0p—1 € A.

Assume that ag is a uniformising parameter of A, and that ay | a; for all
i=1,...,n—1. Show that C' = A[X]/Q is a discrete valuation ring, where
the class of X is a uniformising parameter. (Hint: This is not a direct
consequence of (iii).)
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Exercise 1. Let A be a domain, and pq,...,p, prime ideals of A.
(i) Show that the set S = A~ (p1 U---Up,) is multiplicatively closed.

(ii) Assume that p; ¢ p; for all i # j. Show that the ring S™'A possesses n
maximal ideals.

Exercise 2. Let A be a Dedekind domain. We are going to prove that every ideal
of A is generated by at most two elements.

(i) Let 2 € A be a nonzero element. Show that z is contained in only finitely
many prime ideals py,...,p, of A.

(i) Let S = A~ (py U---Up,). Show that the ring S~'A is a principal ideal
domain. (Hint: use the previous exercise.)

(iii) Show that for any s € S, we have sA + zA = A.
(iv) Show that we have a ring isomorphism A/xA = (S7'A)/(zS~'A).
(v) Deduce that every ideal of A/xA is principal.

(vi) Conclude that every ideal of A is generated by at most two elements.

Exercise 3. Let A be a Dedekind domain, and S C A a multiplicatively closed
subset. Show that mapping a nonzero fractional ideal I of A to S~!I induces a
surjective group morphism C(A) — C(S™'A) between the ideal class groups.

Exercise 4. Let A be a Dedekind domain, and f € A a nonzero element. Consider
the multiplicatively closed subset S = {f"|n € N} in A, and let r be the number
of prime ideals of A containing f (recall from Exercise 2 (i) that r < 00).

(i) Let @ be the kernel of the natural morphism F(A) — F(S7!'A) (where
F(A), F(S7'A) denote the respective groups of nonzero fractional ideals).
Show that the Z-module @) is free of rank r.

(ii) By considering the morphism
(STTA)* — F(A), zwzA
show that the Z-module (S™1A)*/A* is free of rank < r.
Exercise 5 (Optional). Let B be a noetherian domain, and A C B a subring

such that B is integral over A. If p is a prime ideal of A, show that there exists a
prime ideal q of B such that ¢ A = p. (This is called the “going-up” theorem.)
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Exercise 1. Let K be an imaginary quadratic field. Show that the group (Ok)*
is finite and cyclic. (A more precise answer is obtained in Exercise 5 below).

Exercise 2. Let K be a real quadratic field. We fix an embedding K C R.
(i) Show that (Ok)* ~Z x (Z/2Z).

(ii) Deduce that the subset of units in Og which are > 0 is a free Z-module of
rank 1, which admits a unique generator u such that w > 1. This element
is called the fundamental unit of K.

Exercise 3. Let K = Q(v/d) be a real quadratic field, where d € N~ {0,1}
is square-free. We view K as a subfield of R. In this exercise, we describe a
procedure to determine explicitly the fundamental unit of K (see the previous
exercise).

(i) Let € (Ok)*, and write 2 = a + bv/d, with a,b € Q. Show that a®> > b2
(Hint: the number a* — db* can only take two values. . .)

(i) Let z € (Og)*, and write = a + bv/d, with a,b € Q. Show that
(>1) <= (a>0andb>0).

(Hint: If x > 1, observe that x is the unique mazimal element of the set

{z,27Y, —z, -2~ '}.)

(iii) Assume that d = 2,3 mod 4. Show that the fundamental unit of K can be
written as a; + b;v/d with a1, b; € N~ {0}. Let x = a+ bWd e (Ok)*, with
a,b € N~ {0}. Show that b > by, and that b = by implies a = a;.

(Hint: consider the sequences ay,b, € N~ {0} defined by (a1 + b1vV/d)" =
ay, + bn\/c_l.)

(iv) Assume that d = 2,3 mod 4. Let b € N~ {0} be the smallest integer such
that db® — 1 or db®+ 1 is of the form a? with a € N~ {0}. Show that a+0bv/d

is the fundamental unit of K.

(v) Assume that d = 1 mod 4. Show that the fundamental unit of K can be
written as (a; + bv/d) with a1,b; € N\ {0}. Let z = a + bVd € (Og)*,
with a,b € N~ {0}. Show that b > b;. Assume that b = b; and a # a;.

Show that d = 5, that a; = b; =1 and a = 3.

(Hint: consider the sequences a,, b, € NX\ {0} defined by (1(ar+b1Vd))" =
(an + boV/d), and analyse the conditions under which by = by.)
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(vi) Assume that d = 1 mod 4 with d # 5. Let b € N~ {0} be the smallest
integer such that db* — 4 or db® +4 is of the form a* with a € N~ {0}. Show
that 1(a + bV/d) is the fundamental unit of K.

(vii) Determine the fundamental units of the following quadratic fields:

Q(v2), Q(V5),Q(V6), Q(V17)

Exercise 4 (Pell’s equation). (i) Let d € N~ {0, 1} be square-free. Show that
the set of solutions =,y € N to the equation

2 — dy2 =1,
is {(zn, yn)|n € N}, where
Tn + ypVd = (1 + ylx/a)”.
(Hint: Use the previous exercise.)

(ii) Determine (z1,%;) when d € {2,5,6,17}.

Exercise 5. Let K be an imaginary quadratic number field. Show that

(Ok)* =< {1,a,a? a3 a* a’}, where a = %53 if K =Q(v-3)
{1,-1} otherwise.
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Exercise 1. Let K be a number field.

(i) Show that there exists a monic irreducible polynomial P € Z[X] and a root
a € C such that K = Q(«).

For the rest of the exercise, we assume that Ox = Z[a]. For a,b € Ok, we will
denote by (a,b) the ideal of Ok generated by a and b. We let p € Z be a prime
number, and denote by R + R the reduction map Z[X] — F,[X]. Let us fix a
polynomial Q € Z[X] such that Q € F,[X] is irreducible.

(ii) Assume that Q divides P in F,[X]. Show that the ideal (p, Q()) € Ok is
prime.

(iii) Let m € N~ {0} be such that Q™ divides P in F,[X]. Show that
(p, Q(@))™ = (p, Q()™).
(iv) Write P = P, --- P, where P,,..., P, € Z[X] are such that P,..., P,
are monic irreducible in F,[X] and pairwise distinct. Show that

S

POk = [ [(p, Pi(e))™,

=1

is the decomposition of the ideal pOk as a product of prime ideals in Ok.

Exercise 2. Consider the polynomial P = X3+ X + 1 € Z[X], and let o € C be
a root of P. We recall from Exercise 4, Sheet 5 that K = Q(«) is a number field
of degree 3 whose absolute discriminant is 31, and that Ok = Z[a].

(i) Which prime numbers p ramify in K7

(ii) For every prime number p which ramifies in K, give an explicit description
of the decomposition of pO as a product of prime ideals in Og. (Hint: use
the previous exercise; compute P(3) and P(14).)

Exercise 3. Let K be a number field, and I an ideal of O.

(i) Show that there exists an integer n > 0 such that the ideal I" of Ok is
principal.

(ii) Let n > 0 be an integer such that I™ is principal. Show that there exists a
field extension L/K with [L : K| < n, and such that the ideal IOy, of Oy is
principal.
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Exercise 1. Let K = Q(v/d) where d € Z ~ {0,1} is square-free.

(i) Let ¢ € N\ {0}. Show that Ok admits a nonzero principal ideal I such that
N(I) = ¢ if and only if there exist a,b € Z such that

0% — db?| = q ?fd:2,3 mod 4,
4q ifd=1 mod 4.

(i) If d € {7,—11}, show that Ok is principal.

(iii) If d = —6, show that the ideal class group C(Ok) is isomorphic to Z/2.



