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We fix a field k, and a field extension `/k.

Let V be a k-vector space. Consider the `-vector space Ṽ on the basis (ev, v ∈
V ). Let V ⊗k ` be the quotient of Ṽ by the `-subspace generated by the elements{

λev − eλv for λ ∈ k, v ∈ V ,
eu+v − eu − ev for u, v ∈ V .

For µ ∈ ` and v ∈ V , we denote by v ⊗ µ ∈ V ⊗k ` the image of µev.

Exercise 1. Let V be a k-vector space and W an `-vector space. Let f : V → W
a k-linear map. Show that there exists a unique `-linear map

g : V ⊗k `→ W

such that g(v ⊗ 1) = f(v) for all v ∈ V .

Exercise 2. Let V be a k-vector space. Show that the map V → V ⊗k ` given
by v 7→ v ⊗ 1 is k-linear and injective. (Hint: injectivity is more subtle point.)

Exercise 3. Let V be a k-vector space, and assume that e1, . . . , en is a k-basis
of V . Show that e1 ⊗ 1, . . . , en ⊗ 1 is an `-basis of V ⊗k `, and deduce that
dimk V = dim`(V ⊗k `).

Exercise 4. Let V,W be a k-vector spaces, and f : V → W a k-linear map.

(i) Show that f induces an `-linear map g : V ⊗k `→ W ⊗k `.

(ii) If f is surjective, show that g is surjective.

(iii) If f is injective, show that g is injective.

Exercise 5. Let A be a k-algebra.

(i) Show that A⊗k ` is a naturally an `-algebra.

(ii) Let B be an `-algebra, and f : A → B be a morphism of k-algebras. Show
that the induced `-linear map A⊗k `→ B is a morphism of `-algebras.

Exercise 6. (i) Let V,W be k-vector spaces. Show that

(V ⊕W )⊗k ` ' (V ⊗k `)⊕ (W ⊗k `)

as `-vector spaces.
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(ii) Let A,B be k-algebras. Show that

(A×B)⊗k ` ' (A⊗k `)× (B ⊗k `)

as `-algebras.

Exercise 7. (i) Show that (k[X])⊗k ` ' `[X] as `-algebra.

(ii) Let A be a k-algebra and I an ideal of A. Show that I ⊗k ` may be viewed
as an ideal of A⊗k `, and that (A/I)⊗k ` ' (A⊗k `)/(I ⊗k `).

(iii) Let P ∈ k[X], and A = k[X]/P . Show that the `-algebra A⊗k ` is naturally
isomorphic to `[X]/P .

Exercise 8. Let A be a k-algebra.

(i) If A is an integral domain, is A⊗k ` an integral domain? Give a proof or a
counterexample.

(ii) If A is reduced, is A⊗k ` reduced? Give a proof or a counterexample.
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Recall that an element x in a (commutative) ring A is called irreducible if
x 6∈ A×, x 6= 0, and for all a, b ∈ A

x = ab =⇒ a ∈ A× or b ∈ A×.

Exercise 1. When A is a (commutative) ring, we say that an element p ∈ A is
prime if pA is a nonzero prime ideal of A.

(i) Assume that A is a domain. Show that every prime element of A is irre-
ducible.

(ii) Assume that A is a principal ideal domain. Show that every irreducible
element of A is prime. (Hint: Show that the ideal generated by an irreducible
is maximal.)

Exercise 2. Let A be a principal ideal domain. Let a ∈ A be such that a 6= 0
and a 6∈ A×.

(i) Show that there exist irreducible elements p1, . . . , pn in A such that

a = p1 . . . pn.

(Hint: Consider the set of ideals generated by elements a 6∈ A× ∪ {0} which
admit no such decomposition, and use the fact that A is noetherian.)

(ii) Show that the elements p1, . . . , pn are uniquely determined by a, up to their
ordering and multiplication by units of A.

Exercise 3. We are going to solve the equation

y3 = x2 + 1, with x, y ∈ Z.

We consider the ring of Gaussian integers Z[i].

(i) Show that the element 1 + i is prime in Z[i].

(ii) Let x ∈ Z. Let us pick d ∈ Z[i] such that dZ[i] is the ideal generated by
x− i and x+ i. Show that d = u(1 + i)n, where u ∈ Z[i]×, and n ∈ {0, 1, 2}.

(iii) Assume that x, y ∈ Z are such that x2 + 1 = y3. Show that the ideal
generated by x+ i and x− i in Z[i] is the whole ring Z[i].

(iv) Find all solutions to the equation

y3 = x2 + 1, with x, y ∈ Z.
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Exercise 4. Let π ∈ Z[i] be a prime element. Show that there exists a prime
number p ∈ N such that N(π) = p or N(π) = p2. (Here N: Z[i] → Z is the norm
function defined in the lectures.)

Exercise 5. Consider an integer x ∈ N, and its prime decomposition in Z

n =
∏
p

pvp(n),

where p runs over the prime numbers, and vp(n) ∈ N.

Show that the following conditions are equivalent:

(a) there exist a, b ∈ N such that n = a2 + b2,

(b) for each prime number p congruent to 3 modulo 4, the integer vp(n) is even.

(Hint: Use the previous exercise.)

Exercise 6. Let p ∈ N be a prime number.

(i) If p = 2, show that p ∈ Z[i] can be written as p = ab where a, b ∈ Z[i] are
prime elements generating the same ideal in Z[i].

(ii) If p = 3 mod 4, then p ∈ Z[i] is a prime element. (Hint: Use the results
from the lectures.)

(iii) If p = 1 mod 4, then p ∈ Z[i] can be written as p = ab, where a, b ∈ Z[i]
are prime elements generating different ideals in Z[i].
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Exercise 1. Show that the polynomial ring Z[X] is not a principal ideal domain.

Exercise 2. Let A be a nonzero noetherian ring, and M a free A-module of rank
n. If m is an integer such that the A-module M is free of rank m, show that
m = n. (Hint: consider a maximal ideal of A.)

Exercise 3. Let A be a domain, and P ∈ A[X] a polynomial. Show that A[X]/P
is integral over A if and only if the leading coefficient of the polynomial P is a
unit in A.

Exercise 4. Let A be a domain having only finitely many elements. Show that
A is a field.

Exercise 5. Let A be a domain, with fraction field K. Let L be a field extension
of K having finite degree, and B the integral closure of A in L. Show that L is
the fraction field of B.

Exercise 6. Let A ⊂ R be a ring extension. Consider the following conditions

(a) the extension A ⊂ R is integral,

(b) the A-module R is finitely generated.

Does (a) implies (b)? Does (b) implies (a)? (Justify your answers, either with
a proof, reference to the lecture, or counterexample). Same questions when the
A-algebra R is additionally assumed to be finitely generated.

Exercise 7. (Time permitting) We let
√
−5 ∈ C be one of the roots of the

polynomial X2 + 5, and consider the subset

R = Z[
√
−5] = {a+ b

√
−5|a, b ∈ Z} ⊂ C.

Show that R is a subring of C, and that R is not a principal ideal domain.
(Hint: Assuming that R is a principal ideal domain, consider a prime decomposi-
tion of 1 +

√
−5.)

Exercise 8. (Time permitting) Let K be a quadratic field.

(i) Let σ : K → K the nontrivial morphism of Q-algebras. Express the maps

TrK/Q : K → Q and NK/Q : K → Q

in terms of σ.

(ii) Show that NK/Q(OK) ⊂ Z.



Olivier Haution
Algebraic Number Theory

Exercises 4 31.05.2022

Exercise 1. Let A,B be rings. Show that every ideal of the ring A×B is of the
form I × J , where I ⊂ A and J ⊂ B are ideals.

Exercise 2. Let k be a field. A k-algebra is called diagonalisable if it is isomorphic
to kn, for some integer n ∈ N.

(i) Show that a finite-dimensional k-algebra A is diagonalisable if and only if
the k-vector space of linear forms Homk(A, k) is generated by morphisms of
k-algebras.

(ii) Deduce that every k-subalgebra of a diagonalisable k-algebra is diagonalis-
able.

(iii) Show that every diagonalisable k-algebra is generated by idempotent ele-
ments as a k-vector space. (Recall that an element x in a ring R is called
idempotent if x2 = x.)

(iv) Let (e1, . . . , en) be the canonical k-basis of kn. For I ⊂ {1, . . . , n}, set

eI =
∑
i∈I

ei.

Show that every idempotent of kn is of the form eI for some I ⊂ {1, . . . , n}.

(v) Deduce that a diagonalisable k-algebra admits only finitely many k-subalgebras.

Exercise 3. Let A be a k-algebra. We assume that there exists a field extension
`/k such that the `-algebra A ⊗k ` is diagonalisable. Show that the k-algebra A
is étale. (N.B.: the converse was established in the lectures).

Exercise 4. Let k be a field, and A an étale k-algebra. (Hint for the questions
below: Use the two previous exercises.)

(i) Let B ⊂ A be a k-subalgebra. Show that B is an étale k-algebra.

(ii) Let C be a quotient k-algebra of A (i.e. C = A/I for some ideal I of A).
Show that the k-algebra C is étale.

(iii) Show that the k-algebra A admits only finitely many subalgebras and quo-
tient algebras.

(iv) Assume that k is infinite. Show that there exists a separable polynomial
P ∈ k[X] such that A ' k[X]/P . (Hint: to show that A is generated by a
single element as a k-algebra, recall that no k-vector space is a finite union
of proper subspaces.)
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Exercise 5. Let L/K be a field extension of finite degree. We are going to prove
that the following conditions are equivalent:

(a) The K-algebra L is generated by a single element,

(b) There exist only finitely many subextensions of L/K.

We proceed as follows:

(i) Show that (b) implies (a). (Hint: Treat the cases k finite and infinite using
different arguments.)

(ii) Assume that L = K(α) for some α ∈ L. Let E/K be a subextension of
L/K, and let

P = Xd + ad−1X
d−1 + · · ·+ a0 ∈ E[X]

be the minimal polynomial of α over E. Show that E = K(a0, . . . , ad−1).

(iii) Show that in (ii) the image of P in L[X] can take only finitely many values,
as E/K varies (the element α being fixed).

(iv) Deduce that (a) implies (b).
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Exercise 1 (Gauss Lemma). Let A be a principal ideal domain, and K its fraction
field. When P ∈ A[X] is a polynomial, we define its content cont(P ) as the ideal
generated in A by its coefficients.

(i) Let R ∈ A[X]. Show that there exists α ∈ A and R̃ ∈ A[X] such that

cont(R) = αA and R = αR̃.

(ii) Let P,Q ∈ A[X] be such that cont(P ) = cont(Q) = A. Show that cont(PQ) =
A. (Hint: Consider a prime ideal p of A, and show that PQ 6∈ pA[X].)

(iii) Let P,Q ∈ A[X]. Show that cont(PQ) = cont(P ) cont(Q).

(iv) Let K be the fraction field of A, and P ∈ A[X] be such that cont(P ) = A.
Deduce that P is irreducible in A[X] if and only if it is irreducible in K[X].

Exercise 2. Let A be an integrally closed domain with fraction field K. Let
L/K be a finite field extension. Consider an element α ∈ L, and let P ∈ K[X]
be its minimal polynomial over K. Show that α is integral over A if and only if
P ∈ A[X].

Exercise 3. Let a, b ∈ Q be such that the polynomial P = Xn + aX + b is
irreducible in Q[X]. Let α ∈ C be a root of P , and K = Q(α). Show that

DK/Q(1, α, . . . , αn−1) = (−1)
n(n−1)

2 (nnbn−1 + an(1− n)n−1).

Exercise 4. Let P = X3 +X + 1 ∈ Z[X].

(i) Show that the polynomial P is irreducible in Q[X].

(ii) Let α ∈ C be a root of P , and consider the subfield K = Q(α) ⊂ C. Show
that [K : Q] = 3 and that α ∈ OK .

(iii) Show that (1, α, α2) is a Z-basis of OK . (Hint: Use the previous exercise.)

Exercise 5. (Optional) Let n ≥ 2 be an integer, and ξ ∈ C a primitive n-th root
of unity. Let P ∈ Q[X] be the minimal polynomial of ξ over Q. Let

Φn =
∏
k∈S

(X − ξk),

where S ⊂ {1, . . . , n} is the set of elements k with gcd(k, n) = 1. We are going to
prove that P = Φn

We let p be prime number, and denote Q 7→ Q the reduction modulo p map
Z[X]→ Fp[X]. Let F ∈ Q[X] be the minimal polynomial of ξp over Q.
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(i) Show that P, F ∈ Z[X].

(ii) Show that F and P have a common irreducible divisor in Fp[X]. (Hint:
consider the polynomial G = P (Xp) ∈ Z[X].)

(iii) Assume that the prime number p does not divide n. Show that F = P .

(iv) Deduce that Φn | P in Q[X].

(v) Show that

Φn =
∏
d|n

Φd

and deduce that Φn ∈ Z[X].

(vi) Conclude.
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Exercise 1. Let k be a field. Show that k[X, Y ] is not a Dedekind domain.

Exercise 2. Let k be a field, and consider the subring A = k[X2, X3] of the
polynomial ring k[X].

(i) Show that A is a noetherian domain, and that every nonzero prime ideal of
A is maximal. (Hint: Use the inclusions k[X2] ⊂ A ⊂ k[X].)

(ii) Let k(X) be the fraction field of k[X]. Show that k(X) is the fraction field
of A.

(iii) Show that A is not a Dedekind domain.

Exercise 3 (Approximation Lemma). Let A be a Dedekind domain, with fraction
field K. For a nonzero prime ideal q of A, and a element y ∈ K, we define

vq(y) = sup{n ∈ Z|y ∈ qn} ∈ Z ∪ {∞}.

(i) For a, b ∈ A and q a nonzero prime ideal of A, show that

vq(a + b) ≥ min{vq(a), vq(b)} and vq(ab) = vq(a) + vq(b).

Let p1, . . . , ps be pairwise distinct nonzero prime ideals of A. Let x1, . . . , xs ∈
K and n1, . . . , ns ∈ N. We are going to prove that we may find x ∈ K such that

vpi(x− xi) ≥ ni for i ∈ {1, . . . , s}, and vq(x) ≥ 0 for q 6∈ {p1, . . . , ps}. (∗)

(ii) If s ≥ 2, show that pn1
1 + pn2

2 · · · pns
s = A.

(iii) Show that we may find x ∈ A satisfying (∗) when x1 ∈ A and x2 = · · · =
xs = 0.

(iv) Show that we may find x ∈ A satisfying (∗) when x1, . . . , xs ∈ A.

(v) Show that we may find x ∈ K satisfying (∗).

Exercise 4. (Optional) Let A be a Dedekind domain.

(i) Let p1, . . . , pn be pairwise distinct nonzero prime ideals of A. Let n1, . . . , ns ∈
N. Show that we may find an element x ∈ A such that vpi(x) = ni for all
i ∈ {1, . . . , s}. (Hint: Use the previous exercise.)

(ii) Show that every ideal of A is generated by at most two elements.

(iii) Assume that A has only finitely prime ideals. Reprove (using (i)) that A is
a principal ideal domain.
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Exercise 1. Let K be a number field, and I ⊂ OK a nonzero ideal such that
N(I) = card(OK/I) is a prime number. Show that the ideal I is prime.

Exercise 2. Let K be a number field and p a nonzero prime ideal of OK . Show
that N(p) = card(OK/p) ∈ N is a power of a prime number.

Exercise 3. Let A be a local noetherian domain. Assume that the maximal ideal
m of A is principal. We assume that A is not a field.

(i) Show that
⋂

n∈N m
n = 0.

(ii) Let K be the fraction field of A, and π ∈ A a generator of m. Show that
every element x ∈ K r {0} is of the form x = πnu for unique elements
u ∈ A× and n ∈ Z.

(iii) Deduce that A is a discrete valuation ring.

Exercise 4. Let A be a discrete valuation ring with fraction field K. Let π be
a uniformising parameter of A. Let m = πA be the maximal ideal of A, and
k = A/m. We denote by P 7→ P the reduction map A[X]→ k[X].

(i) Let Q ∈ A[X] be such that Q 6= 0 in k[X]. If U ∈ K[X] is such that
QU ∈ A[X], show that U ∈ A[X].

We now let P ∈ A[X] be a monic polynomial such that P ∈ k[X] is irreducible,
and consider the ring B = A[X]/P .

(ii) Show that the ring B is a domain. (Hint: use (i)).

(iii) Show that the ring B is a discrete valuation ring, with uniformising param-
eter π. (Hint: Use Exercise 3.)

(iv) Let
Q = Xn + an−1X

n−1 + · · ·+ a0,with a0, . . . , an−1 ∈ A.

Assume that a0 is a uniformising parameter of A, and that a0 | ai for all
i = 1, . . . , n− 1. Show that C = A[X]/Q is a discrete valuation ring, where
the class of X is a uniformising parameter. (Hint: This is not a direct
consequence of (iii).)
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Exercise 1. Let A be a domain, and p1, . . . , pn prime ideals of A.

(i) Show that the set S = Ar (p1 ∪ · · · ∪ pn) is multiplicatively closed.

(ii) Assume that pi 6⊂ pj for all i 6= j. Show that the ring S−1A possesses n
maximal ideals.

Exercise 2. Let A be a Dedekind domain. We are going to prove that every ideal
of A is generated by at most two elements.

(i) Let x ∈ A be a nonzero element. Show that x is contained in only finitely
many prime ideals p1, . . . , pn of A.

(ii) Let S = A r (p1 ∪ · · · ∪ pn). Show that the ring S−1A is a principal ideal
domain. (Hint: use the previous exercise.)

(iii) Show that for any s ∈ S, we have sA + xA = A.

(iv) Show that we have a ring isomorphism A/xA
∼−→ (S−1A)/(xS−1A).

(v) Deduce that every ideal of A/xA is principal.

(vi) Conclude that every ideal of A is generated by at most two elements.

Exercise 3. Let A be a Dedekind domain, and S ⊂ A a multiplicatively closed
subset. Show that mapping a nonzero fractional ideal I of A to S−1I induces a
surjective group morphism C(A)→ C(S−1A) between the ideal class groups.

Exercise 4. Let A be a Dedekind domain, and f ∈ A a nonzero element. Consider
the multiplicatively closed subset S = {fn|n ∈ N} in A, and let r be the number
of prime ideals of A containing f (recall from Exercise 2 (i) that r <∞).

(i) Let Q be the kernel of the natural morphism F(A) → F(S−1A) (where
F(A),F(S−1A) denote the respective groups of nonzero fractional ideals).
Show that the Z-module Q is free of rank r.

(ii) By considering the morphism

(S−1A)× → F(A), x 7→ xA

show that the Z-module (S−1A)×/A× is free of rank ≤ r.

Exercise 5 (Optional). Let B be a noetherian domain, and A ⊂ B a subring
such that B is integral over A. If p is a prime ideal of A, show that there exists a
prime ideal q of B such that q ∩ A = p. (This is called the “going-up” theorem.)
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Exercise 1. Let K be an imaginary quadratic field. Show that the group (OK)×

is finite and cyclic. (A more precise answer is obtained in Exercise 5 below).

Exercise 2. Let K be a real quadratic field. We fix an embedding K ⊂ R.

(i) Show that (OK)× ' Z× (Z/2Z).

(ii) Deduce that the subset of units in OK which are > 0 is a free Z-module of
rank 1, which admits a unique generator u such that u > 1. This element u
is called the fundamental unit of K.

Exercise 3. Let K = Q(
√
d) be a real quadratic field, where d ∈ N r {0, 1}

is square-free. We view K as a subfield of R. In this exercise, we describe a
procedure to determine explicitly the fundamental unit of K (see the previous
exercise).

(i) Let x ∈ (OK)×, and write x = a + b
√
d, with a, b ∈ Q. Show that a2 ≥ b2.

(Hint: the number a2 − db2 can only take two values. . . )

(ii) Let x ∈ (OK)×, and write x = a+ b
√
d, with a, b ∈ Q. Show that

(x > 1)⇐⇒ (a > 0 and b > 0).

(Hint: If x > 1, observe that x is the unique maximal element of the set
{x, x−1,−x,−x−1}.)

(iii) Assume that d = 2, 3 mod 4. Show that the fundamental unit of K can be
written as a1 + b1

√
d with a1, b1 ∈ Nr {0}. Let x = a+ b

√
d ∈ (OK)×, with

a, b ∈ Nr {0}. Show that b ≥ b1, and that b = b1 implies a = a1.

(Hint: consider the sequences an, bn ∈ N r {0} defined by (a1 + b1
√
d)n =

an + bn
√
d.)

(iv) Assume that d = 2, 3 mod 4. Let b ∈ N r {0} be the smallest integer such
that db2−1 or db2 +1 is of the form a2 with a ∈ Nr{0}. Show that a+ b

√
d

is the fundamental unit of K.

(v) Assume that d = 1 mod 4. Show that the fundamental unit of K can be
written as 1

2
(a1 + b1

√
d) with a1, b1 ∈ N r {0}. Let x = a + b

√
d ∈ (OK)×,

with a, b ∈ N r {0}. Show that b ≥ b1. Assume that b = b1 and a 6= a1.
Show that d = 5, that a1 = b1 = 1 and a = 3.

(Hint: consider the sequences an, bn ∈ Nr {0} defined by (1
2
(a1 + b1

√
d))n =

1
2
(an + bn

√
d), and analyse the conditions under which b2 = b1.)
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(vi) Assume that d = 1 mod 4 with d 6= 5. Let b ∈ N r {0} be the smallest
integer such that db2− 4 or db2 + 4 is of the form a2 with a ∈ Nr{0}. Show
that 1

2
(a+ b

√
d) is the fundamental unit of K.

(vii) Determine the fundamental units of the following quadratic fields:

Q(
√

2),Q(
√

5),Q(
√

6),Q(
√

17)

Exercise 4 (Pell’s equation). (i) Let d ∈ Nr {0, 1} be square-free. Show that
the set of solutions x, y ∈ N to the equation

x2 − dy2 = 1,

is {(xn, yn)|n ∈ N}, where

xn + yn
√
d = (x1 + y1

√
d)n.

(Hint: Use the previous exercise.)

(ii) Determine (x1, y1) when d ∈ {2, 5, 6, 17}.

Exercise 5. Let K be an imaginary quadratic number field. Show that

(OK)× =


{1,−1, i,−i} if K = Q(i),

{1, α, α2, α3, α4, α5},where α = 1+
√
−3

2
if K = Q(

√
−3)

{1,−1} otherwise.
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Exercise 1. Let K be a number field.

(i) Show that there exists a monic irreducible polynomial P ∈ Z[X] and a root
α ∈ C such that K = Q(α).

For the rest of the exercise, we assume that OK = Z[α]. For a, b ∈ OK , we will
denote by (a, b) the ideal of OK generated by a and b. We let p ∈ Z be a prime
number, and denote by R 7→ R the reduction map Z[X] → Fp[X]. Let us fix a
polynomial Q ∈ Z[X] such that Q ∈ Fp[X] is irreducible.

(ii) Assume that Q divides P in Fp[X]. Show that the ideal (p,Q(α)) ∈ OK is
prime.

(iii) Let m ∈ Nr {0} be such that Q
m

divides P in Fp[X]. Show that

(p,Q(α))m = (p,Q(α)m).

(iv) Write P = P1
n1 · · ·Ps

ns
where P1, . . . , Ps ∈ Z[X] are such that P1, . . . , Ps

are monic irreducible in Fp[X] and pairwise distinct. Show that

pOK =
s∏

i=1

(p, Pi(α))ni ,

is the decomposition of the ideal pOK as a product of prime ideals in OK .

Exercise 2. Consider the polynomial P = X3 +X + 1 ∈ Z[X], and let α ∈ C be
a root of P . We recall from Exercise 4, Sheet 5 that K = Q(α) is a number field
of degree 3 whose absolute discriminant is 31, and that OK = Z[α].

(i) Which prime numbers p ramify in K?

(ii) For every prime number p which ramifies in K, give an explicit description
of the decomposition of pOK as a product of prime ideals in OK . (Hint: use
the previous exercise; compute P (3) and P (14).)

Exercise 3. Let K be a number field, and I an ideal of OK .

(i) Show that there exists an integer n > 0 such that the ideal In of OK is
principal.

(ii) Let n > 0 be an integer such that In is principal. Show that there exists a
field extension L/K with [L : K] ≤ n, and such that the ideal IOL of OL is
principal.
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Exercise 1. Let K = Q(
√
d) where d ∈ Z r {0, 1} is square-free.

(i) Let q ∈ Nr{0}. Show that OK admits a nonzero principal ideal I such that
N(I) = q if and only if there exist a, b ∈ Z such that

|a2 − db2| =

{
q if d = 2, 3 mod 4,

4q if d = 1 mod 4.

(ii) If d ∈ {7,−11}, show that OK is principal.

(iii) If d = −6, show that the ideal class group C(OK) is isomorphic to Z/2.


