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Introduction

The purpose of this article is to make a systematic study of the
concept of homotopy equivalence introduced in the framework of Hopf
Galois extensions by the first-named author [K]. As has been stressed
many times (see e.g. [S]), Hopf Galois extensions can be viewed as non-
commutative analogues of principal fibre bundles where the role of the
structural group is played by a Hopf algebra. It is therefore natural to
adapt the concept of homotopy to them.

Hopf Galois extensions for a given Hopf algebra and over a given
algebra are difficult to classify up to isomorphism. One of our motiva-
tions in this paper and in [K] was that it might be easier to classify Hopf
Galois extensions up to homotopy equivalence. We show in this paper
that it is indeed so in the case when H is a Drinfeld-Jimbo quantum
group or some finite-dimensional variant. More precisely, we prove that
the homotopy classes of H-Galois extensions for such a Hopf algebra
H are in bijection with the homotopy classes of k[G]-Galois extensions,
where G is the group of group-like elements of H.

Certain K-theoretic elements naturally attached to Hopf Galois ex-
tensions and recently investigated in connection with non-commutative
geometry (see the survey article [BH] and references therein) turn out
to be homotopy invariant. This gives another reason to consider ho-
motopy equivalence in this algebraic framework.

In Section 1 we collect basic definitions and various results in the
literature in order to state functorial properties of the set GalB(H) of
isomorphism classes of faithfully flat H-Galois extensions of an alge-
bra B. This includes change of scalars, change of Hopf algebras, and
twistings of Galois extensions.

Section 2 explains the concept of homotopy equivalence of Hopf Ga-
lois extensions, which had been introduced in [K] for central extensions
(contrary to loc. cit., we avoid here any reference to étale morphisms).
Our most striking result on the set HB(H) of homotopy classes of
faithfully flat H-Galois extensions of an algebra B is the following:
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if H = ⊕n≥0 H(n) is an N-graded Hopf algebra, then the inclusion
H(0) ⊂ H induces a bijection

HB(H) ∼= HB(H(0)).

In Section 3 we make the connection between our definition of ho-
motopy equivalence and the construction of homotopy functors in al-
gebraic K-theory from which it is directly inspired. When B is a com-
mutative ring satisfying certain conditions and H = k[G] is a group
algebra, we relate GalB(H) and HB(H) to the Picard group Pic(B)
and some cohomology group of G.

Finally, in Section 4 we show that, when Uq(g) is a Drinfeld-Jimbo
quantum group and G is the group of its group-like elements, then

HB(Uq(g)) ∼= HB(k[G]).

This follows from the results obtained in the previous sections and from
the fact that Uq(g) is a twist of a graded Hopf algebra whose component
of degree 0 is k[G] (for results related to the latter fact, see [AS], [Di]).

Throughout the paper, the ground ring is an arbitrary commutative
ring k. Unadorned tensor product means tensor product over k, and
algebras and coalgebras are defined over k. We denote by U(R) the
group of invertible elements of a ring R, by G(H) the group of group-
like elements of a Hopf algebraH, and by Cn the cyclic group of order n.

If C is a coalgebra, and V a right (resp. left) C-comodule, we use
the following version of the Sweedler notation: ∆(c) = c(1) ⊗ c(2) for
the comultiplication of c ∈ C, and v(0)⊗ v(1) (resp. v(−1)⊗ v(0)) for the
coaction of v ∈ V .

1. Hopf Galois extensions

Let H be a Hopf algebra, and A a right H-comodule algebra with
structure map δ : A → A ⊗ H, a 7→ δ(a) = a(0) ⊗ a(1), that is, δ is
an algebra map and a right H-comodule structure. The subalgebra
AcoH ⊂ A of H-coinvariant elements is defined as

AcoH = {a ∈ A | a(0) ⊗ a(1) = a⊗ 1}.
Let B be an algebra. A (right) H-comodule algebra over B is a triple
(A, δ, i), where A is a right H-comodule algebra with structure map δ
and i : B → A is an algebra map with i(B) ⊂ AcoH . For any H-
comodule algebra (A, δ, i) over B, the canonical or Galois map is de-
fined by

can : A⊗B A→ A⊗H, x⊗ y 7→ xy(0) ⊗ y(1).
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An H-comodule algebra (A, δ, i), or simply A over B, is an H-Galois
extension of B if its Galois map is bijective and if i defines an isomor-
phism i : B → AcoH . If A is a right H-comodule algebra and B is a
subalgebra of A, we will say that B ⊂ A is an H-Galois extension if
B = AcoH and if the Galois map of A over B is bijective.

An H-comodule algebra A is called H-cleft if there exists a right
H-colinear map γ : H → A that is invertible up to convolution. If A
is H-cleft, then AcoH ⊂ A is H-Galois (see [M, 8.2.4]).

A morphism ϕ : (A, δ, i) → (Ã, δ̃, ĩ) of H-comodule algebras over

B is a right H-colinear algebra map ϕ : A → Ã with ĩ = ϕi. An
isomorphism of H-comodule algebras is a bijective morphism. Note
that an H-colinear algebra isomorphism of H-Galois extensions of B
is an isomorphism of comodule algebras over B.

Lemma 1.1. Let H be a Hopf algebra, B be an algebra, and (A, δ, i)

and (Ã, δ̃, ĩ) be H-comodule algebras over B with bijective Galois maps.

(1) [T, 4.2] Assume that A is faithfully flat as a right or left B-
module via i. Then A is an H-Galois extension of B.

(2) [S, 3.11(1)] Let ϕ : A → Ã be a morphism of H-comodule al-

gebras over B. Assume that Ã is faithfully flat as a right B-

module via ĩ. Then ϕ is an isomorphism, and both A and Ã are
H-Galois extensions of B.

To define homotopy (see Section 2) we have to extend the ground
ring from k to the polynomial algebra k[t] in the indeterminate t.

In general, let α : k → R be a homomorphism of commutative rings.
Ground ring extension from k to R then means tensoring with R over k,
where R is a module over k via α. If B is a k-algebra and M a left B-
module, then R⊗B is an R-algebra, and R⊗M is a left R⊗B-module
in the natural way by

(r ⊗ b)(s⊗m) = rs⊗ bm

for all r, s ∈ R, b ∈ B, m ∈ M . Recall that for any right R ⊗ B-
module X,

X ⊗R⊗B (R⊗M)→ X ⊗B M, x⊗ r ⊗m 7→ xr ⊗m,

is an isomorphism. In particular, ground ring extension preserves flat-
ness and faithful flatness. Similarly, if C is a k-coalgebra and V a
right C-comodule, then R⊗ C is an R-coalgebra and R⊗ V is a right
R ⊗ C-comodule. Note that a right R ⊗ C-comodule structure on an
R-module W is an R-linear right C-comodule structure

W → W ⊗R (R⊗ C) ∼= W ⊗ C.
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If A is an H-comodule algebra over B, then we obtain by ground ring
extension an R⊗H-comodule algebra R⊗A over R⊗B with ground
ring R.

Proposition 1.2. Let H be a Hopf algebra, B an algebra, and A an H-
Galois extension of B with ground ring k. Assume that A is left (resp.
right) faithfully flat over B. Let α : k → R be a homomorphism of
commutative rings. Then R⊗A is an R⊗H-Galois extension of R⊗B,
and R⊗ A is left (resp. right) faithfully flat over R⊗B.

Proof. It is clear that the Galois map of R ⊗ A is bijective and that
R ⊗ A is left (resp. right) faithfully flat over R ⊗ B. Hence the claim
follows from Lemma 1.1 (1). �

The functorial behaviour of H-Galois extensions or H-comodule al-
gebras in the Hopf algebra H as a variable is given by the cotensor prod-
uct. If C is a coalgebra, and V and W are right and left C-comodules
with comodule structures δV : V → V ⊗C and δW : W → C⊗W , then
the cotensor product V�CW is the kernel of

δV ⊗ idW − idV ⊗ δW : V ⊗W → V ⊗ C ⊗W.
Let ϕ : K → H be a Hopf algebra homomorphism, and A a right H-
comodule algebra over B with algebra map i : B → A. Assume that
K is flat as a k-module. Then A�HK ⊂ A ⊗ K is a subalgebra and
right K-subcomodule of A⊗K with componentwise multiplication and
K-comodule structure idA ⊗∆. Here we view K as a left H-comodule
by

K → H ⊗K, x 7→ ϕ(x(1))⊗ x(2).

Note that the inclusion A�HK ⊂ A⊗K defines an injective map

(A�HK)⊗K → A⊗K ⊗K
since K is flat over k. Hence the K-comodule structure of A�HK is
well defined.

Moreover, A�HK is a K-comodule algebra over B by the algebra
map B → A�HK, b 7→ i(b)⊗ 1.

Proposition 1.3. [S, 3.11 (3)] Let ϕ : K → H be a Hopf algebra
homomorphism and A an H-Galois extension of B. Assume that A is
right faithfully flat over B and that K is flat over k. Then A�HK is
a K-Galois extension of B and right faithfully flat over B.

Let H be a Hopf algebra and B an algebra over k. We denote
by GalB(H/k), or simply by GalB(H), the set of isomorphism classes
of H-Galois extensions of B that are right faithfully flat over B.

Let α : R → S be a homomorphism of commutative k-algebras.
For any right faithfully flat R ⊗ H-Galois extension A of R ⊗ B let
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α∗A = S ⊗R A be the S ⊗ H-Galois extension of S ⊗ B defined by
ground ring extension, where we identify

S ⊗R (R⊗H) ∼= S ⊗H and S ⊗R (R⊗B) ∼= S ⊗B.
Let ϕ : K → H a Hopf algebra homomorphism. Assume that K is

flat over k. For any right faithfully flat H-Galois extension A of B let
ϕ∗A = A�HK be the K-Galois extension of B given by the cotensor
product.

Then α∗ and ϕ∗ define maps

α∗ : GalR⊗B(R⊗H)→ GalS⊗B(S ⊗H),

ϕ∗ : GalB(H)→ GalB(K).

We collect the basic rules concerning ()∗ and ()∗. In particular,
GalR⊗B(R ⊗ H) is a covariant functor in commutative k-algebras R
and GalB(H) is a contravariant functor in k-flat Hopf algebras H.

Proposition 1.4. Let H be a Hopf algebra over k and A a right faith-
fully flat H-Galois extension of B. Let α : k → R and β : R → S be
homomorphisms of commutative k-algebras, K, L be k-flat Hopf alge-
bras, and ψ : L → K, ϕ : K → H be Hopf algebra homomorphisms.
Then

(1) (αβ)∗A ∼= α∗β∗A.
(2) (ϕψ)∗A ∼= ψ∗ϕ∗A.
(3) α∗ϕ

∗A ∼= (idR ⊗ ϕ)∗α∗A.

Proof. (1) follows from the associativity of the tensor product.
To prove (2), we first define a right L-colinear algebra map

f : A⊗ L→ A⊗K ⊗ L, a⊗ x 7→ a⊗ ψ(x(1))⊗ x(2).

The defining sequence

0→ A�HK → A⊗K → A⊗H ⊗K
of ϕ∗A = A�HK remains exact after tensoring with L over k since
L is k-flat. Then we see that f maps the subspace (ϕψ)∗A = A�HL
into (A�HK)⊗L. Finally, f(A�HL) is contained in ψ∗ϕ∗A = (A�HK)�KL
by the definition of the cotensor product of A�HK with L. Note that
we have used flatness of K over k to define the k-comodule structure
of A�HK.

Thus we have defined a right L-colinear algebra map

A�HL→ (A�HK)�KL

which is the identity on the subalgebra B embedded in the first factor.
By Lemma 1.1 (2) and Proposition 1.3, this map is an isomorphism,
and (2) is proved.
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(3) By Propositions 1.2 and Proposition 1.3,

α∗ϕ
∗A = R⊗ (A�HK) and (idR ⊗ ϕ)∗α∗A = (R⊗ A)�R⊗H(R⊗K)

are both right faithfully flat R⊗K-Galois extensions of R⊗B. Since
the map

R⊗ (A�HK)→ (R⊗ A)�R⊗H(R⊗K)

defined by r ⊗
∑

i ai ⊗ xi 7→
∑

i r ⊗ ai ⊗ 1 ⊗ xi is well defined and
a morphism of R ⊗ K-Galois extension of R ⊗ B, it is bijective by
Lemma 1.1 (2). �

Let H be a Hopf algebra and R a commutative algebra. An H-Galois
extension (A, δ, i) of R is called central if i(R) is contained in the center
of A. We denote by CGalR(H/k), or simply by CGalR(H), the set of
isomorphism classes of faithfully flat central H-Galois extensions of R.

Faithfully flat H-Galois extensions of the ground ring k are also
called H-Galois objects.

Remark 1.5. If R ⊂ A is an H-Galois extension and if R is central
in A, then A is an R-algebra and we can view R ⊂ A as an R ⊗ H-
Galois extension of R over the ground ring R with comodule algebra
structure

A→ A⊗H ∼= A⊗R (R⊗H).

Thus central Galois extensions of R can be identified with Galois
objects and there is a functorial isomorphism

R 7→ GalR(R⊗H/R) ∼= CGalR(H/k).

Finally we briefly recall the notion of twisting of Hopf algebras and
comodule algebras [D, Theorem 1.6], [KS, 10.2.3]. Let H be a Hopf
algebra and σ : H ⊗H → k be a (normalized) 2-cocycle, that is,

(1.1) σ(x(1), y(1))σ(x(2)y(2), z) = σ(y(1), z(1))σ(x, y(2)z(2)),

for all x, y, z ∈ H, and σ(x, 1) = ε(x) = σ(1, x).
Assume that σ is invertible with inverse σ−1 with respect to the

convolution product. Then the twisted Hopf algebra Hσ is H as a
coalgebra with the twisted multiplication

(1.2) x ·σ y = σ(x(1), y(1))x(2)y(2) σ
−1(x(3), y(3)).

LetA be a rightH-comodule algebra. Then the twistedHσ-comodule
algebra Aσ is A as an H-comodule with the twisted multiplication

(1.3) a ·σ b = a(0)b(0) σ
−1(a(1), b(1)).

The convolution inverse σ−1 of σ is an invertible 2-cocycle for Hσ,
and (Aσ)σ

−1
= A as a comodule algebra over (Hσ)σ

−1
= H.
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Proposition 1.6. Let H be a Hopf algebra, σ : H⊗H → k an invertible
2-cocycle, and B an algebra.
(1) If A is an H-Galois extension of B, then Aσ is an Hσ-Galois

extension of B.
(2) The map GalB(H)→ GalB(Hσ) given by A 7→ Aσ is bijective.

Proof. (1) is shown in [MS, Section 4], and (2) follows from (1) since

(Aσ)σ
−1

= A. �

2. Homotopy

The homotopy properties of principal bundles in topology are based
on the following result. Let G be a topological group, B a topological
space, and ξ a numerable principal G-bundle over B. If fi : B′ → B,
i = 0, 1, are homotopic maps, then the pull-back bundles f ∗0 (ξ) and
f ∗1 (ξ) are isomorphic [Hu, Chapter 4, Theorem 9.9].

An H-Galois extension B ⊂ A can be viewed as the algebraic ana-
logue of the function algebra of a principal G-bundle p : X → B. To
study the algebraic analogue of homotopy for Hopf Galois extension we
first recall the definition of homotopic algebra maps used in algebraic
K-theory (see [G, Section 3], [Sw1, Section 4]).

Let k ⊂ k[t] be the polynomial algebra in the indeterminate t. For
any k-module V , we denote the ground ring extension with respect to
k ⊂ k[t] by V [t]. We define k-linear maps V [i] : V [t]→ V for i ∈ {0, 1}
by sending vtn to vin. We will usually write simply [i] instead of V [i].
Note that these maps are algebra maps if V is an algebra.

Definition 2.1. Let α, β : R→ S be homomorphisms of commutative
k-algebras. We say that α and β are homotopic (α ∼ β) if there exists
a k-algebra homomorphism θ : R→ S[t] such that

[0]θ = α and [1]θ = β.

The map θ is called a homotopy between α and β. Let ≈ be the
equivalence relation generated by ∼.

The homomorphism α : R → S is a homotopy equivalence if there
exists a ring homomorphism α′ : S → R with αα′ ≈ idS and α′α ≈ idR.

Remarks 2.2. (1) The relation ∼ is reflexive and symmetric (as one
sees by the mapping t 7→ t − 1). Thus α ≈ β means that there is a
sequence of algebra homomorphisms α1, . . . , αn : R → S with α1 = α,
α1 ∼ α2, . . . , αn−1 ∼ αn, and αn = β.

(2) Let R = ⊕n≥0R(n) be an N-graded commutative algebra. Then
the inclusion R(0) ⊂ R is a homotopy equivalence of commutative
rings. We recall the argument in [K]. Let ι : R(0)→ R be the inclusion,
and π : R → R(0) the projection given by the grading. Then ι and π
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are ring homomorphisms, and πι = idR(0). We define an additive map
θ : R → R[t] by θ(x) = tnx if x ∈ R(n) (n ≥ 0). Since R is N-graded,
θ is a ring homomorphism. By construction, [0]θ = ιπ and [1]θ = idR,
hence ιπ ∼ idR.

(3) Here is a non-graded example of a homotopy equivalence. Let k
be a field of characteristic p > 0 and k[G] the group algebra of a finite
abelian p-group G. Write G as a direct product of cyclic p-groups with
generators gi, 1 ≤ i ≤ r. Then the algebra map

θ : k[G]→ k[G][t] with θ(gi) = 1 + t(gi − 1), 1 ≤ i ≤ r,

is a homotopy with [0]θ(gi) = 1 and [1]θ(gi) = gi for all i. Hence the
inclusion k ⊂ k[G] is a homotopy equivalence.

Definition 2.3. Let H be a Hopf algebra and B an algebra. Let A0

and A1 be right faithfully flat H-Galois extensions of B. We write
A0 ∼ A1 if there exists a right faithfully flat H[t]-Galois extension A
of B[t] with ground ring k[t] such that [i]∗A ∼= Ai for i ∈ {0, 1}.

Homotopy equivalence of right faithfully flat H-Galois extensions
of B is the equivalence relation ≈ generated by ∼.

Let HB(H/k), or simply HB(H), be the set of homotopy equivalence
classes of right faithfully flat H-Galois extensions of B.

Remarks 2.4. (1) Homotopy of H-Galois extensions can be formu-
lated without changing the ground ring from k to k[t]. Let A0 and A1

be right faithfully flat H-Galois extensions of B. Then the following
are equivalent:
(a) A0 ∼ A1.
(b) There is a right faithfully flat H-Galois extension A of B[t] with

ground ring k such that t lies in the center of A and

A/(t− i) ∼= Ai

as H-Galois extensions of B for i ∈ {0, 1}.
The implication (a) ⇒ (b) is clear. To prove the converse, as-

sume (b). Then A is a k[t]-algebra, and the H-comodule structure
map

A→ A⊗H ∼= A⊗k[t] H[t]

is k[t]-linear since t is an H-coinvariant element. Thus B[t] ⊂ A is an
H[t]-Galois extension, and (a) follows.

(2) Our definition of homotopy equivalence extends the definition
introduced in [K] for central Hopf Galois extensions. If A0 and A1 are
right faithfully flat and central H-Galois extensions of a commutative
k-algebra R, we can view A0 and A1 as R⊗H-Galois extensions of the
ground ring R as explained above. Then the following are equivalent:
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(a) There is a faithfully flat and central H-Galois extension A of R[t]
with [i]∗A ∼= Ai for i ∈ {0, 1}.

(b) There is a faithfully flat and central H-Galois extension A of R[t]
with R[i] ⊗R[t] A ∼= Ai for i ∈ {0, 1}.

(c) A0 ∼ A1 as R⊗H-Galois extensions of the ground ring R.
In (b), R[i] denotes R as an R[t]-algebra via the R-algebra map [i] :

R[t]→ R mapping t onto i for i ∈ {0, 1}, and R[i] ⊗R[t] A is an algebra
by componentwise multiplication.

The equivalence of (a) and (b) follows from the bijectivity of the
algebra map R[i] ⊗R[t] A → k[i] ⊗k[t] A defined by r ⊗ a 7→ 1 ⊗ ra, and
(b) is equivalent to (c) by Remark 2.4 (1).

(3) Homotopy equivalence is different from isomorphism. See [K,
Section 4.5] for examples of non-isomorphic homotopy equivalent Hopf
Galois extensions.

(4) If the Hopf algebra H is finitely generated and projective as a
module over the ground ring k, then by a theorem of Kreimer and
Takeuchi [KT] any H-Galois extension A of B is finitely generated
projective as a B-module. Thus A defines an element [A] in the K-
theory group K0(B) of B. It follows from the definition that, if A0 and
A1 are faithfully flat H-Galois extensions of B such that A0 ∼ A1, then
there is ξ ∈ K0(B[t]) such that for i ∈ {0, 1},

K0([i])(ξ) = [Ai] ∈ K0(B).

If B is a regular ring, then by [B, Chapter XII, Theorem 3.1],

K0([0]) = K0([1]) : K0(B[t])→ K0(B).

(The latter also holds for certain non-regular rings B, see [P].) In this
case, [A0] = [A1] in K0(B), which means that the element we have
constructed in K0(B) is invariant under homotopy equivalence.

If k is a field and the antipode of H is bijective, then any faithfully
flat H-Galois extension A of B is projective over B by a recent result in
[Sch, 2.4.9]. Hence the above construction can sometimes be extended
to cases when H is no longer finite-dimensional over k (now assumed
to be a field). For instance, let H be a cosemisimple Hopf algebra with
a decomposition H ∼= ⊕i∈I Ci, where each Ci is a finite-dimensional
coalgebra over k. Then A ∼= ⊕i∈I A�HCi. Each summand A�HCi
of A is a finitely generated B-module by faithfully flat descent, and it
is projective over B since A is B-projective. We then obtain a family
of elements of K0(B) for which we can argue as above.

Next we show that ()∗ and ()∗ induce maps on the homotopy classes.

Proposition 2.5. Let H be a Hopf algebra, and A0, A1 right faithfully
flat H-Galois extensions of B with A0 ∼ A1.



10 CHRISTIAN KASSEL AND HANS-JÜRGEN SCHNEIDER

(1) If α : R→ S is a homomorphism of commutative k-algebras, then
α∗A0 ∼ α∗A1.

(2) If ϕ : K → H is a homomorphism of Hopf algebras and K is flat
over k, then ϕ∗A0 ∼ ϕ∗A1.

(3) If σ : H ⊗H → k is an invertible 2-cocycle, then (A0)σ ∼ (A1)σ.

Proof. Let A be a right faithfully flat H[t]-Galois extension of B[t] with
[i]∗A ∼= Ai, i ∈ {0, 1}.

(1) Extend α to the ring homomorphism α[t] : R[t] → S[t] by map-
ping t onto t. Then α[i] = [i]α[t]. By Proposition 1.2, α[t]∗A is a right
faithfully flat H[t]-Galois extension of B[t], and by Proposition 1.4 (1),

[i]∗α[t]∗A ∼= ([i]α[t])∗A ∼= (α[i])∗A ∼= α∗[i]∗A ∼= α∗Ai for i ∈ {0, 1}.

(2) Let i ∈ {0, 1}. We apply part (3) of Proposition 1.4 to the ring
homomorphism τ = [i] : k[t] → k and to the k[t]-Hopf algebra map
ϕ[t] : K[t] → H[t]. Then the Hopf algebra map k[i] ⊗k[t] ϕ defined by
ground ring extension of ϕ with respect to [i] can be identified with ϕ.
Hence by Proposition 1.4 (3),

[i]∗ϕ[t]∗A ∼= ϕ∗[i]∗A ∼= ϕ∗Ai.

(3) By extension σ defines an invertible 2-cocycle σ[t] of H[t] over
the ground ring k[t]. By Proposition 1.6, Aσ[t] is a right faithfully flat
H[t]-Galois extension of B[t], and

[i]∗(A
σ[t]) ∼= ([i]∗A)σ ∼= (Ai)

σ for i ∈ {0, 1}.

�

By Proposition 2.5, HR⊗B(R⊗H) is a covariant functor in commuta-
tive k-algebras R, and HB(H) is a contravariant functor in k-flat Hopf
algebras H.

We now introduce homotopies between homomorphisms of Hopf al-
gebras.

Definition 2.6. Let K, H be Hopf algebras, and ϕ : K → H and
ψ : K → H Hopf algebra homomorphisms. We say that ϕ and ψ are
homotopic (ϕ ∼ ψ) if there exists a k[t]-Hopf algebra homomorphism
Φ : K[t]→ H[t] with

[0](Φ(x)) = ϕ(x) and [1](Φ(x)) = ψ(x)

for all x ∈ K. The map Φ is called a homotopy between ϕ and ψ.
The Hopf algebra map ϕ : K → H is a homotopy equivalence if there

exists a Hopf algebra homomorphism ϕ′ : H → K with ϕϕ′ ≈ idH and
ϕ′ϕ ≈ idK , where ≈ is the equivalence relation generated by ∼.
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Remarks 2.7. (1) A homotopy Φ between ϕ and ψ is given by a
family Φn : K → H (n ≥ 0) of k-linear maps such that for all x ∈ K,
Φn(x) 6= 0 only for finitely many n, and for all x, y ∈ K and all n ≥ 0,
(a) Φn(xy) =

∑
i+j=n Φi(x)Φj(y),

(b) ∆(Φn(x)) =
∑

i+j=n Φi(x(1))⊗ Φj(x(2)),

(c) Φn(1) = δn0,
(d) ε(Φn(x)) = δn0ε(x),
(e) Φ0 = ϕ,
(f)
∑

n≥0 Φn(x) = ψ(x).
The homotopy Φ corresponding to the family (Φn) is defined by

Φ(x) =
∑
n≥0

Φn(x)tn

for all x ∈ K. Note that any family (Φn) of k-linear maps with
Φn(x) 6= 0 only for finitely many n and (a)–(d) defines Hopf algebra
homomorphisms Φ0 : K → H and

∑
n≥0 Φn : K → H.

(2) Let H = ⊕n≥0H(n) be an N-graded Hopf algebra. Then the
inclusion H(0) ⊂ H is a homotopy equivalence of Hopf algebras. For
the proof let ι : H(0) → H be the inclusion and π : H → H(0) the
projection. Both maps are Hopf algebra homomorphisms, and πι =
idH(0). We use the same homotopy as before for graded commutative
algebras, and define a k[t]-Hopf algebra homomorphism

Φ : H[t]→ H[t] with ϕ(x) = xtn for all x ∈ H(n), n ≥ 0.

Note that Φ is a coalgebra map since for all n ≥ 0,

∆(H(n)) ⊂ ⊕i+j=nH(i)⊗H(j) and ε(H(n)) = 0 if n > 0.

Then Φ is a homotopy between ιπ and idH .

The first part of the next theorem generalizes [K, Proposition 2.3].

Theorem 2.8. Let B be an algebra and H a Hopf algebra over k.
(1) If α : R → S and β : R → S are homotopic homomorphisms of

commutative k-algebras, then

α∗ = β∗ : HR⊗B(R⊗H)→ HS⊗B(S ⊗H).

(2) If ϕ : K → H and ψ : K → H are homotopic Hopf algebra
homomorphisms, where K is a k-flat Hopf algebra, then

ϕ∗ = ψ∗ : HB(H)→ HB(K).

Proof. By Proposition 2.5, all maps are well defined on homotopy
classes.

(1) Let A be a right faithfully flat R⊗H-Galois extension of R⊗B.
We will show that α∗A ∼ β∗A.
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There is a homotopy θ : R→ S[t] with [0]θ = α and [1]θ = β. Then
θ∗A is a right faithfully flat (S ⊗H)[t]-Galois extension of (S ⊗ B)[t],
and

[0]∗θ∗A ∼= ([0]θ)∗A ∼= α∗A and [1]∗θ∗A ∼= ([1]θ)∗A ∼= β∗A.

(2) Let A be a right faithfully flat H-Galois extension of B. We will
show that ϕ∗A ∼ ψ∗A.

There is a homotopy Φ : K[t] → H[t] between ϕ and ψ. Define the
H[t]-Galois extension A[t] of B[t] by ground ring extension via k ⊂ k[t].
Then Φ∗A[t] is a right faithfully flat K[t]-Galois extension of B[t] by
Proposition 1.3, and for i ∈ {0, 1} we have by Proposition 1.4

[i]∗Φ
∗A[t] ∼= (k[i] ⊗k[t] Φ)∗[i]∗A[t].

Since A[t] is defined via ground ring extension with respect to the
inclusion k ⊂ k[t], we have [i]∗A[t] ∼= A for i ∈ {0, 1}. Let us identify
the map k[i] ⊗k[t] Φ defined by ground ring extension via [i] : k[t]→ k.
Note that for i = 0, 1,

K ∼= k[i] ⊗k[t] K[t], x 7→ 1⊗ x
and

k[i] ⊗k[t] H[t] ∼= H, 1⊗ htn 7→ hin

are isomorphisms. The image of an element x ∈ K under the compo-
sition

K ∼= k[i] ⊗k[t] K[t]
k[i]⊗Φ−−−→ k[i] ⊗k[t] H[t] ∼= H

is
∑

n≥0 Φn(x)in, where the homotopy is given by the family (Φn)n≥0.
Hence we can identify k[0] ⊗k[t] Φ with ϕ, and k[1] ⊗k[t] Φ with ψ. This
proves our claim that ϕ∗A ∼ ψ∗A. �

It is clear from Theorem 2.8 that homotopy equivalences induce bi-
jective maps on homotopy classes. Hence Remarks 2.2 (2) and 2.7 (2)
imply the following Corollary whose first part generalizes [K, Corol-
lary 2.4].

Corollary 2.9. Let B be an algebra and H a Hopf algebra over k.
(1) If R = ⊕n≥0R(n) is an N-graded commutative algebra with R(0) =

k, then the inclusion map ι : k → R induces a bijective map

ι∗ : HB(H)→ HR⊗B(R⊗H).

(2) If H = ⊕n≥0H(n) is an N-graded Hopf algebra with K = H(0),
then the inclusion map ι : K → H induces a bijective map

ι∗ : HB(H)→ HB(K).
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The following examples show that H cannot be replaced by Gal in
Corollary 2.9 (1) and (2).

Examples 2.10. (1) Let H be a finite-dimensional Hopf algebra over
a field k, and R a commutative graded k-algebra with R(0) = k such
that there exists a non-cleft faithfully flat R⊗H-Galois extension of R
over the ground ring R. Since any H-Galois extension of k is cleft, the
induced map Galk(H) → GalR(R ⊗ H) is not bijective. An example
of this type is described in Proposition 3.3 below with H = k[C2]
and R = k[x2, x3].

(2) We recall Masuoka’s computation of Galk(H) for the Taft Hopf
algebra in [Ma1]. Let k be a field, N > 2 be a natural number, and q a
root of unity of order N in k. The Taft Hopf algebra of dimension N2

is the algebra

H = HN2 = k〈g, x | gN = 1, xN = 0, gxg−1 = qx〉

with Hopf algebra structure defined by

∆(g) = g ⊗ g and ∆(x) = 1⊗ x+ x⊗ g.

It is an N-graded Hopf algebra with H(n) = k[G]xn (n ≥ 0), where
G = G(H) is the cyclic group of order N generated by g. For any
r ∈ U(k) and s ∈ k define the H-comodule algebra Ar,s by

Ar,s = k〈a, b | aN = r, bN = s, aba−1 = qb〉

with H-comodule algebra structure δ given by

δ(a) = a⊗ g and δ(b) = 1⊗ x+ b⊗ g.

By [Ma1, Proposition 2.17, Lemma 2.19], the map (r, s) 7→ Ar,s
defines a bijection

U(k)/U(k)N × k ∼= Galk(H).

On the other hand, for any r ∈ U(k) define the k[G]-comodule alge-
bra Ar by

Ar = k〈a | aN = r〉 with δ(a) = a⊗ g.
Then r 7→ Ar defines a bijection

U(k)/U(k)N ∼= Galk(k[G]).

If r ∈ U(k) and s ∈ k, then Ar → Ar,s�Hk[G], a 7→ a ⊗ g, is an
isomorphism of k[G]-comodule algebras. Hence the map Galk(H) →
Galk(k[G]) induced by the inclusion k[G] = H(0) ⊂ H can be identified
with the projection U(k)/U(k)N × k → U(k)/U(k)N . In particular, it
is not bijective.



14 CHRISTIAN KASSEL AND HANS-JÜRGEN SCHNEIDER

Without using the explicit computation of Galk(H), we know from
Corollary 2.9 (2) that the inclusion k[G] ⊂ H defines a bijection

Hk(H) ∼= Hk(k[G]).

Since G is cyclic of order N ,

Hk(k[G]) ∼= Galk(k[G]) ∼= H2(G,U(k)) ∼= U(k)/U(k)N

by Proposition 3.2 (1) below.

For later use we note the following combination of our results on
twisted and graded Hopf algebras.

Corollary 2.11. Let B be an algebra, H = ⊕n≥0H(n) an N-graded
Hopf algebra, and K = H(0). Let σ : H × H → k be an invertible
2-cocycle such that σ(x, y) = ε(x)ε(y) for all x, y ∈ K. Then K is a
Hopf subalgebra of Hσ and the inclusion ι : K → Hσ induces a bijective
map ι∗ : HB(Hσ)→ HB(K).

Proof. Let A be a faithfully flat H-Galois extension of B. By Proposi-
tion 1.6 and Corollary 2.9 (2), it is enough to show that

A�HK ∼= Aσ�HσK

asK-Galois extensions ofB. SinceA�HK = Aσ�HσK asK-comodules,
it suffices to check that the algebra structures of A�HK and Aσ�HσK
coincide. Let

∑
i ai ⊗ xi and

∑
j bj ⊗ yj be elements of A�HK. We

denote the multiplication in Aσ�HσK by ·σ. Then it follows from the
definition of the cotensor product that(∑

i

ai ⊗ xi
)
·σ
(∑

j

bj ⊗ yj
)

=
∑
i,j

ai ·σ bj ⊗ xiyj

=
∑
i,j

ai(0)bj(0)σ
−1(ai(1), bj(1))⊗ xiyj

=
∑
i,j

aibjσ
−1(xi(1), yj(1))⊗ xi(2)yj(2)

=
(∑

i

ai ⊗ xi
)(∑

j

bj ⊗ yj
)

since σ−1(xi(1), yj(1)) = ε(xi(1))ε(yj(1)). �

3. Homotopy of abelian group functors, and examples

from group algebras

In [Sw1, Section 4] Swan constructed a homotopy functor out of any
functor defined on a category of commutative algebras. Our definition
of HB(H) is a special case of this construction.
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A functor F from the category of commutative k-algebras to the
category of sets is called a homotopy functor if for any commutative
k-algebra R,

F (R[0]) = F (R[1]) : F (R[t])→ F (R)

or, equivalently, if the inclusion ι : R ⊂ R[t] induces a bijection F (R) ∼=
F (R[t]).

For any commutative k-algebra R let F (R) be the coequalizer of the
maps [1]∗ = F (R[1]), [0]∗ = F (R[0]) : F (R[t])→ F (R).

In general, if M , N are sets and f, g : M → N are maps, the
coequalizer of the pair f, g is described as follows. For all x, y ∈ N ,
define x ∼ y if there is an element z ∈M with f(z) = x and g(z) = y.
Then the coequalizer of the pair f, g is the quotient map N → N/≈,
where ≈ is the equivalence relation generated by ∼.

Let us say that two elements x, y ∈ F (R) are homotopy equivalent
if x ≈ y.

From the definition there is a natural transformation η : F → F .
By [Sw1, Lemma 4.2], η is universal for maps of F into homotopy
functors. Thus F is the largest quotient of F which is a homotopy
functor.

In particular, if F is the functor

R 7→ F (R) = GalR⊗B(R⊗H),

then F (R) = HR⊗B(R⊗H).

Remark 3.1. Let F be a functor from commutative k-algebras to
abelian groups. Let F be the largest quotient of the underlying set
functor of F which is a homotopy functor. Then for any commutative
algebra R, the relation ∼ coincides with ≈ on F (R), and F (R) is the
cokernel of [1]∗ − [0]∗.

Indeed, using standard notation (see [B, Chapter XII]), we denote
by NF (R) the kernel of the map [0]∗ : F (R[t]) → F (R). It splits off
F (R[t]) and we have the following functorial decomposition: F (R[t]) =
F (R) ⊕ NF (R). It is immediate to see that for two elements x, y ∈
F (R) we have x ∼ y if and only if x − y belongs to the image of the
map

[1]∗ : NF (R)→ F (R[t])→ F (R),

which is equal to the image of [1]∗− [0]∗ : F (R[t])→ F (R). Therefore,

F (R) ∼= F (R)/[1]∗NF (R).

LetH be a cocommutative k-flat Hopf algebra. Then the set Galk(H)
of isomorphism classes of Galois objects of H form an abelian group
(see for example [C, 10.5.3]). If A and A′ are H-Galois objects, then
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their product in Galk(H) is the isomorphism class of A�HA′, where
A′ is viewed as a left H-comodule algebra, which is possible since H
is cocommutative. In a very special case this group structure already
appeared in [Ha]. Thus

R 7→ GalR(R⊗H)

is a functor from commutative k-algebras to abelian groups, andHk(H)
is the cokernel of the homorphism

[1]∗ − [0]∗ : Galk[t](k[t]⊗H)→ Galk(H).

We are interested in the case when H = R[G] is the group algebra
of a group G over a commutative ring R. Then Galois objects are G-
strongly graded algebras, i.e., we have A = ⊕g∈GAg, A1 = R, and for
all g, h ∈ G, the multiplication map

Ag ⊗R Ah → AgAh = Agh

is bijective (see [M, 8.1.7]). Thus

Φ(A) : G→ Pic(R), g 7→ [Ag],

is a group homomorphism. Here Pic(R) is the abelian group of isomor-
phism classes of invertible R-modules.

Suppose that for all g ∈ G, Ag ∼= R as an R-module. Then any Ag
contains an invertible element ug of A, and A is R[G]-cleft with the
R[G]-colinear and invertible map R[G]→ A defined by g 7→ ug.

Let σ : G×G→ U(R) be a 2-cocycle of the group G acting trivially
on U(R). The twisted group algebra Ψ(σ) = Rσ[G] is a cleft R[G]-
Galois object [M, 7.1.5]. Recall that Rσ[G] = R[G] as a coalgebra with
twisted multiplication g ·σ h = σ(g, h)gh on basis elements g, h ∈ G.
The maps Φ and Ψ define an exact sequence of abelian groups

(3.1) 0→ H2(G,U(R))
Ψ−→ GalR(R[G])

Φ−→ Hom(G,Pic(R)).

Both homomorphisms Φ and Ψ are natural transformations of abelian
group functors on the category of commutative rings R.

Let Hom(G,Pic(R)) be the cokernel of

Hom(G, [1]∗ − [0]∗) : Hom(G,Pic(R[t]))→ Hom(G,Pic(R)).

Proposition 3.2. Let G be a group and R a reduced commutative ring.
(1) If Pic(R[t]) = 0, then

H2(G,U(R)) ∼= GalR(R[G]) = HR(R[G]).

(2) If G is a finite abelian group, then Φ and Ψ define an exact se-
quence

H2(G,U(R))→ HR(R[G])→ Hom(G,Pic(R))→ 0.
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Proof. (1) The first isomorphism follows from (3.1) since Pic(R) = 0 as
a direct summand in Pic(R[t]) = 0. It remains to show that homotopic
R[G]-Galois objects A0 and A1 are isomorphic. By assumption there is
an R[t][G]-Galois object A with [i]∗A ∼= Ai, i = 0, 1. Since Pic(R[t]) =
0, there is a 2-cocycle σ : G × G → U(R[t]) with A ∼= R[t]σ[G]. The
ring R being reduced, we have U(R[t]) = U(R), and σ takes values
in U(R). Hence,

[i]∗A ∼= [i]∗R[t]σ[G] ∼= Rσ[G]

for i = 0, 1.
(2) Define group homomorphisms f1, f2, f3 by

f1 = [1]∗ − [0]∗ : H2(G,U(R[t]))→ H2(G,U(R)),

f2 = [1]∗ − [0]∗ : GalR[t](R[t][G])→ GalR(R[G]), and

f3 = Hom(G, [1]∗ − [0]∗) : Hom(G,Pic(R[t]))→ Hom(G,R).

It is known (see [C, 10.7.1]) that the map Φ in (3.1) is an epimorphism
for any commutative ring R if the group G is finite and abelian. Then
(f1, f2, f3) define a homomorphism of short exact sequences (3.1) for
R[t] and for R, and we have an exact sequence

Coker(f1)→ Coker(f2)→ Coker(f3)→ 0.

Since R is reduced, U(R) = U(R[t]). Therefore

[0]∗ = [1]∗ : U(R[t])→ U(R),

hence f1 = 0, and Coker(f1) = H2(G,U(R)). By Remark 3.1, Coker(f2) =
HR(R[G]), and Coker(f3) = Hom(G,Pic(R)). �

Suppose in the situation of Proposition 3.2 (2) that

[1]∗ − [0]∗ : Pic(R[t])→ Pic(R)

is a split epimorphism. Then Ψ induces an epimorphism

H2(G,U(R))→ GalR(R[G]])→ HR(R[G]).

Hence, if there is a non-cleft R[G]-Galois object, then there is a non-
cleft R[G]-Galois object which is homotopically trivial, that is, homo-
topically equivalent to the group algebra. We will now explicitly con-
struct such an example.
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Let k be a field, R a commutative k-algebra without zero divisors,
and F the field of fractions of R. If P is a fractional ideal of R (i.e.,
an R-submodule of F ) such that P 2 = R, then we can consider the
C2-graded R-submodule R ∗ P of F [C2] defined by

(R ∗ P )0 = R and (R ∗ P )1 = Pg,

where g generates the group C2. The condition P 2 = R implies that
R∗P is a strongly C2-graded subalgebra of F [C2]. It follows that R∗P is
a k[C2]-Hopf Galois extension with coinvariants R. The extension R∗P
is cleft if and only if P is free.

We now assume that k is of characteristic 2 and R is not seminormal,
i.e., there is an element a ∈ F \ R such that a2 and a3 belong to R.
We also assume that any unit u of the subring of F generated by R
and a such that u(1 + a) ∈ R belongs to R. As an example of such a
ring, take R to be the subring k[x2, x3] in the polynomial algebra k[x],
and a = x.

Following [Sw2, Section 7] and [L, Section 2B, Example 2.15], we
consider the Schanuel fractional ideal Pa = (1 + a, a2) of R generated
by 1 + a and a2 in F . It follows from Equation (2.15A) of [L] and
the restriction we put on the characteristic of k that P 2

a = R. By the
above we obtain a k[C2]-Hopf Galois extension R ∗ Pa. We claim the
following.

Proposition 3.3. The k[C2]-Hopf Galois extension R ∗Pa is not cleft,
but it is homotopically trivial.

Proof. (a) By [L, Proposition 2.15C], the R-module Pa is not free.
Therefore R ∗ Pa is not cleft.

(b) In the polynomial ring R[t] the element at of F [t] is not in R[t],
but a2t2 and a3t3 belong to R[t]. We can then consider the Schanuel
fractional ideal Pat of R[t] generated by 1 + at and a2t2 in the field of
fractions of R[t]. This leads to the non-cleft k[C2]-Hopf Galois exten-
sion R[t] ∗ Pat whose coinvariants are R[t].

We claim that R[t] ∗Pat/(t− 1) ∼= R ∗Pa and R[t] ∗Pat/(t) ∼= R[C2].
This will prove that the Galois extension R∗Pa is homotopy equivalent
to the trivial extension R[C2]. To prove the claim, it suffices to check
that we have the following isomorphisms of R-modules:

Pat/(t− 1)Pat ∼= Pa and Pat/tPat ∼= R.

According to [Sw2, Proof of Theorem 7.1], the R[t]-module Pat is the
image of the idempotent matrix

Mt =

(
1− a4t4 a2t2 + a3t3

(1 + a2t2)(a2t2 − a3t3) a4t4

)
.
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Therefore, Pat/(t− 1)Pat is the image of the idempotent

M1 =

(
1− a4 a2 + a3

(1 + a2)(a2 − a3) a4

)
,

which is the R-module Pa, and Pat/tPat is the image of the idempotent

M0 =

(
1 0
0 0

)
, which is a free R-module of rank 1. �

A fractional ideal as above is an invertible (rank one) projective R-
module. Hence it represents an element [P ] of order 2 in the Picard
group Pic(R) of R. As observed above, the Hopf-Galois extension R∗P
is cleft if and only if [P ] = 0 in Pic(R).

We have seen in Remark 3.1 that homotopy equivalence in Pic(R) is
different from equality provided [1]∗N Pic(R) is non-zero. A necessary
condition for the non-vanishing of [1]∗N Pic(R) is the non-vanishing
of N Pic(R), which by [Sw2, Theorem 1] is equivalent to the reduced
quotient Rred of R not being seminormal.

The construction of the Schanuel module Pat leading to the example
of the Proposition above, together with [L, (2.23B) and Theorem 2.23],
shows there exist injective maps

ι : R/J → Pic(R) and ιt : R/J → N Pic(R)

respectively given by

ι(r) = [(1 + ra, a2)] and ιt(r) = [(1 + rat, a2t2)],

where J = {b ∈ R | ab ∈ R} is the so-called conductor. Moreover, we
have ι = [1]∗ ◦ ιt. This implies that Pic(R)/[1]∗N Pic(R) is a quotient
of the cokernel Pic(R)/(R/J) of ι, thus providing an “upper bound”
to the set of homotopy classes in Pic(R).

Example 3.4. If R = k[x2, x3], then Pic(R) ∼= R/J ∼= k, and the
composition ι

R/J
ιt−→ N Pic(R) ⊂ Pic(R[t])

[1]∗−[0]∗−−−−−→ Pic(R)

is an isomorphism [L, (2.23C)]. Hence [1]∗ − [0]∗ : Pic(R[t]) → Pic(R)
is a split epimorphism. In particular, all elements of the Picard group
are homotopy equivalent to 0.

4. Examples from quantum groups

From now on we assume that the ground ring k is a field. In this
Section we apply our previous results to the Drinfeld-Jimbo quantum
groups Uq(g) and related finite-dimensional Hopf algebras. It turns out
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that the computation of the homotopy classes for these Hopf algebras
can be reduced to the case of abelian group algebras.

The general idea is to present these Hopf algebras as 2-cocycle twists
of graded Hopf algebras. Such a presentation was given for finite-
dimensional quantum groups in [AS], [Di]. We adapt this approach
to deal with Uq(g) and prove some slightly more general results which
may be of independent interest.

We begin with the definition of the generalized quantum double via
twisting following [DT].

Let U,A be Hopf algebras, and τ : U ⊗ A → k a skew-pairing, that
is a linear map such that for all u, v ∈ U and a, b ∈ A,

τ(uv, a) = τ(u, a(1))τ(v, a(2)),(4.1)

τ(u, ab) = τ(u(2), a)τ(u(1), b),(4.2)

τ(u, 1) = ε(u), τ(1, a) = ε(a).(4.3)

We assume that the antipode of A is invertible. Then τ is invertible
with respect to convolution, and its inverse τ−1 is given for all u ∈ U ,
a ∈ A by

(4.4) τ−1(u, a) = τ(S(u), a) = τ(u, S−1(a)).

Skew-pairings can be equivalently described as Hopf algebra homomor-
phisms ϕ : U → (A0)cop, where A0 is the dual Hopf algebra (see [M,
Section 9.1]), and for any Hopf algebra H we denote by Hcop the alge-
bra H with the opposite comultiplication. The connection between τ
and ϕ is given by

τ(u, a) = ϕ(u)(a)

for all u ∈ U and a ∈ A. We define the associated 2-cocycle στ = σ on
the tensor product Hopf algebra U ⊗ A by

(4.5) σ(u⊗ a, v ⊗ b) = ε(u)τ(v, a)ε(b)

for all u, v ∈ U and a, b ∈ A. By definition, (U ⊗A)σ is the generalized
quantum double of U , A and τ .

The multiplication ·σ in (U ⊗ A)σ is given by

(4.6) (u⊗ a) ·σ (v ⊗ b) = uτ(v(1), a(1))v(2) ⊗ a(2)τ
−1(v(3), a(3))b

for all u, v ∈ U and a, b ∈ A.

We now generalize some results on twisting from Didt’s thesis [Di].
We consider another skew-pairing τ̃ with associated 2-cocycle σ̃.

Then ρ = σ̃σ−1 : (U ⊗ A)σ ⊗ (U ⊗ A)σ → k is a 2-cocycle on the
twisted Hopf algebra (U ⊗ A)σ associated to the skew-pairing τ̃ τ−1,
and

(U ⊗ A)σ̃ = ((U ⊗ A)σ)ρ.
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Lemma 4.1. Let y ∈ G(U), g ∈ G(A). Then the following are equiva-
lent:
(1) For all a ∈ A, u ∈ U ,

τ(y, a) = τ̃(y, a) and τ(u, g) = τ̃(u, g).

(2) For all a ∈ A, u ∈ U ,

ρ(u⊗ a, y ⊗ g) = ε(u)ε(a) = ρ(y ⊗ g, u⊗ a).

Proof. This is easily checked since for all a ∈ A, u ∈ U ,

ρ(u⊗ a, y ⊗ g) = ε(u)τ̃(y, a(1))τ
−1(y, a(2)),

and

ρ(y ⊗ g, u⊗ a) = τ̃(u(1), g)τ−1(u(2), g)ε(a).

�

We will use the previous Lemma to define a 2-cocycle on a quotient
Hopf algebra modulo a central subgroup algebra.

Lemma 4.2. Let H be a Hopf algebra, and ρ : H⊗H → k an invertible
2-cocycle. Let G be a subgroup of G(H), and assume that G is central
in H and that ρ(g, x) = ε(x) = ρ(x, g) for all g ∈ G and x ∈ H.
Then G is central in Hρ, and ρ induces an invertible 2-cocycle ρ of the
quotient Hopf algebra H/(k[G])+H such that

(H/(k[G])+H)ρ = Hρ/(k[G])+Hρ.

Proof. In order to see that the map

ρ : H/(k[G])+H ⊗H/(k[G])+H → k, x⊗ y 7→ ρ(x, y),

is well defined, we have to show that

ρ(gx, y) = ρ(x, y) = ρ(x, yg)

for all x, y ∈ H, g ∈ G. This follows from the assumption and the two
cases of the 2-cocycle condition (1.1) when x = g and z = g. The rest of
the Lemma is then obvious since (k[G])+H = (k[G])+Hρ by (1.2). �

In the sequel we will assume that the group G(A) is abelian and
that there exist elements a1, . . . , at ∈ A \ 0, g1, . . . , gt ∈ G(A), and
χ1, . . . , χt ∈ Hom(G(A), U(k)) such that A as an algebra is generated
by G(A) and by a1, . . . , at, and for all j,

∆(aj) = gj ⊗ aj + aj ⊗ 1,(4.7)

gajg
−1 = χj(g)aj for all g ∈ G(A),(4.8)

χj(gj) 6= 1.(4.9)



22 CHRISTIAN KASSEL AND HANS-JÜRGEN SCHNEIDER

Similarly, we assume that the group G(U) is abelian and that there
exist elements u1, . . . , us ∈ U \ 0, y1, . . . , ys ∈ G(U), and η1, . . . , ηs ∈
Hom(G(U), U(k)) such that U as an algebra is generated by G(U) and
by u1, . . . , us, and for all i,

∆(ui) = yi ⊗ ui + ui ⊗ 1,(4.10)

yuiy
−1 = ηi(y)ui for all y ∈ G(U),(4.11)

ηi(yi) 6= 1.(4.12)

Our assumptions for U (and similarly for A) imply for all i

S(yi) = y−1
i , ε(yi) = 1, S(ui) = −y−1

i ui, ε(ui) = 0.

Note that, if τ : U ⊗ A→ k is a skew-pairing, then

(4.13) τ(y, aj) = 0 for all y ∈ G(U), 1 ≤ j ≤ t,

since by (4.2) the map γ : A → k, a 7→ τ(y, a), is an algebra map,
and for any algebra map γ, γ(aj) = 0 since χj(gj) 6= 1 by (4.9), and
by (4.8), γ(aj) = γ(gjajg

−1
j ) = χj(gj)γ(aj).

In the same way,

(4.14) τ(ui, g) = 0 for all g ∈ G(A), 1 ≤ i ≤ s.

Generalizing an argument in the proof of [AS, Theorem 5.17] on
page 17, we describe central group-like elements in (U ⊗ A)σ.

Lemma 4.3. Let y ∈ G(U), g ∈ G(A). Then the following are equiva-
lent:
(1) The group-like element y ⊗ g−1 is central in (U ⊗ A)σ.
(2) For all 1 ≤ i ≤ s, 1 ≤ j ≤ t,

ηi(y) = τ(yi, g) and χj(g
−1) = τ(y, gj).

Proof. Since for all u ∈ U , a ∈ A, u⊗a = (u⊗1) ·σ (1⊗a), the element
y⊗g−1 is central if it commutes with all u′⊗1, where u′ is group-like or
u′ = ui for some i, and with all 1⊗ a′, where a′ is group-like or a′ = aj
for some j.

Since the groups G(U) and G(A) are abelian, y⊗g−1 commutes with
all u′ ⊗ a′, where u′ and a′ are group-like.

Using (4.10), we compute

(y ⊗ g−1) ·σ (ui ⊗ 1) = yτ(ui(1), g
−1)ui(2) ⊗ g−1τ−1(ui(3), g

−1)

= yτ(yi, g
−1)yi ⊗ g−1τ−1(ui, g

−1)

+ yτ(yi, g
−1)ui ⊗ g−1τ−1(1, g−1)

+ yτ(ui, g
−1)⊗ g−1τ−1(1, g−1)

= yτ(yi, g
−1)ui ⊗ g−1,
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since the first and last summand vanish by (4.14). Since

(ui ⊗ 1) ·σ (y ⊗ g−1) = uiy ⊗ g−1,

it follows from (4.11) that y ⊗ g−1 commutes with ui ⊗ 1 if and only
if ηi(y) = τ(yi, g). Similarly, y ⊗ g commutes with 1 ⊗ aj if and only
χj(g

−1) = τ(y, gj). �

The next Proposition is an immediate consequence of the previous
Lemmas 4.1, 4.2, 4.3, together with (4.13) and (4.14). It is formulated
in [Di] in a special case for the Hopf algebras studied in [AS].

Proposition 4.4. Let U , A be Hopf algebras as above and

τ, τ̃ : U ⊗ A→ k

invertible skew-pairings with associated 2-cocycles σ, σ̃. Assume that
s = t, and

τ(yi, g) = τ̃(yi, g), τ(y, gi) = τ̃(y, gi),(4.15)

τ(yi, gj) = χj(g
−1
i ) = ηi(yj),(4.16)

for all y ∈ G(U), g ∈ G(A), 1 ≤ i, j ≤ t.
Then the subgroup G generated by all yi ⊗ g−1

i , 1 ≤ i ≤ t, is central

in the twisted Hopf algebras H = (U ⊗A)σ and H̃ = (U ⊗A)σ̃, and the

quotient Hopf algebra H̃/(k[G])+H̃ is a 2-cocycle-twist of H/(k[G])+H.

In the situation of Proposition 4.4 we will denote the images of

ui ⊗ 1, yi ⊗ 1, 1⊗ aj, 1⊗ gj, 1 ≤ i, j ≤ t, in H = (U ⊗ A)σ

respectively by ui, yi, aj, gj. Then a somewhat lenghty calculation us-
ing the multiplication rule (4.6) together with (4.7), (4.10), (4.13), (4.14)
and the equality

τ−1(uj, ai) = τ(S(uj), ai) = −τ(y−1
j , gi)τ(uj, ai)

shows that for all 1 ≤ i, j ≤ t,

(4.17) aiuj − ηj(yi)ujai = τ(uj, ai)(1− yjgi).

By another abuse of language we use the same symbols ui, yi, aj, gj for
the images of these elements in the quotient Hopf algebra H/(k[G])+H.
Then yj = gj for all j in H/(k[G])+H, and by multiplying with g−1

j we
obtain from (4.17)

(4.18) aiu
′
j − u′jai = τ(uj, ai)(g

−1
j − gi),

with u′j = ujg
−1
j .
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Let us now look at the concrete example of the Drinfeld-Jimbo alge-
bras Uq(g) (see [J, Chapter 4]). Let k be a field of characteristic 6= 2, 3.
Let (aij)1≤i,j≤t be a Cartan matrix of finite type of a semisimple com-
plex Lie algebra g, and for all 1 ≤ i ≤ t let di ∈ {1, 2, 3} with
diaij = djaji for all i, j. Let 0 6= q ∈ k and qi = qdi for all i. As-
sume that q2di 6= 1 for all i.

Let A = U≥0
q (g) be the algebra with generators Ei, Ki, K

−1
i , 1 ≤

i ≤ t and relations

(4.19) KiKj = KjKi, KiK
−1
i = 1 = K−1

i Ki for all i, j,

KiEjK
−1
i = qdiaijEj for all i, j,(4.20)

1−aij∑
r=0

(−1)r
[
1− aij
r

]
qi

E
1−aij−r
i EjE

r
i = 0 for all i 6= j.(4.21)

The algebra A is a Hopf algebra with comultiplication

(4.22) ∆(Ki) = Ki ⊗Ki, ∆(Ei) = Ki ⊗ Ei + Ei ⊗ 1 for all i.

Let U = U≤0
q (g) be the algebra with generators Fi, Ki, K

−1
i , 1 ≤ i ≤

t and relations (4.19) and

KiFjK
−1
i = q−diaijFj for all i, j,(4.23)

1−aij∑
r=0

(−1)r
[
1− aij
r

]
qi

F
1−aij−r
i FjF

r
i = 0 for all i 6= j.(4.24)

The algebra U is a Hopf algebra with comultiplication

(4.25) ∆(Ki) = Ki ⊗Ki, ∆(Fi) = 1⊗ Fi + Fi ⊗K−1
i for all i.

We define

ai = Ei, gi = Ki, and χi(Kj) = qdiaij for all i, j.

Similarly, let

ui = FiKi, yi = Ki, and ηi(Kj) = q−diaij for all i, j.

Then all the conditions (4.7), (4.8) and (4.9) for A and (4.10), (4.11)
and (4.12) for U are satisfied.

Let λ1, . . . , λt be arbitrary elements in k, and λ = (λ1, . . . , λt). For
all i, define an algebra map

γi : A→ k with γi(Ej) = 0 and γi(Kj) = ηi(Kj) for all j,

and an (ε, γi)-derivation

δλi : A→ k with δλi (Ej) = δijλi and δλi (Kj) = δλi (K−1
j ) = 0 for all j.
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Here, δij is the Kronecker δ. Finally we define a Hopf algebra homo-
morphism

ϕλ : U → (A0)cop by ϕλ(ui) = δλi and ϕλ(Ki) = γi for all i.

The arguments in the proof of [AS, Lemma 5.19] show the existence
of the algebra maps γi, the skew-derivations δλi and the Hopf algebra
map ϕλ.

Let τλ and σλ be the corresponding skew pairing and 2-cocycle, and
Hλ = (U ⊗A)σ

λ
. The subgroup G generated by all Ki⊗K−1

i is central
in Hλ by Lemma 4.3. The quotient Hopf algebra

Uλ
q (g) = Hλ/(k[G])+Hλ

is generated as an algebra by elements Ei, Fi, Ki, K
−1
i , 1 ≤ i ≤ t, with

relations (4.19), (4.20), (4.21), (4.23), (4.24), together with

(4.26) EiFj − FjEi = δijλi(K
−1
i −Ki) for all i, j.

This can be seen in the same way as in the end of the proof of [AS,
Theorem 5.17]. Note that the relations (4.26) are a special case of the
relations (4.18). The comultiplication is defined by (4.22), (4.25). The
group G(Uλ

q (g)) is the free abelian group with basis K1, . . . , Kt.

Since by definition, Uq(g) = Uλ
q (g), where λi = q−di − qdi for all i,

we obtain the following.

Theorem 4.5. Let G = G(Uq(g)). Then for any k-algebra B, the
inclusion ι : k[G]→ Uq(g) induces a bijective map

HB(Uq(g)) ∼= HB(k[G]).

Proof. If we take λi = 0 for all i, then Uλ
q (g) is a graded Hopf algebra.

For another choice of λ we get Uq(g). Hence by Proposition 4.4, Uq(g)
is a 2-cocycle twist of a graded Hopf algebra with the group algebra
k[G] as degree 0 part, and the claim follows from Corollary 2.11. �

Remark 4.6. Let q be a primitive N -th root of unity, and assume that
N is odd and not divisible by 3 if the Dynkin diagram of g contains a
component G2. The finite-dimensional Frobenius-Lusztig kernel uq(g)
is the quotient Hopf algebra of Uq(g) defined by adding the relations
saying that the N -th powers of the positive root vectors be 0 (see [CP,
p. 120], [AJS, p. 16]). By [AS, Lemma 5.24] the above Hopf algebra
homomorphism ϕλ also exists for uq(g). This implies that uq(g) is a
2-cocycle twist of a graded Hopf algebra. Hence we have a bijection

HB(uq(g))→ HB(k[G]),

where G = G(uq(g)) ∼= (CN)t.
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There are numerous other Hopf algebras that are 2-cocycle twists
of graded Hopf algebras (see [Ma2], and [Di] for all the Hopf algebras
introduced in [AS]). We do not know any example of pointed Hopf
algebras not of this type.
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