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Introduction

Let H be a Hopf algebra over a commutative base ring k, and A a right H-comodule
algebra with comodule structure δ : A → A ⊗ H, δ(a) =: a(0) ⊗ a(1). Denote by B :=
AcoH := {b ∈ A|δ(b) = b⊗ 1} the subalgebra of coinvariant elements. A is said to be an
H-Galois extension of B if the Galois map

β : A ⊗
B
A→ A⊗H,x⊗ y 7→ xy(0) ⊗ y(1),

is a bijection.
A faithfully flat (as B-module) H-Galois extension A is a noncommutative-geometric

version of a principal fiber bundle or torsor in the sense of [8]: If A and H are commuta-
tive, and represent respectively an affine scheme X and an affine group scheme G acting
on X, then B = AcoH represents the quotient Y of X under the action of G. Bijectivity
of the Galois map β means that

X ×G→ X ×Y X, (x, g) 7→ (xg, x),

is an isomorphism, which can be interpreted as the correct algebraic formulation of the
condition that the G-action of X should be free, and transitive on the fibers of the map
X → Y .

In many applications surjectivity of the Galois map β, which, in the commutative case,
means freeness of the action of G, is obvious, or at least easy to prove (it is sufficient to
find 1 ⊗ h in the image for each h in a generating set for the algebra H). It is usually
much harder to decide whether β is injective.

The present paper has two main topics: When does surjectivity of β already imply
bijectivity? What can we conclude about the module structure of A over B, or the
comodule structure of A, or general Hopf modules, over H? Both questions will be
studied for more general extensions.

The Kreimer-Takeuchi Theorem [16, Thm. 1.7] says that if β is onto and H is finite,
then β is bijective and A is a projective B-module. This generalizes a Theorem of
Grothendieck [8, III, §2, 6.1] on the actions of finite group schemes. Theorem 3.5 in
[32] implies that if β is surjective and A is a relative injective H-comodule, then β is
bijective and A is a faithfully flat B-module. This generalizes results of Oberst [26], and
Cline, Parshall, and Scott [6] for the case where H represents a closed subgroup of an
affine group scheme represented by A; in this situation the canonical map is trivially
surjective, while injectivity of the H-comodule A means that the induction functor from
the subgroup in question is exact.

A new proof for both of these results appeared in [31], where it is also shown that in the
situation of [32, Thm.I] the B-module A is projective as well. The unified proof and the
stronger conclusion are based on the observation that the Galois map β0 : A⊗A→ A⊗H
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(where the tensor product in the source is taken over k rather than the coinvariant
subalgebra B), which is surjective by assumption, can be shown to be split as an H-
comodule map in each case.

In the present paper we will show (with a further simplified proof) that having an H-
colinearly split surjective map β0 characterizes relative projective H-Galois extensions.
We will in fact show this for more general extensions, and we will discuss applications of
the generalized result, with appropriate additional hypotheses, to a variety of Galois-type
situations.

In Section 4 we give a new proof for the criteria [32, Thm.3.5, Thm.I] mentioned above.
In Section 3 we prove a strong generalization of the Kreimer-Takeuchi Theorem.

Among its corollaries are the original Kreimer-Takeuchi Theorem as well as a result of
Beattie, Dăscălescu, and Raianu [1] for the co-Frobenius case; we improve on the latter
by proving that the extension is projective rather than flat.

In Section 5 we will consider another condition on a Hopf Galois extension, which
we call equivariant projectivity. This is a stronger requirement than projectivity of A
over B; it was studied by D

‘
abrowski, Grosse, and Hajac [7], who showed that a Hopf

Galois extension is equivariantly projective if and only if it has a so-called strong con-
nection. This notion in turn was defined by Hajac [12] with motivations from differential
geometry; see also [13]. Most notably we will show in Theorem 5.6 that if H is a Hopf
algebra with bijective antipode over a field, then every faithfully flat H-Galois extension
is equivariantly projective. Thus, strong connections always exist in the situation for
which they were originally defined. Meanwhile, the notion of equivariant projectivity
and its geometric interpretations were discussed for more general Galois-type extensions
by Brzezinski and Hajac [3]. For a large class of these which is of particular interest for
quantum group theory, we also prove equivariant projectivity in Theorem 5.9.

The reason why we are interested in generalizations of Hopf Galois extensions lies in
the quotient theory of noncommutative Hopf algebras. The quotient Hopf algebras of a
commutative Hopf algebra H correspond naturally to the closed subgroups of the affine
group scheme represented by H. If H is noncommutative, however, it is not enough
to consider quotient Hopf algebras. Rather, one should also take into account quotient
coalgebras and right (or left) H-modules Q of H; quotient theory of Hopf algebras in
this sense was studied by Takeuchi [37] and Masuoka [24]. Thus it becomes natural to
consider Q-Galois extensions, that is, H-comodule algebras A for which the canonical
map A ⊗B A → A ⊗ Q is bijective, for B = AcoQ. Such extensions are already studied
in [32]. It is important for the theory that the notion of a Hopf module M ∈ MQ

A can be
defined for a right H-module coalgebra quotient Q of H in the same way as a Hopf module
in MH

A . Later Q-extensions were studied in successively more general frameworks. In
the most general version a Coalgebra Galois extension [4] is simply an algebra A which
is a C-comodule for a coalgebra C such that the canonical map β : A ⊗B A → A ⊗ C
is a bijection; here B = AcoC is defined, following Takeuchi, as the largest subalgebra
for which the comodule structure of A is left B-linear. The notion of a Hopf module,
which is a central tool for studying Hopf Galois extensions, also underwent a series of
generalizations: First, one can study an H-comodule algebra A as before, but replace Q
by an H-module coalgebra C; thus, one arrives at the self-dual notion of Doi-Koppinen
data (A,C,H) for which much of the theory of Hopf modules can be developed [10, 15].
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The Hopf algebra’s main role in this formalism is to induce a generalized switching map

C ⊗A 3 c⊗ a 7→ a(0) ⊗ c · a(1) ∈ A⊗ C

between the algebra and coalgebra in consideration. A further step abstracts this switch-
ing map from the auxiliary Hopf algebra H and defines an entwining [5] to be a map
ψ : C⊗A→ A⊗C subject to certain axioms that, again, are sufficient to define a notion
of Hopf module in MC

A, which is now called an entwined module. An entwining between
C and A naturally arises from every C-Galois extension A, in such a way that A itself
is an entwined module. We will develop many of our criteria for Galois-type extensions
for entwinings between a coalgebra C and an algebra A for which A itself is an entwined
module, in most cases with a comodule structure induced by a distinguished grouplike
in C. We are most interested in the special case where A is an H-comodule algebra,
C = Q is a quotient coalgebra and right module of H, the distinguished grouplike e is
the image of 1 ∈ H in Q, and the entwining is given by ψ(h⊗ a) = a(0) ⊗ ha(1). In fact,
no example of a C-Galois extension that would not have this form seems to be known
to date. Even though the theory of C-Galois extensions is potentially more general than
that of Q-Galois extensions, it is perhaps more important that the formalism of entwin-
ings is more elegant and transparent in some situations than the use of an auxiliary Hopf
algebra, and it may serve to make proofs more transparent and draw attention to those
instances where a Hopf algebra in the background is truly needed for more than formal
reasons.

We believe that the results of the present paper show that the following two conditions
on a Q-extension are of particular interest: Equivariant projectivity, and the property
that all Hopf modules are relative injective as comodules. The status of the former
has changed significantly by our results: At its conception, this strong, geometrically
motivated condition seemed to single out a particularly well-behaved class among Hopf
Galois extensions, and of course among the more general Q-Galois extensions. Now we
know that it is shared by all faithfully flat H-Galois extensions when H is a Hopf algebra
with bijective antipode over a field, that is, by all those Hopf Galois extensions that are
candidates for a quantum group analog of a classical principal fiber bundle. We also
prove in Theorem 5.9 that it is shared by all Q-Galois extensions with cosemisimple Q
over, say, the complex numbers.

On the other hand, we know very little about when this property is fulfilled in general.
The problem seems to be as hard for quotients of Hopf algebras (i.e. quantum analogs
of homogeneous spaces) as it is for general Q-Galois extensions (i.e. quantum analogs of
principal fiber bundles). We have pointed out the second interesting property, namely
that all Hopf modules are relative injective comodules, as a powerful technical tool in
criteria for Q-Galois situations. Again, we have collected results that show this property
to be fulfilled quite often, but we do not know in what generality it can be proved. And
once again, the case where the Q-extension in consideration comes from a quotient map
H → Q seems to be as hard as the general case.

If H is finite-dimensional over a field, then both of the conditions on a quotient coalge-
bra and right module Q mentioned above are equivalent to the (in general rather stronger)
condition that H be Q-cleft. This is not hard to see using the equivalent characteriza-
tions of the latter condition proved by Hoffmann, Koppinen, and Masuoka [22, 24]. Serge
Skryabin kindly gave us access to his recent preprint [34], where he proves that H is in
fact always Q-cleft in the finite-dimensional case.
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Preliminaries and notations

Throughout the paper k denotes a commutative base ring. All maps are at least k-
linear, unadorned tensor product is understood to be over k, algebras, coalgebras, and
Hopf algebras are over k. We use ∇ : A⊗A→ A, η : k → A to denote the multiplication
and unit map of an algebra A, and µ = µM : A ⊗ M → M to denote the structure
map of an A-module M . The category of left (resp. right) A-modules will be denoted
AM (reps. MA). We write ∆: C → C ⊗ C; c 7→ c(1) ⊗ c(2) and ε : C → k for the
comultiplication and counit of a coalgebra C. For a right C-comodule M ∈MC we write
δ = δM : M → M ⊗ C;m 7→ m(0) ⊗m(1) for its comodule structure. For left comodules
we use δ(m) = m(−1) ⊗m(0). For M ∈MC and a left comodule N ∈ CM we denote by
M 2C N the cotensor product. The antipode of a Hopf algebra H is denoted by S.

A left R-module M is called relative projective if it fulfills the following equivalent
conditions: Any surjective R-module map f : N → M which splits as a k-module map
also splits as an R-module map; The module structure map µ : R ⊗M → M splits as
an R-module map; HomR(M,f) is surjective if f : N → N ′ is a surjective R-module
map that is k-split. Note that direct summands and direct sums of relative projective
R-modules are relative projective. Also, if V is a k-module and M a relative projective
R-module, then M ⊗ V is relative projective.

Dually, a right C-comodule M is called relative injective if it fulfills the following
equivalent conditions: Any injective C-comodule map f : M → N which splits as a k-
module map also splits as a C-comodule map; The comodule structure map δ : M →
M ⊗ C splits as a C-comodule map; HomC(f,M) is surjective if f : N → N ′ is an
injective C-comodule map which is k-split. Note again that direct summands and finite
direct sums of relative injective C-comodules are relative injective, as is V ⊗M whenever
V is a k-module and M is a relative injective C-comodule.

The notion of relative projectivity (which one should call k-relative projectivity, but
no other versions will occur in this paper) is a special case of the terminology of relative
homological algebra as found in [20, Chap.IX]. The same is true for relative injectivity,
provided that C is k-flat, which ensures that the category MC is abelian to begin with.

1. Generalities on entwining structures

In this section we collect some general conventions and facts on entwinings and their
relation to coalgebra Galois extensions. Most of these can be found in [2]; we also refer
to the survey article [3].
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Definition 1.1. An entwining structure (A,C, ψ) consists of an algebra A, a coalgebra
C, and an entwining, that is, a map ψ : C ⊗A→ A⊗ C satisfying

ψ(C ⊗∇) = (∇⊗ C)(A⊗ ψ)(ψ ⊗A) : C ⊗A⊗A→ A⊗ C
ψ(c⊗ 1) = 1⊗ c ∀c ∈ C

(A⊗∆)ψ = (ψ ⊗ C)(C ⊗ ψ)(∆⊗A) : C ⊗A→ A⊗ C ⊗ C
(A⊗ ε)ψ = ε⊗A : C ⊗A→ A.

Definition 1.2. Let (A,C, ψ) be an entwining structure. An entwined module M ∈
MC

A is a right A-module and right C-comodule such that the diagram

M ⊗A
δ⊗A //

µ

��

M ⊗ C ⊗A
M⊗ψ // M ⊗A⊗ C

µ⊗C
��

M
δ // M ⊗ C

commutes.
Lemma 1.3. Let (A,C, ψ) be an entwining structure.

(1) For any M ∈ MA we have M ⊗ C ∈ MC
A with the obvious comodule structure

and the module structure

µM⊗C =
(
M ⊗ C ⊗A M⊗ψ−−−→M ⊗A⊗ C µM⊗C−−−−→M ⊗ C

)
.

This construction defines a right adjoint functor MA → MC
A to the underlying

functor.
If also M ∈ MC , then M is an entwined module if and only if the comodule

structure δ : M →M ⊗ C is an A-module map.
(2) For any M ∈MC we have M ⊗A ∈MC

A with the obvious module structure and
the comodule structure

δM⊗A =
(
M ⊗A δM⊗A−−−−→M ⊗ C ⊗A M⊗ψ−−−→M ⊗A⊗ C

)
.

This construction defines a left adjoint functor MC → MC
A to the underlying

functor.
If also M ∈ MA, then M is an entwined module if and only if the module

structure µ : M ⊗A→M is a C-comodule map.
Remark 1.4. In particular, an entwining structure (A,C, ψ) gives rise to entwined mod-
ule structures on C ⊗ A as well as A ⊗ C. With these structures, ψ is a morphism of
entwined modules.

Note that the right A-module structure of A⊗ C determines ψ uniquely through the
formula ψ(c ⊗ a) = (1 ⊗ c)a. Dually, ψ is determined by the C-comodule structure of
C ⊗A.
Definition 1.5. Let C be a coalgebra, and let A be an algebra and a C-comodule. Put
B := AcoC := {b ∈ A|∀a ∈ A : δ(ba) = ba(0)⊗ a(1)}. Define the canonical or Galois maps
β0 : A⊗A→ A⊗C and β : A ⊗B A→ A⊗C by β0(x⊗ y) = β(x⊗ y) = xy(0) ⊗ y(1). A
is called a C-Galois extension of B if β is a bijection.
Lemma 1.6. Let A be an algebra and a C-comodule. If there is an entwining ψ : C⊗A→
A ⊗ C for which A ∈ MC

A, then both Galois maps β0 and β are morphisms of entwined
modules.
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If A is a C-Galois extension, then there is a unique entwining ψ : C ⊗ A → A ⊗ C
satisfying this condition. It is called the canonical entwining associated to the C-Galois
extension A, and is given by ψ(c⊗ a) = β(β−1(1⊗ c)a).

Note that δ(b) = bδ(1) whenever b ∈ AcoC . If A is C-Galois, we now know that A⊗C
is a right A-module in such a way that δ : A → A ⊗ C is a right A-module map. Then
if δ(b) = bδ(1) for some b ∈ A, then δ(ba) = δ(b)a = bδ(1)a = bδ(a) for all a ∈ A, hence
b ∈ AcoC .

Lemma 1.7. Let (A,C, ψ) be an entwining structure and assume that A has a C-
comodule structure making it an entwined module A ∈ MC

A with the regular A-module
structure.

The induction functor
MB 3 N 7→ N ⊗

B
A ∈MC

A

is left adjoint to the functor of coinvariants

MC
A 3M 7→M coC := {m ∈M |δ(m) = mδ(1)} ∈ MB .

If C is k-flat, then the following are equivalent:

(1) The induction functor is an equivalence.
(2) A is C-Galois, and faithfully flat as a left B-module.

Lemma 1.8. Let (A,C, ψ) be an entwining structure and assume that A has a C-
comodule structure making it an entwined module A ∈ MC

A with the regular A-module
structure.

For M ∈ MA consider M ⊗ C ∈ MC
A as in Lemma 1.3. Then M ⊗ ε induces a

bijection (M ⊗ C)coC →M with inverse M → (M ⊗ C)coC ,m 7→ mδ(1).

Proof. This can be verified by direct computation, or by applying the adjunctions
in Lemma 1.3 and Lemma 1.7 to calculate, for B := AcoC and N ∈MB :

MB(N, (M ⊗ C)coC) ∼=MC
A(N ⊗

B
A,M ⊗ C)

∼=MA(N ⊗
B
A,M)

∼=MB(N,M)

and appealing to the Yoneda Lemma. Let us also note that the statement is almost
trivial if the comodule structure is of the form discussed in Corollary 1.10 below. tu

Lemma 1.9. Let A be a C-Galois extension of B = AcoC . Assume that there is a
grouplike element e ∈ C with δ(1) = 1⊗e. Then δ(a) = ψ(e⊗a) for all a ∈ A, where ψ is
the canonical entwining. Moreover, M coC = {m ∈M |δ(m) = m⊗ e} for all M ∈MC

A.

Corollary 1.10. Let (A,C, ψ) be an entwining structure, and e ∈ C a grouplike element.
Then A ∈ MC

A with the regular right A-module structure and the comodule structure
δ : A→ A⊗ C given by δ(a) = ψ(e⊗ a).

In fact view ke as a C-comodule, identify A = ke⊗A, and apply Lemma 1.3.

Lemma 1.11. Let (A,C, ψ) be an entwining structure and e ∈ C a grouplike element.
Endow A with the C-comodule structure as in Corollary 1.10. Then M coC = {m ∈
M |δ(m) = m⊗ e} for every M ∈MC

A. Assume that A is C-Galois. Then the entwining
associated to the C-Galois extension A of B as in Lemma 1.6 coincides with ψ.
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Proof. For any x, y ∈ A we have δ(xy) = ψ(e⊗ xy) = (∇⊗ C)(A⊗ ψ)(ψ ⊗ A)(e⊗
x⊗ y) = (∇⊗ C)(A⊗ ψ)(x(0) ⊗ x(1) ⊗ y) = x(0)ψ(x(1) ⊗ y).

If b ∈ AcoC , then δ(b) = δ(b · 1) = bδ(1) = b ⊗ e. If, on the other hand, δ(b) = b ⊗ e,
then δ(ba) = b(0)ψ(b(1) ⊗ y) = bψ(e⊗ y) = bδ(y).

That ψ coincides with the canonical entwining is a direct consequence of Lemma 1.6.
tu

Remark 1.12. The definition of an entwining has an obvious asymmetry (the coalgebra
starts out on the left and ends up on the right). We could call an entwining as defined
above a right entwining, and give an analogous definition of a left entwining; all the
results collected above will then have analogous left-right switched versions. We will use
these freely, writing ψ̃, β̃, β̃0, δ̃ for left entwinings, and the Galois maps and comodule
structures associated with them.

Assume now that (A,C, ψ) is a bijective entwining structure, by which we shall mean
that the map ψ is bijective. Then the inverse ψ−1 : A ⊗ C → C ⊗ A is a left entwining.
If e ∈ C is a grouplike element, we thus have both a right C-comodule structure δ and
a left C-comodule structure δL on A. It turns out that the left and right C-coinvariant
elements of A coincide: Writing e : k → A for the map that sends 1 ∈ k to e ∈ A, we see
that AcoC is the equalizer of A⊗ e, ψ(e⊗A) : A→ A⊗C, while coCA is the equalizer of
e⊗A = ψ−1ψ(e⊗A) and ψ−1(A⊗e). We also have left versions βL : A ⊗B A→ C⊗A and
βL0 : A⊗A→ C⊗A of the Galois maps, mapping x⊗y to x(−1)⊗x(0)y. Since ψβL0 = β0 and
ψβL = β by the calculation ψβL0 (x⊗y) = ψ(ψ−1(x⊗e)y) = ψ(C⊗∇)(ψ−1⊗A)(x⊗e⊗y) =
(∇⊗C)(A⊗ ψ)(x⊗ e⊗ y) = β0(x⊗ y), we see that A is left C-Galois if and only if it is
(right) C-Galois.

Similarly, given a bijective left entwining ψ̃, we get a right entwining ψ̃−1, and right
Galois maps β̃R, β̃R0 .

Remark 1.13. (1) A Doi-Koppinen datum is a triple (H,A,C) consisting of a bial-
gebra H, a right H-comodule algebra A, and a right H-module coalgebra C. For
every Doi-Koppinen datum, we have an entwining structure (A,C, ψ) defined by
ψ(c⊗ a) = a(0) ⊗ c · a(1). The entwining is bijective provided that H has a skew
antipode S− (for example, H is a Hopf algebra with bijective antipode). The
inverse of ψ is then given by ψ−1(a⊗ c) = c · S−(a(1))⊗ a(0).

(2) In particular, let H be a bialgebra, A a right H-comodule algebra, and Q a quo-
tient coalgebra and right H-module of H. Then we have an entwining (A,Q,ψ),
which is bijective if H has a skew antipode. Note that the Q-comodule structure
of A is the one given in Corollary 1.10 for the grouplike e = 1 ∈ Q. The Galois
maps β, β0 in this case are given by β(x⊗ y) = β0(x⊗ y) = xy(0) ⊗ y(1).

(3) Let A be a right H-comodule algebra, and C a left H-module coalgebra. Then we
can view Ccop as a right Hcop-module coalgebra, and A as a left Hcop-comodule
algebra, and hence we have a left entwining structure (Aop, C, ψ̃), with ψ̃(a⊗c) =
a(1) · c ⊗ a(0). Entwined modules in Ccop

A M are Hopf modules in AMC , that is,
left A-modules and right C-comodules M satisfying δ(am) = a(0)m(0)⊗a(1) ·m(1)

for all a ∈ A and m ∈ M . The left entwining in this situation is bijective if H
has an antipode; we have (ψ̃)−1(c⊗ a) = a(0) ⊗ S(a(1)) · c.

(4) A special case arises when C = Q′ is a quotient coalgebra and left H-module of
the bialgebra H, and A is an H-comodule algebra. Note that in this case the
left Galois maps β̃0 : A ⊗ A → Ccop ⊗ A and β̃ : A ⊗B A → Ccop ⊗ A identify,
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respectively, with β′0 : A ⊗ A → A ⊗ Q′, and β′ : A ⊗B A → A ⊗ Q′ given by
β′0(x⊗ y) = β′(x⊗ y) = x(0)y⊗x(1). If H is a Hopf algebra, so the left entwining
is bijective, we can also consider the right Galois map β̃R0 : A⊗A→ A⊗Q′, given
by β̃R0 = ψ̃−1β̃0, or β̃R0 (x⊗ y) = ψ̃−1(x(1) ⊗ x(0)y) = x(0)y(0) ⊗ S(x(1)y(1))x(2) =
xy(0) ⊗ S(y(1)).

(5) Let H be a Hopf algebra with bijective antipode. Then quotient coalgebras and
right H-modules Q of H (i.e. coideal right ideals I ⊂ H) and quotient coalgebras
and left H-modules Q′ of H (i.e. coideal left ideals I ′ of H) are in bijection via
I ′ = S(I). If Q′ corresponds to Q, then the antipode of H induces a coalgebra
anti-isomorphism S : Q → Q′. For a right H-comodule algebra A, the Galois
maps β0 : A ⊗ A → A ⊗Q as in (2) and β̃R0 : A ⊗ A → A ⊗Q′ as in (4) identify
along A⊗ S.

Remark 1.14. Let (A,C, ψ) be an entwining structure, where A is a finite-dimensional
algebra (and k is a field).

By [30] there exists a Doi-Koppinen data, that is, a bialgebra H, a right H-module
coalgebra structure on C, and a right H-comodule algebra structure on A, such that the
entwining ψ has the form given above, i.e. ψ(c ⊗ a) = a(0) ⊗ c · a(1), where A 3 a 7→
a(0) ⊗ a(1) ∈ A⊗H denotes the H-comodule structure of A. If we are given a grouplike
e ∈ C, then an H-module coalgebra map π : H → C is given by π(h) = e ·h. The relevant
Galois map for the induced right C-comodule structure on A is

A⊗A 3 x⊗ y 7→ xy(0) ⊗ π(y(1)) ∈ A⊗ C.

Thus, if A is C-Galois, then π has to be surjective, and we can consider C as a quotient
coalgebra and right H-module of H.

It is not known even in the situation where A is finite-dimensional whether H can be
chosen to be a Hopf algebra.

There are examples of entwining structures (A,C, ψ) with infinite-dimensional A that
do not come from Doi-Koppinen data [30]. It seems to be an open question, however,
whether there exist C-Galois extensions whose entwining cannot be induced by a Doi-
Koppinen data.

2. Projective Galois extensions

This section contains a key result of our paper, a characterization of (relative) pro-
jective Galois-type extensions as those for which a canonical map is a split surjective
comodule map. The result will be applied in many ways in the subsequent sections.

The following Lemma is a combination of the adjointness in Lemma 1.3 (2) with the
morphism ψ inMC

A, which is assumed to be an isomorphism. Its central use in the theory
of comodule algebras goes back to a paper of Doi [9].

Lemma 2.1. Let A be an algebra, C a coalgebra, and ψ : C ⊗ A → A ⊗ C a bijective
entwining. Then for each V ∈MC

A we have an isomorphism

Φ: MC(C, V )→MC
A(A⊗ C, V )

given by

Φ(γ) =
(
A⊗ C ψ−1

−−−→ C ⊗A γ⊗A−−−→ V ⊗A µV−−→ V

)
.
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Every surjective morphism V → A ⊗ C that splits as a C-comodule map also splits in
MC

A.
Proof. It is easy to check that Φ(γ) is a morphism of entwined modules. The inverse

of Φ is given by Φ−1(ϕ)(c) = ϕ(1⊗ c).
If f : V → A⊗C is a morphism inMC

A and g : A⊗C → V satisfies gf = idA⊗C , then
define g0 : C → V by g0(c) = g(1 ⊗ c), and put g̃ = Φ(g0). Then g̃ still splits f , since
fg0(c) = 1⊗ c, and hence

fg̃ψ(c⊗ a) = f(g0(c)a) = f(g0(c))a = (1⊗ c)a = ψ(c⊗ a)

for c ∈ C and a ∈ A. tu
Theorem 2.2. Let (A,C, ψ) be an entwining structure, and assume A has a C-comodule
structure making it an entwined module A ∈MC

A with the regular A-module structure.
Put B := AcoC .
Consider the following statements:
(1) β0 : A⊗A→ A⊗ C is surjective, and splits as a C-comodule map.
(2) (a) β : A ⊗B A→ A⊗ C is bijective.

(b) A is relative projective as right B-module.
Then (2) implies (1).
If ψ is bijective, and the obvious map A⊗B → (A⊗A)coC is a bijection, then (1) implies
(2).
Remark 2.3. The condition that the canonical map A ⊗ B → (A⊗A)coC is bijective
is fulfilled in each of the following cases:

(1) A is k-flat.
(2) The induction functor MB → MC

A is an equivalence, that is (see 1.7) A is a
faithfully flat C-Galois extension; indeed, the map in question is the adjunction
morphism for the B-module A⊗B.

(3) A is a relative injective C-comodule and ψ is bijective (see 4.1 below).
Proof. (2) =⇒ (1): If AB is relative projective, the multiplication map A⊗B → A

splits in MB . Apply the functor (–) ⊗B A : MB →MC
A to find that

β0 =
(
A⊗A ∼= A⊗B ⊗

B
A

µ⊗BA−−−−→ A ⊗
B
A

β−→ A⊗ C
)

splits in MC
A, and in particular as a comodule map.

Now we prove (1) =⇒ (2), assuming that ψ and the map A ⊗ B → (A⊗A)coC are
bijective.

By assumption, there is a C-colinear splitting of β0, and by Lemma 2.1 it follows that
there is a splitting inMC

A. Thus A⊗C is a direct summand of A⊗A inMC
A. Apply the

functor (–)coC to deduce that A is a direct summand of (A⊗A)coC = A ⊗ B in MB ,
hence relative projective. This proves (2)(b).

To prove that β is bijective, consider more generally the adjunction map µV : V coC ⊗B
A→ V for V ∈ MC

A. Since (A⊗ C)coC ∼= A by Lemma 1.8, we can identify µA⊗C with
β, and will verify that µA⊗C is a bijection by using functoriality of µ. Since A ⊗ C is
a direct summand of A ⊗ A, we only need to check that µA⊗A is a bijection. But this
follows from the assumptions since

µA⊗A : (A⊗A)coC ⊗
B
A ∼= (A⊗B) ⊗

B
A→ A⊗A
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is the canonical isomorphism. tu

Remark 2.4. There is a left version of Theorem 2.2 for a bijective left entwining ψ̃,
concerned with the condition that the left Galois map β̃0 : A ⊗ A → C ⊗ A splits as
a left C-comodule map. This is equivalent to the condition that the right Galois map
β̃R0 : A⊗A→ A⊗C splits as a left C-comodule map, where the left C-comodule structure
on the source is that of the left tensor factor, and the one on the right is given by
δ̃(a⊗ c) = ψ̃(a⊗ c(1))⊗ c(2).

It is clear how to specialize Theorem 2.2 to the situation of an H-comodule algebra
A and a quotient coalgebra and right H-module Q of a Hopf algebra H with bijective
antipode. By switching sides, we also get a version for quotient coalgebras and left
modules of H, which we will write down explicitly to clarify the somewhat complicated
identifications.
Corollary 2.5. Let H be a Hopf algebra, and A a right H-comodule algebra. Let Q′ be
a quotient coalgebra and left H-module of H. Put B := AcoQ′ . Consider the following
statements:

(1) β′0 : A ⊗ A → A ⊗ Q′, x ⊗ y 7→ x(0)y ⊗ x(1) is surjective, and splits as a right
Q′-comodule map.

(2) (a) β′ : A ⊗B A→ A⊗Q′ is bijective.
(b) A is relative projective as left B-module.

Then (2) implies (1), and if the obvious map A⊗B → (A⊗A)coQ′ is bijective, then (1)
implies (2).

If the antipode of H is bijective, and Q is the quotient coalgebra and right module of
H corresponding to Q′, then (1) is equivalent to

(3) β0 : A ⊗ A → A ⊗ Q, x ⊗ y 7→ xy(0) ⊗ y(1) is surjective, and splits as a left
Q-comodule map; here, the left Q-comodule structures are given by

A⊗A 3 x⊗ y 7→ S−1(x(1))⊗ x(0) ⊗ y ∈ Q⊗A⊗A
A⊗Q 3 x⊗ q 7→ q(1)S

−1(x(1))⊗ x(0) ⊗ q(2) ∈ Q⊗A⊗Q.

Proof. As discussed in Remark 1.13 (4), we have a bijective left entwining ψ̃ involving
C = (Q′)cop. Applying the left version of Theorem 2.2 yields the stated relations between
(1) and (2).

As in Remark 2.4, (1) is equivalent to the condition that β̃R0 : A⊗A→ A⊗Q′, given
by β̃R0 (x⊗y) = xy(0)⊗S(y(1)), is surjective and splits as a right Q′-comodule map, where
the comodule structure on the source is that of the left tensor factor, and that on the
target is given by

δA⊗Q′ : A⊗Q′ 3 x⊗ q 7→ x(0) ⊗ q(2) ⊗ x(1)q(1) ∈ A⊗Q′ ⊗Q′.

If H has bijective antipode, and Q corresponds to Q′ as in Remark 1.13 (5), then β̃R0
identifies with β0 as in (3), and the right Q′-comodule structures can be identified with
the left Q-comodule structures given in (3), since (A ⊗ S−1)δA⊗Q′(x ⊗ S(q)) = x(0) ⊗
q(2) ⊗ S−1(x(1)S(q(1))) = x(0) ⊗ q(2) ⊗ q(1)S

−1(x(1)). tu
Most of our applications of Theorem 2.2 will rely on additional hypotheses on C or the

comodule structure. However, we can draw one very general conclusion on the behavior
of the Galois condition when we pass to quotients:
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Corollary 2.6. Let (A,C, ψ) be an entwining structure and e ∈ C grouplike such that A
is a C-Galois extension of B := AcoC , and a relative projective right B-module.

Let (R,D, θ) be a bijective entwining, π : C → D a surjective coalgebra map, and
f : A→ R a k-split surjective algebra and D-comodule map such that θ(π⊗f) = (f⊗π)ψ.

Assume that π splits as a right D-comodule map.
Then R is a D-Galois extension of S := RcoD, and if the obvious map R ⊗ S →

(R⊗R)coD is bijective, then R is a relative projective right S-module.

Proof. The commutative diagram

A⊗A

f⊗f
��

β
(A)
0 // A⊗ C

f⊗π
��

R⊗R
β

(R)
0 // R⊗D

shows that the canonical map β
(R)
0 for the D-extension R is surjective. By assumption

and Theorem 2.2 the C-comodule map β(A)
0 splits. Since f splits as a k-module map, we

see that β(R)
0 splits as a D-comodule map, and the claim follows from Theorem 2.2. tu

Corollary 2.7. Let H be a k-flat Hopf algebra with bijective antipode, and Q a quotient
coalgebra and right module of H. Put K := HcoQ. The following are equivalent:

(1) The surjection H → Q splits as a right Q-comodule map.
(2) H is a Q-Galois extension of K and a relative projective right K-module.

Proof. (1) =⇒ (2): We apply Corollary 2.6 with A = R = C = H and D = Q.
(2) =⇒ (1): By Theorem 2.2 the Galois map β0 : H ⊗ H → H ⊗ Q splits as a Q-

comodule map. Looking at the diagram in the proof of Corollary 2.6, we see that H ⊗
π : H⊗H → H⊗Q splits as a Q-comodule map by, say, t : H⊗Q→ H⊗H. If we define
f : Q→ H by f(q) = (ε⊗H)f(1⊗ q), then f splits π. tu

To close the section, we give an equivalent characterization of projective (rather than
relative projective) C-Galois extensions. The proof is very similar to that of 2.2.

Theorem 2.8. Let (A,C, ψ) be an entwining structure, and assume A has a C-comodule
structure making it an entwined module A ∈MC

A with the regular A-module structure.
Put B := AcoC .
The following are equivalent:

(1) There is an index set I and a surjection A(I) → A ⊗ C in MC
A that splits as a

C-comodule map.
(2) A⊗C is a direct summand of a direct sum of copies of A as an entwined module

in MC
A.

(3) (a) β : A ⊗B A→ A⊗ C is bijective.
(b) A is projective as right B-module.

Proof. (1)⇔(2) by 2.1.
(2) =⇒ (3): Applying the functor (–)coC we find that A = (A⊗ C)coC is a direct

summand of a direct sum of copies of AcoC = B, hence projective. As in the proof of
2.2, we consider β = µA⊗C as a special case of the adjunction morphism µM : M coC ⊗B
A→ M for M ∈ MC

A. Since A⊗ C is a direct summand of a direct sum of copies of A,
and µA is bijective, so is β.
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(3) =⇒ (2): A is a right B-module direct summand of B(I) for some index set I, so
A ⊗B A is a direct summand of A(I) in MC

A. But A ⊗B A ∼= A⊗ C by assumption. tu

3. Kreimer-Takeuchi type theorems

In this section we will discuss a generalization of the Kreimer-Takeuchi Theorem [16,
Thm. 1.7], which, in turn, is a Hopf algebraic version of a result of Grothendieck on
actions of finite group schemes [8, III, §2, 6.1]. Let H be a Hopf algebra, and A an
H-comodule algebra such that the Galois map β : A⊗A→ A⊗H is surjective.

The Kreimer-Takeuchi theorem says that if H is finitely generated projective, then A
is an H-Galois extension of B := AcoH , and projective as left as well as right B-module.
A partial generalization was proved by Beattie, Dăscălescu, and Raianu: If k is a field,
and H is co-Frobenius, it follows again that A is an H-Galois extension of B [1, Thm. 3.2,
(ii)⇒(i)], and at least a flat B-module.

In case that k is a field, we will see that both results (and the fact that A is projective
over B also in the case studied in [1]) follow directly from Theorem 2.2; if k is not a
field, projectivity of A as a B-module requires a little extra work. We will prove a more
general result for entwining structures, and discuss conditions under which it applies to
Q-Galois extensions, with Q a quotient of a Hopf algebra H.
Theorem 3.1. Let (A,C, ψ) be a bijective entwining and assume A has a C-comodule
structure making it an entwined module A ∈MC

A with the regular A-module structure.
Assume that the Galois map β0 : A⊗A→ A⊗ C is surjective.
If C is k-flat, and projective as right (left) C-comodule, then A is a C-Galois extension

of B := AcoC and projective as right (left) B-module.
Proof. We only treat the version without parentheses, which implies the one in

parentheses when applied to the inverse of the entwining ψ.
Note that if A is a projective k-module, then A⊗ C is a projective C-comodule, and

hence the surjection β0 splits as a comodule map. The claims then follow from Theorem
2.2.

For the general case, let M ∈MC
A. We have isomorphisms

MC
A(A⊗ C,M) ∼=MC

A(C ⊗A,M) ∼=MC(C,M)

induced, respectively, by ψ and the adjunction in Lemma 1.3 (2). Since C is a projective
comodule by assumption, it follows that A⊗C is a projective object inMC

A. Now writing
A as the quotient of a free k-module k(I) for some index set I, we get a surjection

A(I) ∼= k(I) ⊗A→ A⊗A β0−→ A⊗ C
inMC

A. By projectivity of A⊗C, this surjection splits inMC
A. Thus Theorem 2.8 yields

the result. tu
Remark 3.2. (1) Assume that C is a projective k-module. If C is projective as

left C∗-module, then it is projective as right C-comodule. Now assume that
C is finitely generated projective. Then the converse holds, and moreover C is
projective as a left C∗-module if and only if C∗ is injective as a right C∗-module,
that is, C∗ is a right self-injective ring. It is worth noting that if k is a field, then
C∗ is right self-injective if and only if it is left self-injective [17, Thm. 15.1]; in
particular the hypotheses of the Theorem are the same for its left-right switched
version if C is finite-dimensional over a field.
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(2) Assume that k is a field. The coalgebra C is called left co-Frobenius if there
is an injective left C∗-module map from C to C∗. If C is left co-Frobenius,
then C is projective as left C∗-module [19, Prop. 5], hence projective as a right
C-comodule.

(3) A Hopf algebra H over a field k is left co-Frobenius as a coalgebra if and only if
it admits a non-zero left integral λ : H → k, if and only if H is right co-Frobenius
[19, Thm. 3]. In this case the antipode of H is bijective. [27, Prop. 2].

(4) Let us say that a Hopf algebra H which is a projective k-module has enough
right integrals if the evaluation map H∗ ⊗ H → k induces a surjection H ⊗
Ir(H) → k, where Ir(H) denotes the space of left integrals on H. Thus, H has
enough right integrals if and only if there are right integrals λ1, . . . , λk ∈ H∗ and
elements t1, . . . , tk ∈ H with

∑
λi(ti) = 1. For example, H has enough right

integrals if there is a surjective right integral λ : H → k.
Now H is projective as a right H∗-module if and only if H has enough right

integrals: One checks that if λi, ti are as above, then

ϕ : H 3 h 7→
∑

hti(2) ⊗ λi ↼ S(h(1)) ∈ H ⊗H∗

is an H∗-linear splitting of the H∗-module structure of H, and conversely, if
ϕ : H → H ⊗H∗ splits the module structure, then ϕ(1) ∈ H ⊗ Ir(H) is mapped
to 1 ∈ k under evaluation.

Given the well-known properties of finite Hopf algebras, and the properties of co-
Frobenius Hopf algebras discussed above, Theorem 3.1 contains both the Kreimer-Takeuchi
theorem and its generalization in [1] as special cases, when we apply it to the entwining
coming from an H-comodule algebra A. We will be interested in the more general sit-
uation where A is an H-comodule algebra that we view as a Q-extension for a quotient
coalgebra and right H-module Q of H:
Corollary 3.3. Let H be a Hopf algebra with bijective antipode, A an H-comodule alge-
bra, and Q a quotient coalgebra and right H-module of H.

Assume that the Galois map β0 : A ⊗ A → A ⊗ Q is surjective. Then it follows that
A is a Q-Galois extension of B := AcoQ and a projective left B-module in each of the
following cases:

(1) k is a field, and H is finite-dimensional.
(2) H is finitely generated projective over k, coflat as a right Q-comodule, and the

surjection H → Q splits as a left Q-comodule map.
(3) H has enough right integrals, is coflat as a right Q-comodule, and the surjection

H → Q splits as a left Q-comodule map.
(4) k is a field, H is co-Frobenius, and faithfully coflat both as a left and a right

Q-comodule.
(5) H is Q-cleft and Q is finitely generated projective.
(6) k is a field, H has cocommutative coradical, and Q is finite dimensional and of

the form Q = H/K+H for a Hopf subalgebra K ⊂ H.
Proof. We will verify in each case that Q is a projective left Q-comodule (or a

projective right Q∗-module, which is equivalent if Q is finitely generated projective).
Then the parenthesized version of Theorem 3.1 can be applied to the entwining of A and
Q to prove the claim.

As for (1), Skryabin [34] has proved that Q∗ is Frobenius.
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Any of (2), (3), and (4) imply that H is projective as left H-comodule: In the case
that H is finitely generated projective, this follows from the structure theorem for Hopf
modules over a Hopf algebra, since H can be considered as a Hopf module in MH∗

H∗ as
in [18]. If H has enough right integrals, then H is projective as right H∗-module as we
discussed above. (4) is a special case of (3): If k is a field, and H is left faithfully coflat
over Q, then the surjection H → Q splits as a left Q-comodule map by [32, 1.1,1.3].

Now to prove the desired results on Q under hypotheses (2), (3), or (4), we may assume
more generally that H is a coalgebra that is projective as a left H-comodule, and Q is
a quotient coalgebra of H so that H is a coflat right Q-comodule, and the surjection
H → Q splits as a left Q-comodule map. We have an isomorphism

QM(H,V ) ∼= HM(H,H 2
Q
V )

for any left Q-comodule V . Thus H projective in HM and H coflat as right Q-comodule
implies that the functor QM(H, –) is exact, thus H is projective as left Q-comodule.
Since Q is a direct summand, it also is projective as left Q-comodule.

We note that under hypothesis (2), with k a field, Q∗ was proved to be self-injective
by Hoffmann, Koppinen and Masuoka [24, Thm.4.2].

Under the hypotheses in (5) Fischman, Montgomery, and Schneider [11, Thm.4.8].
show that Q∗ is Frobenius if k is a field. Part of their technique still applies in the
general case: We can consider Q∗ as a Hopf module in MQ

H with the right Q-comodule
structure dual to the regular left comodule structure of Q, and the right H-module
structure defined by (θh)(q) = θ(qS(h)) for θ ∈ Q∗, h ∈ H, and q ∈ Q. Then Q∗ ∈ MQ

H

by the calculation

(θ(0)h(1))(q)θ(1)h(2) = θ(0)(qS(h(1)))θ(1)h(2) = q(1)S(h(2))θ(q(2)S(h(1)))h(3)

= q(1)θ(q(2)S(h)) = q(1)(θh)(q(2)) = (θh)(0)(q)(θh)(1)

By the results in [25] that we will review in Lemma 5.2 it follows that Q∗ is injective as
right Q-comodule, and hence Q is projective as right Q∗-module.

Under the hypotheses in (6) the algebra Q∗ is again Frobenius, by results of Fischman,
Montgomery, and Schneider [11, Cor.4.9]. tu

4. Injectivity conditions

From now on many of our results on general entwinings (A,C, ψ) will depend on having
a distinguished grouplike e ∈ C and considering A ∈ MC

A as in Corollary 1.10. We will
always assume this structure is taken, and allude to the situation by simply saying that
there is a grouplike e ∈ C.

The following result and the remark following it characterize, in particular, those
C-Galois extensions, with distinguished grouplike e ∈ C, that are relative injective co-
modules. For Doi-Koppinen data the results are due to Doi [10, Prop.3.2, Prop.3.3],
generalizing his result [9, 1.6] for comodule algebras. The proofs for general entwinings
are not essentially more difficult.
Lemma 4.1. Let (A,C, ψ) be a bijective entwining structure, and e ∈ C grouplike. The
following are equivalent:

(1) A is a relative injective C-comodule.
(2) There is a C-colinear map γ : C → A with γ(e) = 1.
(3) There is a map ϕ : A⊗ C → A in MC

A with ϕδA = idA.
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If these conditions are satisfied, then B := AcoC is a direct summand of A as a right
B-module, the unit N → (N ⊗B A)coC of the adjunction in Lemma 1.7 is a bijection for
every right B-module N , and in particular (V ⊗A)coC ∼= V ⊗B for every k-module V .

Proof. Clearly (3) implies (1). Assuming (1), there is at least a C-colinear map
ϕ : A ⊗ C → A with ϕδ = idA. Put γ(c) = ϕ(1 ⊗ c) to prove (2). Assuming (2), put
ϕ := Φ(γ) as in Lemma 2.1. We have ϕδ(a) = ϕψ(e⊗ a) = ∇(γ⊗A)(e⊗ a) = a, proving
(3).

For a map ϕ as in (3), we have in particular ϕ(b⊗ e) = ϕδ(b) = b for b ∈ B, hence the
coinvariant part ϕcoC : A→ B splits the inclusion B → A.

Also, if ϕ : A ⊗ C → A is a colinear map that splits the comodule structure of A,
then the pair of homomorphisms δ,A ⊗ e : A → A ⊗ C is contractible in the sense dual
to [21, VI.6], since ϕδ = idA and δϕ(A ⊗ e) = (A ⊗ e)ϕ(A ⊗ e) by the calculation
δϕ(a ⊗ e) = ϕ(a ⊗ e(1)) ⊗ e(2) = ϕ(a ⊗ e) ⊗ e = (A ⊗ e)ϕ(A ⊗ e)(a). But the equalizer
of a contractible pair is preserved under any functor, in particular under tensor product
with a right B-module N . tu

Remark 4.2. If A is a C-Galois extension of B := AcoC , and B is a direct summand of
A as right B-module, then A is relative injective as a C-comodule.

Proof. If B is a direct summand of A as right B-module, then A ∼= B ⊗B A is a
direct summand of A ⊗B A as a C-comodule. Since A ⊗B A ∼= A⊗C is relative injective,
so is A. tu

Remark 4.3. It is clear how to specialize the results to the important case where A is an
H-comodule algebra, and C = Q is a quotient coalgebra and right H-module (here, the
antipode of H should be bijective to have a bijective entwining). We can also consider a
quotient coalgebra and left module of H as in Corollary 2.5. Here, the relevant entwining
of C = (Q′)cop and A is bijective if H is a Hopf algebra. As a result, if A is injective
as Q′-comodule, then there is a map ϕ : A ⊗ Q′ → A in AMQ′ splitting the comodule
structure, and in particular the left submodule B ⊂ A is a direct summand. Conversely,
if A is Q′-Galois and the left submodule B ⊂ A is a direct summand, then A is injective
as Q′-comodule.

Remark 4.4. Consider a projective right B-module A. If A contains B as a direct
summand, then in particular A is a generator. If A is a generator in MB , then AB
is faithfully flat. Now if B ⊂ A is a ring extension, then conversely, AB projective
and faithfully flat implies that the right B-submodule B ⊂ A is a direct summand [28,
2.11.29]. The results above and in Section 2 characterize C-Galois extensions B ⊂ A
such that AB is a projective generator (or has the equivalent properties we have just
discussed): Let (A,C, ψ) be a bijective entwining structure, and e ∈ C grouplike. Put
B = AcoC . Assume that A is projective as k-module. Then A is C-Galois and a right
projective generator over B if and only if the canonical map β0 : A ⊗ A → A ⊗ C is
surjective and splits as a C-comodule map, and A is an injective C-comodule. On the
other hand, such extensions can also be characterized as those C-Galois extensions that
are projective and faithfully flat as right B-modules. Faithfully flat C-Galois extensions
in turn can be characterized by the structure theorem for Hopf modules Lemma 1.7.
Thus A is a C-Galois extension and a projective generator as right B-module if and only
if the induction functor BM→ C

AM is an equivalence, and in addition A is a projective
right B-module.
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If k is a field, more can be said without assuming that AB is projective:
Proposition 4.5. Let (A,C, ψ) be a bijective entwining structure over a field k, and
e ∈ C grouplike such that A is a C-Galois extension of B := AcoC and a flat right
B-module. The following are equivalent:

(1) A is a faithfully flat right B-module.
(2) The right B-submodule B ⊂ A is a direct summand.
(3) A is injective as C-comodule.
(4) A is coflat as C-comodule.
(5) A is faithfully coflat as C-comodule.

Proof. Clearly (1) follows from (2).
(1) =⇒ (5): Consider a left C-comodule V . We have a chain of isomorphisms

A ⊗
B

(A 2
C
V ) ∼= (A ⊗

B
A) 2

C
V

β2V∼= (A⊗ C) 2
C
V ∼= A⊗ V,

the first one using that A is B-flat. By faithful flatness of AB it follows that A is faithfully
coflat, since A is faithfully flat over k.

(5) =⇒ (4) trivially, and (4) =⇒ (3) by a result of Takeuchi [36, A.2.1].
Finally (3) =⇒ (2) by Lemma 4.1. tu

Corollary 4.6. Let (A,C, ψ) be an entwining structure, and e ∈ C grouplike such that
A is a C-Galois extension of B := AcoC . Assume that A is a relative projective right
B-module, and the right B-submodule B ⊂ A is a direct summand.

Let π : C → D be a surjective coalgebra map with ψ(Kerπ ⊗ A) ⊂ Im(A ⊗ Kerπ).
Assume that the induced map θ : D ⊗A→ A⊗D is bijective.

If π splits as a right D-comodule map, and C is relative injective as right D-comodule,
then
A is a D-Galois extension of S := AcoD, a relative projective right S-module, and the

right S-submodule S ⊂ A is a direct summand.
Proof. We already know from Corollary 2.6 that A is a D-Galois extension of S

and a relative projective right S-module. In addition, since B ⊂ A is a right module
direct summand, we know from Remark 4.2 that A is a relative injective C-comodule,
hence a direct summand of the C-comodule A⊗ C. Since C is relative injective as right
D-comodule, A ⊗ C and hence A is a relative injective D-comodule. From Lemma 4.1
we see that S ⊂ A is a direct summand as right S-module. tu
Remark 4.7. (1) Assume that k is a field, and π : C → D is a coalgebra surjection

such that C is faithfully coflat as a right D-comodule. Then by [36, A.2.1] C is
injective as right D-comodule, and by [32, 1.1,1.3] the right D-comodule map π
splits.

(2) The most important application of the preceding Theorem occurs when A is an
H-Galois extension for a Hopf algebra C = H with bijective antipode, and D = Q
is a right H-module coalgebra quotient of H.

Next, we will specialize our results to the case of H-comodule algebras over a k-
projective Hopf algebra H with bijective antipode. Here, the condition that the Galois
map β0 is split already follows from the condition that A is a relative injective comodule.
The reason is that in this case all Hopf modules are relative injective comodules. This
result is due to Doi [9]. We formulate the next corollary for general C-extensions with the
property that all Hopf modules are injective comodules. It shows that this is a powerful
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condition. On the other hand, it is quite unclear when it is fulfilled, although we will
encounter such situations in later sections.

Corollary 4.8. Let (A,C, ψ) be a bijective entwining, and e ∈ C grouplike. Assume that
every entwined module inMC

A is relative injective as a C-comodule, and C is a projective
k-module.

If β0 : A ⊗ A → A ⊗ C is surjective, then A is a C-Galois extension of B := AcoC

and a relative projective right B-module, and the right B-submodule B ⊂ A is a direct
summand.

Proof. The canonical map β0 is a morphism of entwined modules, and a left A-
module map. Since C is projective over k, the left A-module A⊗C is projective, and β0

splits as an A-module map. Since the kernel of β0 is an entwined module and a k-direct
summand, β0 splits as a C-comodule map by assumption. The assertions now follow
from Theorem 2.2 and Lemma 4.1. tu

Except for projectivity of A as a B-module, the following two results are in [32,
Thm.3.5,Thm.I], with a different proof.

Theorem 4.9. Let H be a Hopf algebra with bijective antipode, and A an H-comodule
algebra. Put B := AcoH . Assume that H is a projective k-module. The following are
equivalent:

(1) The canonical map β : A ⊗B A→ A⊗H is surjective, and A is a relative injective
H-comodule.

(2) A is an H-Galois extension of B, and the right B-submodule B ⊂ A is a direct
summand.

(3) A is an H-Galois extension of B, and the left B-submodule B ⊂ A is a direct
summand.

In this case A is relative projective as left and right B-module.

Proof. (1) implies (2) and projectivity of AB by Corollary 4.8, since by a result of
Doi [9, 1.6] every Hopf module is a relative injective comodule.

(2) =⇒ (1) by Remark 4.2.
The equivalence of (1) and (3) follows by applying the one of (1) and (2) to the Hop-

comodule algebra Aop. tu

Theorem 4.10. Let H be a Hopf algebra with bijective antipode over a field k. Let A be
an H-comodule algebra, and put B = AcoH . The following are equivalent:

(1) The canonical map β : A ⊗B A → A ⊗H is surjective, and A is injective as an
H-comodule.

(2) A is an H-Galois extension of B and a faithfully flat left B-module.
(3) A is an H-Galois extension of B and a faithfully flat right B-module.
(4) The induction functor MB →MH

A is an equivalence.

In this case A is projective as a left and right B-module, and B is a direct summand of
A as both left and right B-module.

Proof. This is a combination of the preceding Theorem with Proposition 4.5 and
Lemma 1.7. tu
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5. Equivariant projectivity and injectivity

Definition 5.1. Let R be an algebra, C a coalgebra, and V an (R,C)-bimodule, that
is, a left R-module and right C-comodule such that (rv)(0)⊗ (rv)(1) = rv(0)⊗ v(1) for all
r ∈ R and v ∈ V .

(1) V is called C-equivariantly R-projective (or just equivariantly projective
if no confusion is likely) if there is a C-colinear splitting of the module structure
map R⊗ V → V .

(2) V is called R-equivariantly C-injective (or just equivariantly injective) if
there is an R-linear splitting of the comodule structure map V → V ⊗ C.

As an immediate consequence of the definition, an equivariantly projective (R,C)-
bimodule is a relative projective R-module. In addition to the requirement that R⊗V →
V splits as an R-module map, the definition of an equivariantly projective bimodule
requires that such a splitting can be chosen to be equivariant with respect to the coaction
of C. Dually, an equivariantly injective bimodule is a relative injective C-comodule.

We will show that in many interesting cases a Q-Galois extension A of B is equivari-
antly projective (that is, Q-equivariantly R-projective).

The property was studied first for Hopf Galois extensions in [7], see also [13]. It
was shown there that equivariant projectivity of an H-Galois extension is equivalent to
the existence of a so-called strong connection. Connections and the strong connections
introduced in [12] are algebraic analogs of differential-geometric notions.

A very special class of extensions that have all the desirable properties we have dis-
cussed so far is the class of cleft extensions. The following Lemma collects properties
proved by Masuoka and Doi [25] for the case where C = Q is a quotient coalgebra and
right module of a bialgebra H, and A is an H-comodule algebra; we use techniques from
[29] in the proof. The generalization to entwinings instead of comodule algebras does not
present additional problems.
Lemma 5.2. Let (A,C, ψ) be an entwining structure, and e ∈ C a grouplike element;
put B = AcoC . Assume that A is C-cleft, that is, there is a C-colinear convolution
invertible map j : C → A, and C is a flat k-module.

Then A is C-Galois, equivariantly projective, and equivariantly injective. The induc-
tion functor MB → MC

A is an equivalence, and every entwined module is injective as
C-comodule.

Proof. We can assume j(e) = 1 without loss of generality; otherwise replace j with
̃ defined by ̃(c) = j−1(e)j(c).

Let M ∈ MC
A. Define π0 : M → M by π0(m) = m(0)j

−1(m(1)). We will first show
that π0(M) ⊂M coC . To verify

δM (π0(m(0)))⊗m(1) = π0(m(0))⊗ e⊗m(1)

for m ∈M (from which the assertion follows by applying ε to the last tensor factor), we
apply the bijective map

T : M ⊗ C ⊗ C 3 m⊗ c⊗ d 7→ (m⊗ c)j(d(1))⊗ j(d(2)) ∈M ⊗ C ⊗ C
to both sides:

T (δM (π0(m(0)))⊗m(1)) = δM (m(0)j
−1(m(1)))j(m(2))⊗m(3)

= δM (m(0)j
−1(m(1))j(m(2)))⊗m(3) = δM (m(0))⊗m(1)
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, and, using (m⊗ e)a = ma(0) ⊗ a(1) for m ∈M and a ∈ A,

T (π0(m(0))⊗ e⊗m(1)) = (π0(m(0))⊗ e)j(m(1))⊗m(2)

= π0(m(0))j(m(1))(0) ⊗ j(m(1))(1) ⊗m(2)

= π0(m(0))j(m(1))⊗m(2) ⊗m(3) = m(0) ⊗m(1) ⊗m(3)

Now we can define π : M → M coC by π(m) = π0(m) for all m ∈ M . It is straight-
forward to check that M coC ⊗ C 3 m ⊗ c 7→ mj(c) is C-colinear and bijective with
inverse m 7→ π0(m(0)) ⊗ m(1). In particular every entwined module in MC

A is a rel-
ative injective C-comodule. The Galois map β : A ⊗B A → A ⊗ C is bijective with
inverse β−1(a ⊗ c) = aj−1(c(1)) ⊗ j(c(2)). The B-linear and C-colinear map A 3 a 7→
π(a(0)) ⊗ j(a(1)) ∈ B ⊗ A splits the left B-module structure of A, and the B-linear and
C-colinear map A⊗ C 3 a⊗ c 7→ π(a)j(c) splits the C-comodule structure of A. tu

We note for later use that one property noted for cleft extensions in Lemma 5.2 holds
more generally for equivariantly injective extensions:

Remark 5.3. Let A be a C-Galois extension of B = AcoC . If A is equivariantly injective
and faithfully flat as a left B-module, then every entwined module in MC

A is a relative
injective C-comodule.

Proof. Let M ∈ MC
A. By assumption and Lemma 1.7 we have M ∼= M coC ⊗B A,

and if ϕ : A ⊗ C → A is a left B-linear and right C-colinear splitting of the comodule
structure of A, then M coC ⊗B ϕ splits the comodule structure of M coC ⊗B A. tu

We should stress that the condition that A be C-cleft is much more restrictive than
the equivariant injectivity and projectivity conditions. However, the Lemma will also
have applications to extensions A that are not cleft.

More precisely, let H be a Hopf algebra, and Q a quotient coalgebra and right module
of H. It will turn out to be useful for the study of a Q-extension (which need not
be cleft) to know that H is equivariantly Q-injective. If H is finite-dimensional over a
field, a recent important result of Skryabin [34] shows that H is even Q-cleft for any
quotient coalgebra and right module Q. This had long been an open question; many
equivalent characterizations of cleftness in this situation had been given by Masuoka [22]
and Masuoka and Doi [25], and the property had been proved in interesting special cases
by Masuoka [23].

The following general Lemma links equivariant injectivity and projectivity in a general
bimodule.

Lemma 5.4. Let R be an algebra, C a coalgebra, and V an (R,C)-bimodule.

(1) If V is a relative projective R-module and an R-equivariantly injective C-comodule,
then V is a C-equivariantly projective R-module.

(2) If V is a relative injective C-comodule and a C-equivariantly projective R-module,
then V is an R-equivariantly injective C-comodule.

Proof. We only show (1), the proof of (2) is dual. Since V is relative R-projective,
there is a left R-linear map s0 : V → R⊗V with µV s0 = idV . Define s as the composition

V
δV−−→ V ⊗ C s0⊗idC−−−−−→ R⊗ V ⊗ C idR⊗ϕ−−−−→ R⊗ V.
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Then s is left R-linear, and right C-colinear. Since ϕ is left R-linear, µV (idR ⊗ ϕ) =
ϕ(µV ⊗ idC). Hence

µV s = µV (idR ⊗ ϕ)(s0 ⊗ idC)δV = ϕ(µV ⊗ idC)(s⊗ idC)δV = ϕδV = idV .

tu
Remark 5.5. We will always apply Lemma 5.4 to the following situation: A is an algebra
and a C-comodule, and B ⊂ A is a subalgebra such that A is a (B,C)-bimodule (mostly
even a C-Galois extension of B); there is a grouplike e ∈ C with δ(1) = 1⊗ e. From the
proof of Lemma 5.4 we see that if A is equivariantly injective, and there is a B-linear
splitting s0 : A→ B ⊗A of the left B-module structure of A that satisfies s0(1) = 1⊗ 1,
then there is a (B,C)-bimodule splitting s : A→ B⊗A that satisfies s(1) = 1⊗ 1. If BA
is relative projective, and BB ⊂ BA is a direct summand, then s0 can in fact be chosen
in this way.

As a consequence of Lemma 5.4 and our previous results, equivariant projectivity
always holds for H-Galois extensions that are relative injective comodules, if H has
bijective antipode. If k is a field, this means in particular that a faithfully flat H-Galois
extensions for a Hopf algebra H with bijective antipode always admits a strong connection
in the sense of [7].
Theorem 5.6. Let H be a k-projective Hopf algebra, A a right H-comodule algebra and
B = AcoH . Assume that A is relative injective as a right H-comodule.

Then A is equivariantly injective. In particular, A is equivariantly projective if and
only if it is relative projective as a left B-module.

If B ⊂ A is an H-Galois extension and the antipode of H is bijective, then B ⊂ A is
equivariantly projective.

Proof. Applying Lemma 4.1 to the bijective entwining of Hop and Aop coming
from the Hop-comodule algebra Aop yields a right H-colinear and left B-linear map
ϕ : A⊗H → A, so that A is equivariantly injective. If BA is relative projective, then A
is equivariantly projective by Lemma 5.4 (1). If A is an H-Galois extension, and H has
bijective antipode, then A is relative projective as left B-module by Theorem 4.9. tu

For applications to quantum groups, the case of C-extensions where k is an alge-
braically closed field, and C is a cosemisimple coalgebra, is particularly important.
Remark 5.7. (1) A coalgebra C with comultiplication ∆ : C → C ⊗ C is called

coseparable if there is a left and right C-colinear map ϕ : C ⊗ C → C with
ϕ∆ = idC .

(2) We will call a coalgebra C right cosemisimple if it is k-flat, and fulfills the
following equivalent conditions:
(a) Every right C-comodule is relative injective.
(b) Every right C-comodule is relative projective.
(c) If M is a right C-comodule, and N ⊂ M a subcomodule that is a direct

summand as a k-module, then N is a direct summand as a C-comodule.
If k is a field, this coincides with the usual definition [35, Chap.XIV]; note that a
coalgebra over a field is right cosemisimple if and only if it is left cosemisimple. If
k is arbitrary and C is finitely generated projective, then C is right cosemisimple
if and only if C∗ is a left semisimple algebra over k in the sense of Hattori [14]

(3) A k-flat coseparable coalgebra is right and left cosemisimple; see 5.8.
(4) Let C be a coalgebra over a field k. Then the following are equivalent:



ON GENERALIZED HOPF GALOIS EXTENSIONS 21

(a) C is coseparable.
(b) C is cosemisimple, and for any simple (hence finite-dimensional) subcoalge-

bra D ⊂ C, the dual algebra D∗ is separable.
(5) Any cosemisimple coalgebra over an algebraically closed field is coseparable.

According to part (3) of the preceding remark, every comodule over a coseparable
coalgebra is relative injective. This is generalized and strengthened by the following
observation:
Proposition 5.8. Let C be a coseparable coalgebra. Then any (R,C)-bimodule is equiv-
ariantly injective.

In particular, any (R,C)-bimodule that is a relative projective R-module, is equivari-
antly projective.

Proof. Let ϕ : C ⊗ C → C be a left and right colinear map satisfying ϕ∆ = idC .
Then, for any C-comodule V ,

ϕV : V ⊗ C ∼= V2CC ⊗ C
idV ⊗ϕ−−−−→ V2CC ∼= V

is a C-colinear retraction of the comodule structure of V . If V is an (R,C)-bimodule,
then ϕV is an R-module map. tu
Theorem 5.9. Let (A,C, ψ) be a bijective entwining structure, with C projective as
k-module, and e ∈ C a grouplike element. Put B := AcoC .

Assume that the Galois map β : A ⊗B A→ A⊗ C is surjective.
If C is right cosemisimple, then A is a C-Galois extension of B, projective as right

B-module, and the right B-submodule B is a direct summand.
If C is coseparable (for example, k is an algebraically closed field and C is cosemisim-

ple), then A is also projective as left B-module, B is a direct summand as left B-module,
and A is equivariantly projective.

Proof. Since every right C-comodule is relative injective, Corollary 4.8 implies that
A is a C-Galois extension of B, and a projective right B-module; Lemma 4.1 implies that
B is a direct summand as right B-module.

If C is coseparable, then so is Ccop, and by left-right symmetry, A has the same
properties as a left B-module.

Also, it follows that A is equivariantly projective by Proposition 5.8. tu

6. Reduction to homogeneous spaces

Consider a Hopf algebra H, an H-comodule algebra A, and a quotient coalgebra
and right module Q of H. Put B = AcoQ and K = HcoQ. In this section we will
collect some results that allow us to draw conclusions on the structure of the Q-extension
B ⊂ A from assumptions on the structure of the Q-extension K ⊂ H. This shows that
among the Galois type extensions, which are quantum group analogs of principal fiber
bundles, the analogs of homogeneous spaces play a distinguished role. We have already
mentioned above the recent result of Skryabin proving that H is Q-cleft whenever H is
finite-dimensional over a field. In particular, the hypotheses on H as a Q-extension of
K in Theorem 6.1, Proposition 6.2, and Theorem 6.3 below are satisfied if H is finite-
dimensional, since these hypotheses are satisfied in the cleft case by Lemma 5.2.

First, we will study the question when A is equivariantly projective. So far, we have
settled this for H-Galois extensions, and for the case where Q is coseparable. If k is a
field, H has bijective antipode, A is H-Galois and an injective H-comodule, and H is left
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and right faithfully coflat over Q, we know from Corollary 4.6 and its left-right switched
version that A is left and right projective over the algebra B of Q-coinvariant elements
of A. But we do not know whether B ⊂ A is equivariantly projective. As a particular
case, the following result will show that B ⊂ A is equivariantly projective if we assume
that H is K-equivariantly Q-injective. At the same time we should stress that we do not
know when H has these properties.
Theorem 6.1. Let H be a Hopf algebra, Q a quotient coalgebra and right H-module of
H, and A an H-comodule algebra. Put K = HcoQ, and B := AcoQ.

Assume that the (K,Q)-bimodule H is equivariantly injective, and that A is relative
injective as an H-comodule.

Then the (B,Q)-bimodule A is equivariantly injective. (In particular, if A is a projec-
tive left B-module, then it is equivariantly projective.)

Proof. By Lemma 4.1 there is a left A-linear (in particular B-linear) and right H-
colinear map ϕA : A⊗H → A with ϕAδA = idA, where δA is the H-comodule structure of
A. Let ϕH : H ⊗Q→ H be a left K-linear and right Q-colinear map with ϕHδH = idH .
Now define

ϕ̃ :=
(
A⊗Q δA⊗Q−−−−→ A⊗H ⊗Q A⊗ϕH−−−−→ A⊗H ϕA−−→ A

)
.

Then ϕ̃ is Q-colinear. Since δA(B) ⊂ B ⊗K, ϕ̃ is also left B-linear. Finally ϕ̃δA = idA
for δA the Q-comodule structure of A, since ϕ(a(0)⊗a(1)) = ϕA(a(0)⊗ϕH(a(1)⊗a(2))) =
ϕA(a(0) ⊗ a(1)) = a for all a ∈ A. tu

Next, we will return to the criterion Corollary 4.8, which says that a surjective Galois
map splits, provided every Hopf module is a relative injective comodule. Again, we do
not know in general when this property holds, but we will see that assuming it for H
instead of A will help.
Proposition 6.2. Let H be a Hopf algebra, A a right H-comodule algebra that is a
relative injective H-comodule, and Q a quotient coalgebra and right H-module of H.

If every Hopf module inMQ
H is a relative injective Q-comodule, then every Hopf module

in MQ
A is a relative injective Q-comodule.

Proof. Let M ∈ MQ
A. The Q-colinear multiplication map µ : M ⊗ A → M splits

as a Q-comodule map by M 3 m 7→ m ⊗ 1 ∈ M ⊗ A. By assumption the comodule
structure δ : A → A ⊗H splits as an H-comodule map. Hence, the Q-comodule M is a
direct summand of M ⊗ A⊗H, and it is sufficient to check that the diagonal comodule
V ⊗ H is a relative injective Q-comodule for every Q-comodule V . But V ⊗ H ∈ MQ

H

with the H-module structure defined on the right tensor factor. tu
Note that by Remark 5.3, the property required of H in Proposition 6.2 holds in

particular if H is a faithfully flat Q-Galois extension and equivariantly projective. This
is true in particular (or directly by Lemma 5.2) if H is Q-cleft. In particular, the following
result gives strong conclusions on A (which need not be cleft) if H is Q-cleft. This result
is stronger than Corollary 4.6 in that it does not assume that A is H-Galois.
Theorem 6.3. Let H be a k-flat Hopf algebra with bijective antipode and Q a quotient
coalgebra and right H-module of H such that H is a Q-Galois extension of K := HcoQ,
and a faithfully flat left K-module.

Assume that H is K-equivariantly Q-injective.
Then every Hopf module in MQ

H is a relative injective Q-comodule.
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In particular, if A is a right H-comodule algebra which is a relative injective H-
comodule, and the Galois map A⊗ A → A⊗Q is onto, then A is a Q-Galois extension
of B := AcoQ, a projective right B-module, and B ⊂ A is a right B-direct summand.

Proof. Every Hopf module inMQ
H is a relative injective comodule by Remark 5.3, by

Proposition 6.2 it follows that every Hopf module in MQ
A is a relative injective comodule,

and the remaining assertions follow from Corollary 4.8. tu
Remark 6.4. The hypothesis in Theorem 6.3 that H be a faithfully flat Q-Galois ex-
tension of K is fulfilled if we assume (in addition to H being relative injective as a right
Q-comodule) that H is left faithfully coflat for MQ

H , that is, cotensor product with H

over Q preserves and reflects exact sequences in the category MQ
H .

Proof. We vary arguments from [33, Sec.1]: We first observe that β̃ : K ⊗ H →
H 2Q H given by β̃(x⊗ h) = xh(1) ⊗ h(2) is an isomorphism with inverse β̃−1(g ⊗ h) =
gS(h(1))⊗ h(2). To show that µ : M coQ ⊗K H →M is an isomorphism, it is enough, by
hypothesis, to show that µ 2Q H is an isomorphism. But the composition

M coQ⊗H ∼= M coQ ⊗
K
K⊗H id⊗K β̃−−−−→M coQ ⊗

K
(H 2

Q
H) ∼= (M coQ ⊗

K
H) 2

Q
H

µ2QH−−−−→M 2
Q
H

is given by m ⊗ h 7→ mh(1) ⊗ h(2); it is a morphism of Hopf modules in MH
H , and thus

it is sufficient to observe that its coinvariant part is the identity on M coQ. That the
adjunction map N → (N ⊗B A)coC is an isomorphism for every N ∈ MB was already
observed in Lemma 4.1. tu
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