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1. Introduction

This paper is a sequel to [MS]. We continue to study the relationship
between the prime ideals of an algebra A and of a subalgebra R such that
R ⊂ A is a faithfully flat H-Galois extension for some finite-dimensional
Hopf algebra H. In this paper we consider what happens when the Hopf
algebra H and the extension R ⊂ A are twisted by a Hopf 2-cocycle σ, so
that Rσ ⊂ Aσ becomes an Hσ-extension.

We are interested in versions of the classical Krull relations between prime
ideals in finite extensions of commutative rings. In [MS] we introduced the
Krull relations for an H-Galois extension R ⊂ A. See Section 2 of this paper
for a definition of the basic Krull relations t-lying over, for some natural
number t (t-LO), going up (GU), and incomparability (INC), and of the
dual notions t-coLO, coGU and coINC. We define two new relations strong
GU and strong coGU; these are stronger versions of going up and co going
up, which we will need here. By definition, H has one of the Krull relations
if the relation holds for all faithfully flat H-Galois extensions. We show in
[MS] that H has one of the basic Krull relations if and only if H∗ has the
corresponding dual Krull relation. Also in [MS], we show that H has one of
the Krull relations if it satisfies the relation for all H-Galois extensions of
the form A = R#H, where R is an H-module algebra.

To illustrate the Krull relations, consider a smash product extension R ⊂
A = R#H where R is prime, or more generally H-prime. If H has t-LO
and INC, then P is a minimal prime of A precisely when P ∩R = 0, A has
n ≤ dimH minimal primes, say P1, . . . , Pn, and if N := ∩iPi, then N t = 0
and N is the largest nilpotent ideal of A [MS, 4.7].

Lorenz and Passman showed that the basic Krull relations hold for crossed
products of group algebras R ⊂ A = R#σkG, where G is a finite group (see
Chapter 4 of [P] for an exposition of this theory); the analogous results for
H = (kG)∗ were shown in [CM]. By the results of [MS] mentioned above,
it follows that both kG and (kG)∗ satisfy all of the Krull relations. In
[MS] we established all of the Krull relations for several additional classes
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of Hopf algebras, for example for solvable and cosolvable Hopf algebras.
We also showed that finite-dimensional pointed Hopf algebras have GU and
the three dual Krull relations; this used work of Cohen-Rainu-Westreich
and Chin. However INC and t-LO remain open even if H is pointed and
cocommutative, for example if H is the restricted enveloping algebra of a
restricted Lie algebra in characteristic p > 0.

Our first main results in this paper, in Section 3, concern lifting the Krull
relations from a Hopf subalgebra K ⊂ H such that K contains the coradical
H0 of H, to H itself. Dually, we consider a quotient Hopf algebra H/I where
I is a nilpotent Hopf ideal, and ask which of the Krull relations hold for H
if they hold for H/I.

In particular we show for an N-graded Hopf algebra H with K the ho-
mogeneous part of degree 0, that H has all the Krull relations if K does
(Theorem 3.6). As a corollary we prove that coradically graded pointed
Hopf algebras have all the Krull relations (Corollary 3.7). Consequently the
Borel parts of Lusztig’s Frobenius kernels uq(g), g a semisimple Lie algebra,
have all the Krull relations, as do the finite-dimensional Hopf algebras u(D)
defined in [AS] when the linking elements λij = 0.

Our second main topic, in Section 4, concerns when the Krull relations
are preserved by twisting. We first review twistings of Hopf algebras and
of H-comodule algebras. As a preliminary step, we prove (Theorem 4.3)
that if R ⊂ A is an H-Galois extension, then Rσ ⊂ Aσ is an Hσ-Galois
extension; moreover Hσ-Spec R = H-SpecR. We then prove that any one
of coINC, t-coLO, or strong coGU are preserved under twisting (Theorem
4.7). In Corollary 4.8 we show that the quantum double D(H) has the dual
Krull relations if H has all Krull relations.

Finally in Section 5, we consider twistings of the comultiplication and
apply our results about twisting, together with the classification theorems
of Etingof and Gelaki [EG1] [EG2], to show that any (finite-dimensional)
triangular Hopf algebra over an algebraically closed field of characteristic 0
has INC, t-LO and GU (Theorem 5.2). We also consider the double of a
factorizable Hopf algebra, and as a consequence we prove that for a finite
group G, D(D(G)) has all of the Krull relations.

We remark that it is possible that any finite-dimensional Hopf algebra
H satisfies all of the Krull relations; no counterexamples are known. If the
algebra R is Noetherian, then INC is true for any finite extension R ⊂ A
[Le]; however LO can fail even for finite extensions of Noetherian rings [HO].

2. The Krull relations revisited

In this section we first review the Krull relations from [MS], and introduce
new versions of several of them which we shall need in this paper. Through-
out H is a finite-dimensional Hopf algebra over a field k, and R ⊂ A denotes
a faithfully flat H-Galois extension. As in [MS, 1.1, 2.3], we say that an
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ideal I of R is H-stable if IA = AI, and let (I : H) denote the largest H-
stable ideal of R in I. I is an H-prime ideal of R if I 6= R, and whenever
JK ⊂ I, for J,K H-stable ideals of R, either J ⊂ I or K ⊂ I.

To avoid confusion, we will usually write P for a prime in Spec(A), Q for
a prime in Spec(R), and I for an H-prime in H-Spec(R). We recall [MS,
Lemma 2.2]:

Lemma 2.1. (1) The map f : Spec(R)→ H-Spec(R) given by Q 7→ (Q : H)
is well-defined and surjective.

(2) The map g : Spec(A)→ H-Spec(R) given by P 7→ P∩R is well-defined
and surjective.

As in [MS], we say that P ∈ Spec(A) lies over Q ∈ Spec(R) if and
only if (Q : H) = P ∩ R. We will also say that P ∈ Spec(A) lies over
I ∈ H-Spec(R) if and only if I = P ∩ R. By Lemma 2.1, any P ∈ Spec(A)
lies over some Q ∈ Spec(R); conversely for any Q ∈ Spec(R), there exists
some P ∈ Spec(A) such that P lies over Q. Similarly any P ∈ Spec(A) lies
over some I ∈ H-Spec(R); conversely for any I ∈ H-Spec(R), there exists
some P ∈ Spec(A) such that P lies over I.

We note that the definition of P lying over Q reduces to the standard
definition of lying over in non-commutative rings, that is that Q is minimal
over P ∩R, under some additional assumptions; see [MS, 4.7].

We may use diagrams, as in [P], to represent many of the Krull rela-
tions. Thus for example the diagram in 2.2(3) means that given Q2 ⊂ Q1

in Spec(R) and P2 ∈ Spec(A) which lies over Q2, there exists some P1 ∈
Spec(A) such that P2 ⊂ P1 and P1 lies over Q1. In the following definition,
(1) - (3) and (1)′ - (3)′ appear in [MS]. It is shown in [MS, 4.3] that (1)′ -
(3)′ are the duals of (1) - (3), in the sense that a condition (i) is true for H
if and only if (i)′ is true for H∗. (4) and (4)′ are new; they will be useful
since they are defined only in terms of R and not A.

Definition 2.2. The Krull relations
(1) The H-Galois extension R ⊂ A has t-lying over (t-LO) if for any

Q ∈ Spec(R), there exist P1, . . . , Pn ∈ Spec(A), where n ≤ dimH, such that
all Pi lie over Q, and such that (

⋂n
i=1 Pi)

t ⊂ (Q : H)A.

{Pi}t
. .

.

Q

(2) R ⊂ A has incomparability (INC) if for any P2 ⊂ P1 in Spec(A)
with P2 6= P1, then P2 ∩R 6= P1 ∩R.
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(3) R ⊂ A has going up (GU) if

P1

. .
. ...

Q1 P2

| ��

Q2

(4) R ⊂ A has strong going up (strong GU) if

P1

. .
. ...

I1 P2

| ��

I2

(1)′ R ⊂ A has t-co-lying over (t-coLO) if for any P ∈ Spec(A), there
exist Q1, . . . , Qm ∈ Spec(R), where m ≤ dimH, such that P lies over all
Qj , and such that (

⋂m
j=1Qj)

t ⊂ P ∩R.

P
. .

.

{Qj}t

(2)′ R ⊂ A has co-incomparability (coINC) if for any Q2 ⊂ Q1 in
Spec(R) with Q2 6= Q1, then (Q2 : H) 6= (Q1 : H).

(3)′ R ⊂ A has co-going up (coGU) if

P1

. .
.
|

Q1 P2
... ��

Q2

(4)′ R ⊂ A has strong co-going up (strong coGU) if

Q1

. .
. ...

I1 Q2

| ��

I2

Definition 2.3. We say the Hopf algebra H has one of the Krull relations
above if forall faithfully flat H-Galois extensions R ⊂ A, the given Krull
relation holds.

For later use we note
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Remark 2.4. Let δ : A→ A⊗H, a 7→ a(0)⊗a(1), be an H-comodule algebra
with coinvariant elements R = AcoH , and assume that R ⊂ A is an H-Galois
extension. Then the dual algebras Rop ⊂ Aop form an Hop-Galois extension
with comodule structure δop : Aop → Aop ⊗Hop, aop 7→ aop

(0) ⊗ a
op
(1). Thus if

H satisfies any one of the Krull relations then so does Hop.

Proof. The Galois map Aop⊗Bop Aop → Aop⊗Hop, xop⊗ yop 7→ (y(0x)op⊗
yop

(1), is surjective hence bijective since A⊗A→ A⊗H, y⊗ x 7→ y(0)x⊗ y(1),

is surjective. �

Lemma 2.5. For any finite-dimensional Hopf algebra H, H has strong GU
⇐⇒ H∗ has strong coGU. Moreover:

(1) If H has strong GU, then H has GU (that is, 2.2(4) implies 2.2(3)).
(1)′ If H has strong coGU, then H has coGU (that is, 2.2(4)′ implies

2.2(3)′).
(2) If H has GU, and either strong coGU or t-coLO , then H has strong

GU (that is, 2.2(3), and either 2.2(4)′ or 2.2(1)′, implies 2.2(4)).
(2)′ If H has coGU, and either strong GU or t-LO, then H has strong

coGU (that is, 2.2(3)′, and either 2.2(4) or 2.2(1) implies 2.2(4)′).

Proof. The fact that H has strong GU ⇐⇒ H∗ has strong coGU fol-
lows similarly to the proof that H has GU ⇐⇒ H∗ has coGU in [MS,
Theorem 4.3(3)]. Thus (1) and (2) are the dual statements to (1)′ and (2)′,
respectively, and so it suffices to show only (1) and (2).

(1) Assume that Q2 ⊂ Q1 in Spec(R) and that P2 ∈ Spec(A) lies over
Q2. Let Ii := (Qi : H), for i = 1, 2; then P2 ∩R = I2. By strong GU, there
exists P1 ∈ Spec(A) such that P2 ⊂ P1 and P1∩R = I1. But I1 := (Q1 : H).
Thus H has GU.

(2) First assume H has GU and strong coGU. Assume that I2 ⊂ I1 in
H-Spec(R) and that P2 ∈ Spec(A) lies over I2. By Lemma 2.1 there exists
Q2 ∈ Spec(R) with (Q2 : H) = I2 = P2 ∩ R. By strong coGU, there exists
Q1 ∈ H-Spec(R) such that Q2 ⊂ Q1 and (Q2 : H) = I2. Now use GU to
find P1 ∈ Spec(A) such that P2 ⊂ P1 and P1 lies over Q1. Then P1 lies over
I1, and H has strong GU.

Now assume H has GU and t-coLO. Assume again that I2 ⊂ I1 in
H-Spec(R) and that P2 ∈ Spec(A) lies over I2. By Lemma 2.1 there exists
Q ∈ Spec(R) with (Q : H) = I1. By t-coLO, there exist Qi ∈ H-Spec(R),
i = 1, . . . ,m, such that (Qi : H) = I2 for all i and that (∩Qi)t ⊂ I2. Since
I2 ⊂ I1 = (Q : H) ⊂ Q and Q is prime, some Qi, call it Q2, is contained in
Q. Now use GU to find P1 ∈ Spec(A) such that P2 ⊂ P1 and P1 lies over
Q. Then P1 lies over I1, and H has strong GU. �

Corollary 2.6. If H is pointed, then H has strong GU and strong coGU.

Proof. As noted earlier, any pointed Hopf algebra has GU, t-coLO, coGU,
and coINC. Thus by Lemma 2.5(2), H has strong GU. We may now use
Lemma 2.5(2)′ to see that H also has strong coGU. �
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3. Galois extensions of the same base ring

In this section we consider two Hopf Galois extensions of the same base
ring R, for two different Hopf algebras H and K. We will be particularly
interested in the case when K is a Hopf subalgebra of H which contains the
coradical H0 of H.
Definition 3.1. Let H and K be Hopf algebras with dimK ≤ dimH, and
let R be a k-algebra. Assume that A and B are two ring extensions of R
such that R ⊂ A is faithfully flat H-Galois and that R ⊂ B is faithfully flat
K-Galois. We say that the triple (R,A,B) is (H,K)-Krull admissible if
the following two conditions hold:

(1) For all ideals I of R, ((I : K) : H) = (I : H).
(2) There exists l such that for all ideals I of R, (I : K)l ⊂ (I : H).

Lemma 3.2. Assume that (R,A,B) is (H,K)-Krull admissible. Then the
following diagram is commutative

Spec(R)
↙ ↘

K-Spec(R)
∼=−→ H-Spec(R)

where Spec(R) → K-Spec(R) is given by Q 7→ (Q : K), Spec(R) →
H-Spec(R) is given by Q 7→ (Q : H), and the isomorphism Φ : K-Spec(R)→
H-Spec(R) is given by J 7→ (J : H). Moreover the map Φ respects inclusions
in both directions.
Proof. First, Φ is defined on all of K-Spec(R) since Q 7→ (Q : K) is
surjective by Lemma 2.1. It is well-defined and the diagram commutes by
Definition 3.1(1). To see that Φ is a bijection, first note that it is surjective
since P 7→ (P : H) is surjective by Lemma 2.1. To see that it is injective
and respects inclusions, choose J1, J2 ∈ K-Spec(R) such that (J1 : H) ⊂
(J2 : H). Then by 3.1(2),

J l1 = (J1 : K)l ⊂ (J1 : H) ⊂ (J2 : H) ⊂ J2.

Since J2 is K-prime, it follows that J1 ⊂ J2. �

Proposition 3.3. Assume that (R,A,B) is (H,K)-Krull admissible.
(1) If R ⊂ B has coINC, then R ⊂ A has coINC.
(2) If R ⊂ B has s-coLO, then R ⊂ A has ls-coLO.
(3) If R ⊂ B has strong coGU, then R ⊂ A has strong coGU.

Proof. (1) Let Q1 ⊂ Q2 in Spec(R) with (Q1 : H) = (Q2 : H). Then by
Lemma 3.2, (Q1 : K) = (Q2 : K). Thus Q1 = Q2 since R ⊂ B has coINC.

(2) Let P ∈ Spec(A). We want Q1, . . . Qm ∈ Spec(R), for some m ≤
dimH, such that (Qj : H) = P ∩ R for all j and (∩mj=1QJ)ls ⊂ P ∩ R.
Now by Lemma 2.1, there exist Q ∈ Spec(R) and P̃ ∈ Spec(B) such that
(Q : H) = P ∩R and (Q : K) = P̃ ∩R. Since R ⊂ B has s-coLO, there exist
Q1, . . . , Qm ∈ Spec(R), for m ≤ dimH, such that (Qj : K) = (Q : K) =
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P̃ ∩R for all j and (∩mj=1QJ)s ⊂ (Q : K). By 3.1(1), (Qj : H) = (Q : H) =
P ∩R, and by 3.1(2), (Q : K)l ⊂ (Q : H). Thus

(∩mj=1Qj)
ls ⊂ (Q : K)l ⊂ (Q : H) ⊂ P ∩R.

(3) We need to complete the diagram

Q1

. .
. ...

I1 Q2

| ��

I2

where I1, I2 ∈ H-Spec(R) and Q2 ∈ Spec(R) with (Q2 : H) = I2. By
Lemma 3.2, there exist J2 ⊂ J1 ∈ K-Spec(R) such that (Ji : H) = Ii, for
i = 1, 2. Now by Lemma 3.2, (Q2 : H) = I2 implies that (Q2 : K) = J2.
Since R ⊂ B has strong coGU, there exists Q1 ∈ Spec(R) such that the
diagram

Q1

. .
. ...

J1 Q2

| ��

J2

is complete. Hence (Q1 : K) = J1, and so by 3.1(1), (Q1 : H) = (J1 : H) =
I1 and we are done. �

Using the main result in Section 3 of [MS], we will apply the preceding
Proposition to our case of interest, namely to a Hopf subalgebra K ⊂ H
containing the coradical H0 of H. We let J(H) denote the Jacobson radical
of H, and let l be the index of nilpotency of J(H∗) (that is, l is the smallest
n ≥ 1 such that J(H∗)n = 0). Note that the length of the coradical filtration
of H is l − 1.
Theorem 3.4. Let K be a Hopf subalgebra of H such that H0 ⊂ K. Let
R ⊂ A be a faithfully flat H-Galois extension, with comodule structure map
δ : A → A⊗H, and let B := δ−1(A⊗K). Then (R,A,B) is (H,K)-Krull
admissible, and

(1) K has coINC implies that H has coINC;
(2) K has s-coLO implies that H has sl-coLO, where l is the index of

nilpotency of J(H∗);
(3) K has strong coGU implies that H has strong coGU.

Proof. First note that R ⊂ B is K-Galois by [MS, 3.11]. By [MS, Lemma
6.3], part (1) of 3.1 holds. Moreover by [MS, Theorem 3.7], (I : H0)l ⊂ (I :
H), where l is the nilpotency index of J(H∗). By [MS, Lemma 3.3(1)] with
C = H0 = K0, (I : K) is H0-stable and thus (I : K) ⊂ (I : H0). It follows
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that (I : K)l ⊂ (I : H) and so 3.1(2) holds. Thus (R,A,B) is (H,K)-Krull
admissible. (1)–(3) now follow from Proposition 3.3. �

Corollary 3.5. Let I be a nilpotent Hopf ideal of H and let H = H/I be
the quotient Hopf algebra. Then

(1) H has INC implies that H has INC;
(2) H has s-LO implies that H has sl-LO, where now l is the index of

nilpotency of J(H);
(3) H has strong GU implies that H has strong GU.

Proof. Since I ⊂ J(H), H/I maps surjectively to H/J(H), and so

H∗ ⊃ H∗ ⊃ (H∗)0 = (H/J(H))∗.

Letting K = H
∗, we see that the corollary is just the dual of Theorem 3.4.

The result follows by [MS, 4.3] and Lemma 2.5. �

We give an application of the results of this section to N-graded finite
dimensional Hopf algebras. That is, H = ⊕n≥0H(n), where the grading is
both as an algebra and as a coalgebra, and the antipode is a graded map;
see [Sw2, p. 237]. By [Sw2, 11.1.1], H(0) ⊇ H0, the coradical.
Theorem 3.6. Let H be a finite dimensional N-graded Hopf algebra and
let K = H(0). If K has any one of the Krull relations 2.2(1), (2), (4) or
2.2(1)′, (2)′, (4)′, then so does H. Moreover if K has all the Krull relations,
then so does H.
Proof. The projection π : H −→ K is a surjective Hopf algebra map with
nilpotent kernel ⊕n≥1H(n), and H0 ⊂ K. The first part of the theorem now
follows from Theorem 3.4 and Corollary 3.5. The second part follows from
the first part together with Lemma 2.5. �

As an example of such a Hopf algebra, we could begin with any Hopf
algebra H such that H0 is a Hopf subalgebra, and consider its coradi-
cal filtration {Hn}. Let gr(H) be the associated graded algebra; that is,
gr(H) = ⊕n≥0H(n), where H(n) = Hn/Hn−1. Then gr(H) satisfies the
hypotheses in the theorem. When H is graded and H(n) = Hn/Hn−1, H is
said to be coradically graded.
Corollary 3.7. Assume that H is pointed and coradically graded. Then H
has all the Krull relations.
Proof. Since H is pointed, H(0) = H0 = kG for some finite group G. It is
known that kG has all the Krull relations; see the discussion in [MS, 4.9].
Thus the previous theorem applies. �

If H is any pointed Hopf algebra, it is known that H satisfies GU and the
dual Krull relations, but INC and t-LO remain open even if H is cocommu-
tative. Passing to the associated graded Hopf algebra might be helpful in
this problem, although going back up from gr(H) to H seems very difficult.

We give some examples to which these results apply.
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Example 3.8. Let g be a semisimple Lie algebra, let uq(g) be the finite-
dimensional quantum group of Lusztig, q a root of unity, and let H =
uq(g)≥0 be a Borel subalgebra. That is, H = k〈Ei,Ki | 1 ≤ i ≤ l〉. Then in
fact H is coradically graded with H0 = k〈Ki | 1 ≤ i ≤ l〉, a group algebra.
By Corollary 3.7, H has all of the Krull relations.
Example 3.9. The finite-dimensional Hopf algebras u(D) defined in [AS,
5.17] in terms of a linking datum D of finite Cartan type are coradically
graded if all the linking elements λij are 0. Thus they satisfy all of the Krull
relations by Corollary 3.7

4. The Krull relations under twistings

We first review the idea of a Hopf algebra twisted by a cocycle. This was
introduced in [Do], although twisting a Hopf algebra by a dual cocycle was
done earlier in [Dr].

First, recall from [Sw1] that for a Hopf algebra H, a (left) 2-cocycle on H
is a convolution-invertible map σ : H ⊗H → k satisfying the equality

(4.1) σ(h(1), l(1))σ(h(2)l(2),m) = σ(l(1),m(1))σ(h, l(2)m(2))

for all h, l,m ∈ H. We assume also that σ is normal, that is,

σ(h, 1) = σ(1, h) = ε(h)

for all h ∈ H.
We may now form a new Hopf algebra Hσ by leaving the coalgebra struc-

ture of H unchanged but twisting the algebra structure by σ. That is, Hσ

has new multiplication

h ·σ l := σ(h(1), l(1))h(2)l(2)σ
−1(h(3), l(3)).

for all h, l ∈ H. One can also define a new antipode.
Also, given a right H-comodule algebra A, we may form the algebra Aσ,

with twisted multiplication

a ·σ b = σ−1(a(1), b(1))a(0)b(0)

for all a, b ∈ A. Then Aσ is a right Hσ-comodule algebra, using the same
comodule structure map as for A. We note that we need σ−1 here because
of the mixture of a left cocycle with a right comodule.

A reference for the above facts is [KS, 10.2.3]; see also [M, Sec. 7.5] for a
discussion of Aσ. We first prove a result about twisting Galois extensions.
Theorem 4.3. Let R ⊂ A be an H-extension, let σ be a cocycle on H,
and consider the twisted algebra Aσ. Then Rσ = R, and an ideal I of R is
H-stable if and only if it is Hσ-stable. Moreover

(1) R ⊂ A is H-Galois if and only if R ⊂ Aσ is Hσ-Galois;
(2) R ⊂ A is H-cleft if and only if R ⊂ Aσ is Hσ-cleft; moreover if

A = R#τH, then Aσ ∼= R#τσHσ, where τσ = τ ∗ σ−1.
(3) H-Spec(R) = Hσ-Spec(R)
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Proof. First, since R = AcoH = AcoHσσ , it is easy to see that r ·σ a = ra
and a ·σ r = arfor any r ∈ R, a ∈ A. It follows that Rσ = R. Moreover if I
is any ideal of R and AI = IA, then clearly A ·σ I = I ·σ A. Thus the fact
about stability follows.

(1) Consider the two canonical Galois maps for A and Aσ; that is, β :
A⊗R A −→ A⊗H via a⊗ b 7→ ab(0)⊗ b(1) and βσ : Aσ ⊗R Aσ −→ Aσ ⊗Hσ

via a⊗ b 7→ a ·σ b(0) ⊗ b(1) = a(0)b(0) ⊗ b(2)σ
−1(a(1), b(1)).

Define Φ,Ψ : A⊗H −→ A⊗H by

Φ(a⊗ h) = a(0) ⊗ σ−1(a(1), Sh(3))σ(h(1), Sh(2))h(4)

and

Ψ(a⊗ h) = a(0) ⊗ σ(a(1), Sh(1))σ
−1(Sh(2), h(3))h(4).

We claim that Ψ = Φ−1 and that β = Φ ◦ βσ. Thus β is bijective if and
only if β−1 is bijective. To show this we require the cocycle condition (4.1),
and in addition the identities

(4.4) σ(h(1), Sh(2))σ
−1(Sh(3), h(4)) = ε(h)

(4.5) σ−1(Sh(1), h(2))σ(h(3), Sh(4)) = ε(h).

Identity (4.4) appears in [BM] and [Do]; see also [KS]. (4.5) can be obtained
from (4.4) as follows: apply (4.4) to the left cocycle σ−1 on Hcop and use
that SHcop = SH . Then

σ−1(h(4), Sh(3))σ(Sh(2), h(1)) = ε(h).

Now replace h by Sh and we have (4.5).
We can now show that Ψ = Φ−1. First,

(Ψ ◦ Φ)(a⊗ h) = Ψ(a(0) ⊗ σ−1(a(1), Sh(3))σ(h(1), Sh(2))h(4))

= a(0)(0) ⊗ σ(a(0)(1), Sh(4)(1))σ
−1(Sh(4)(2), h(4)(3))·

· σ−1(a(1), Sh(3))σ(h(1), Sh(2))h(4)(4)

= a(0) ⊗ σ(a(1), Sh(4))σ
−1(Sh(5), h(6))σ

−1(a2, Sh(3))·
· σ(h(1), Sh(2))h(7)

= a(0) ⊗ σ−1(Sh(3), h(4))σ(h(1), Sh(2))h(5)

= a⊗ h,
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using (4.4) in the last step. Similarly, using (4.5), we see that

(Φ ◦Ψ)(a⊗ h) = Φ(a(0) ⊗ σ(a(1), Sh(1))σ
−1(Sh(2), h(3))h(4))

= a(0)(0) ⊗ σ(a(1), Sh(1))σ
−1(Sh(2), h(3))σ

−1(a(0)(1), Sh(4)(3))·
· σ(h(4)(1), Sh(4)(2))h(4)(4)

= a(0) ⊗ σ(a(2), Sh(1))σ
−1(Sh(2), h(3))σ

−1(a(1), Sh(6))·
· σ(h(4), Sh(5))h(7)

= a(0) ⊗ σ(a2, Sh(1))σ
−1(a(1), Sh(2))h(3)

= a⊗ h.

Thus Ψ = Φ−1. Finally we check that β = Φ ◦ βσ, using (4.1):

Φ(βσ(a⊗ h)) = Φ(a(0)b(0) ⊗ b(2)σ
−1(a(1), b(1))

= a(0)b(0) ⊗ σ−1(a(0)(1)b(0)(1), Sb(2)(3))σ(b(2)(1), Sb(2)(2))·
· σ−1(a(1), b(1))b(2)(4)

= a(0)b(0) ⊗ σ−1(a(1)b(1), Sb(5))σ(b(3), Sb(4))σ
−1(a2, b(2))b(6)

= a(0)b(0) ⊗ σ−1(a(1), b(1)Sb(6))σ
−1(b(2), Sb(5))σ(b(3), Sb(4))b(6)

= a(0)b(0) ⊗ σ−1(a(1), b(1)Sb(2))b(3)

= ab(0) ⊗ b(1)

= β(a⊗ b).

This proves (1).
(2) Assume that A is H-cleft, via the H-comodule map γ : H −→ A

with convolution inverse γ−1. We claim that Aσ is Hσ-cleft, via the same
map γσ = γ on vector spaces, but with convolution inverse (γσ)−1(h) =
γ−1(h(3))σ(h(1), Sh(2)). First, the fact that γ is an Hσ-comodule map follows
since H = Hσ as coalgebras and A = Aσ as comodules. Also, since γ is a
comodule map, δ(γ(h)) = γ(h(1))⊗ h(2) and δ(γ−1(h)) = γ−1(h(2))⊗ Sh(1),
where δ is the comodule structure map of A. It follows that

δ((γσ)−1(h)) = γ−1(h(4))⊗ Sh(3)σ(h(1), Sh(2)).

Now in Hom(H,Aσ),

γ(h(1)) ·σ (γσ)−1(h(2)) = γ(h(1))(0)(γ
σ)−1(h(2))(0)·
· σ−1(γ(h(1))(1), (γ

σ)−1(h(2))(1))

= γ(h(1)(1))γ
−1(h(2)(4))σ

−1(h(1)(2), Sh(2)(3))·
· σ(h(2)(1), Sh(2)(2)))

= γ(h(1))γ
−1(h(6))σ

−1(h(2), Sh(5))σ(h(3), Sh(4))

= γ(h(1))γ
−1(h(2)) = ε(h)1.

Since H is finite-dimensional, also (γσ)−1 is the left inverse of γ, and so Aσ
is Hσ-cleft.
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To see that the new cocycle τσ is as described, first recall that cleft
extensions are always crossed products. Thus Aσ ∼= R#τσHσ for some Hopf
2-cocycle τσ : Hσ⊗Hσ −→ R, where the Hσ-comodule structure on R#τσHσ

is given by id⊗4Hσ = id⊗4H .
Choose r#g and s#h in A = R#τH, and consider their multiplication in

Aσ:

(r#g) ·σ (s#h) = (r#g(1))(s#h(1))σ
−1(g(2), h(2))

= r(g(1) · s)τ(g(2), h(1))#g(3)h(2)σ
−1(g(4), h(3))

= r(g(1) · s)τ(g(2), h(1))#σ
−1(g(3), h(2))σ(g(4), h(3))g(5)h(4)

σ−1(g(6), h(5))

= r(g(1) · s)τ(g(2), h(1))σ
−1(g(3), h(2))#g(4) ·σ h(3).

But considered as elements in R#τσHσ, their product is

(r#g)(s#h) = r(g(1) · s)τσ(g(2), h(1))#g(3) ·σ h(2).

Thus τσ(g, h) = τ(g(1), h(1))σ−1(g(2), h(2)).
Alternatively the cocycle can be expressed in terms of the cleft map γ

(respectively γσ).
(3) The identification of the stable parts of Spec follows from the remarks

at the beginning of the proof, once we know (1). �

Remark 4.6. In the terminology of [MS, Definition 8.8], H is called strongly
cosemisimple if for all right H-comodule algebras A with ring of coinvariants
R and any P ∈ SpecA, P ∩R is a semiprime ideal of R. By [MS, Theorem
8.11], H is strongly cosemisimple if and only if for all faithfully flat H-Galois
extensions R ⊂ A with R being H-prime, R is semiprime. Hence Theorem
4.3(3) implies that H is strongly cosemisimple if and only if Hσ is strongly
cosemisimple.

Theorem 4.7. Let Hσ be any cocycle twist of H. Then
(1) any one of the Krull relations coINC, t-coLO, and strong coGU are

true for H ⇐⇒ they are true for Hσ;
(2) if H has coGU and t-LO, then Hσ also has coGU.

Proof. (1) follows from Theorem 4.3(3), because the three dual Krull
relations coINC, t-coLO, and strong coGU are defined only in terms of ideals
of R.

(2) follows from (1) and Lemma 2.5. �

Corollary 4.8. If H has the six Krull relations INC, s-LO, GU, coINC,
t-coLO, and coGU, then the double D(H) has coINC, st-coLO, and coGU.

Proof. By Lemma 2.5, H also has strong GU and strong coGU. Now it
is known that D(H) = (H∗cop ⊗ H)σ for some cocycle σ on (H∗cop ⊗ H)
(see [DT]). The result now follows by Theorem 4 since the tensor product
H∗cop ⊗H has all the Krull relations by Remark 2.4 and [MS, 6.7]. �
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5. Twisting the comultiplication

In this section we consider dual cocycle twists, as in [Dr]. That is, let
Ω ∈ H⊗H be a dual cocycle for H. Then HΩ has the same multiplication as
H but has new comultiplication ∆Ω(h) = Ω∆H(h)Ω−1. This construction
is the formal dual of the construction of the cocycle twists in Section 4,
in the following sense: if H is finite-dimensional, then (H∗)Ω = (Hσ)∗.
For if σ is a 2-cocycle on H, then σ corresponds to an invertible element
Ω ∈ H∗ ⊗H∗ ∼= (H ⊗H)∗, and we may twist the comultiplication of H∗ by
Ω. The explicit correspondence between σ and Ω is given by

σ(h, l) =
∑

Ω(1)(h)Ω(2)(l),

for all h, l ∈ H, where we use the formal notation Ω =
∑

Ω(1) ⊗ Ω(2).
Analogously if A is an H-comodule algebra, then A is an H∗-module

algebra, and we can consider it either as twisted by σ or by Ω.
Using this reformulation we may state the dual version of Theorem 4.7.

Theorem 5.1. Let HΩ be any dual cocycle twist of H. Then
(1) any one of the Krull relations INC, t-LO, and strong GU are true for

H ⇐⇒ they are true for HΩ;
(2) if H has GU and t-coLO, then HΩ also has GU.

We first consider triangular Hopf algebras.

Theorem 5.2. Let k be an algebraically closed field of characteristic 0, and
let H be a (finite-dimensional) triangular Hopf algebra. Then H has the
Krull relations INC, t-LO, and strong GU.

Proof. By [EG2], for any triangular Hopf algebra, the Jacobson radical
J(H) is a Hopf ideal. Thus H = H/J(H) is a semisimple triangular Hopf
algebra. By [EG1], it follows that H = kGΩ, the twist of a group algebra
by a dual cocycle Ω ∈ kG ⊗ kG. Applying Theorem 5.1, we see that H
has INC, t-LO, and strong GU, since kG has these three properties. The
theorem now follows from Corollary 3.5. �

Another approach to Theorem 5.2 is by using supergroups. For, in [EG2],
it is shown (using [AEG]) that if H is triangular then it is a dual cocycle
twist of a modified supergroup algebra. Thus Theorem 5.2 would follow
immediately from Theorem 5.1 and the next Corollary.

More precisely, we consider modified supergroup algebras as described in
[AEG]; these are based on the definition of supergroups due to Kostant [Ko].
First, a (finite-dimensional) supergroup is constructed from a finite group
G and a finite-dimensional representation V of G. Let ∧V be the exterior
algebra of V and let H = ∧V#kG. Then H becomes a cocommutative Hopf
superalgebra by letting V be odd, G be even, and each x ∈ V be (graded)
primitive. H is called a supergroup in [Ko], although in his formulation ∧V
is viewed as U(g), where g = V is an odd Lie superalgebra. Moreover, every
finite-dimensional cocommutative Hopf superalgebra over C is of this form.
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To describe the modified supergroup algebra H, consider H as above and
assume in addition that G contains a central group-like element g such that
g2 = 1 and gxg = −x for all x ∈ V . We define H by letting H = H as
an algebra, but changing the comultiplication on H by defining ∆H(x) :=
x⊗ 1 + g⊗ x for all x ∈ V , and letting ∆H(y) = ∆H(y) for all y ∈ G. With
this definition, (H,∆H) becomes an ordinary Hopf algebra, the modified
supergroup algebra.

Alternatively, H can be described as follows: note that kZ2 = k〈u〉 acts
on H via u · x = −x for all x ∈ V and u · y = y for all y ∈ G. We may thus
form the Radford biproduct H̃ = H ∗ kZ2; it is an ordinary Hopf algebra,
and H may be identified with the quotient H̃/(gu− 1).

Now K := ∧V#k〈g〉 is a normal Hopf subalgebra of H, with quotient
Hopf algebra H/HK+ ∼= k(G/〈g〉).

We recall the Transitivity Theorem in our previous paper [MS, Theorem
6.7]: assume that H has a normal Hopf subalgebra K with quotient Hopf
algebra H, and assume that both K and H have all the Krull relations.
Then H has all the Krull relations.
Corollary 5.3. Let H be a modified supergroup algebra as above. Then H
has all of the Krull relations.

Proof. Let V , G, and K be as above. We have H = H/HK+ ∼= k(G/〈g〉).
Thus Corollary 3.7 and the Transitivity Theorem apply to give that H has
all the Krull relations. �

Finally we consider factorizable Hopf algebras. We recall a theorem of
[RS]: if H is factorizable, then for some dual cocycle Ω, D(H) ∼= (H ⊗H)Ω;
for another proof, see [S2].
Corollary 5.4. Assume that H is factorizable and satisfies all of the Krull
relations. Then D(H) satisfies INC, t-LO, and strong GU.

Proof. By the Transitivity Theorem, H ⊗ H also satisfies all of the Krull
relations. Now apply [RS] and Theorem 5.1. �

Corollary 5.5. Let G be any finite group. Then D(G) and D(D(G)) satisfy
all of the Krull relations.

Proof. First note that since the action of (kG)∗ = kG on kG is trivial, in fact
D(G) = kG#kG, an ordinary smash product. Thus K = kG#1 is a normal
Hopf subalgebra of D(G) with Hopf quotient H ∼= kG. Thus since both
kG and kG have all the Krull relations, so does D(G) by transitivity. Now
apply Theorem 4.7 to see that D(D(G)) has all of the co-Krull relations, and
Corollary 5.4 to see that D(D(G)) has all of the basic Krull relations. �
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