SMALL QUANTUM GROUPS AND THE CLASSIFICATION OF POINTED HOPF ALGEBRAS

NICOLÁS ANDRUSKIEWITSCH AND HANS-JÜRGEN SCHNEIDER

INTRODUCTION

In this paper we apply the theory of the quantum groups $U_q(g)$, and of the small quantum groups $u_q(g)$ for q a root of unity, g a semisimple complex Lie algebra, to obtain a classification result for an abstractly defined class of Hopf algebras. Since these Hopf algebras turn out to be deformations of a natural class of generalized small quantum groups, our result can be read as an axiomatic description of generalized small quantum groups.

Let k be an algebraically closed ground-field of characteristic 0. A Hopf algebra A is called pointed, if any simple subcoalgebra of A, or equivalently, any simple A-comodule is one-dimensional. If A is cocommutative, or if A is generated as an algebra by group-like and skew-primitive elements, then A is pointed. In particular, the quantum groups $U_q(g)$ and $u_q(g)$ are pointed.

Let $G(A) = \{ g \in A \mid \Delta(g) = g \otimes g, \varepsilon(g) = 1 \}$ be the group of group-like elements of A. We want to classify finite-dimensional pointed Hopf algebras A with abelian group $G(A)$.

We first describe the data D, λ, μ we need to define the Hopf algebras of the class we are considering. We fix a finite abelian group Γ.

The datum D. A datum D of finite Cartan type for Γ, $D = D(\Gamma, (g_i)_{1 \leq i \leq \theta}, (\chi_i)_{1 \leq i \leq \theta}, (a_{ij})_{1 \leq i,j \leq \theta})$, consists of elements $g_i \in \Gamma, \chi_i \in \hat{\Gamma}, 1 \leq i \leq \theta$, and a Cartan matrix $(a_{ij})_{1 \leq i,j \leq \theta}$ of finite type satisfying

\begin{equation}
q_{ij}q_{ji} = q_{ii}^{a_{ij}}, \; q_{ii} \neq 1, \text{ with } q_{ij} = \chi_j(g_i) \text{ for all } 1 \leq i,j \leq \theta.
\end{equation}

Results of this paper were obtained during a visit of H.-J. S. at the University of Córdoba, partially supported through a grant of CONICET. The work of N. A. was partially supported by CONICET, Fundación Antorchas, Agencia Córdoba Ciencia, ANPCyT and Secyt (UNC).
The Cartan condition (0.1) implies in particular,
\[q_{ii}^{a_{ij}} = q_{jj}^{a_{ij}} \text{ for all } 1 \leq i, j \leq \theta. \]

The explicit classification of all data of finite Cartan type for a given finite abelian group Γ is a computational problem. But at least it is a finite problem since the size θ of the Cartan matrix is bounded by $2(ord(\Gamma))^2$ by [AS2, 8.1], if Γ is an abelian group of odd order. For groups of prime order, all possibilities for D are listed in [AS2].

Let Φ be the root system of the Cartan matrix $(a_{ij})_{1 \leq i, j \leq \theta}$, a system of simple roots, and X the set of connected components of the Dynkin diagram of Φ. Let $\Phi_J, J \in X$, be the root system of the component J. We write $i \sim j$, if α_i and α_j are in the same connected component of the Dynkin diagram of Φ. For a positive root $\alpha = \sum_{i=1}^{\theta} n_i \alpha_i, n_i \in \mathbb{N} = \{0, 1, 2, \ldots\}$, for all i, we define
\[g_\alpha = \prod_{i=1}^{\theta} g_{n_i}^{a_{ii}}, \chi_\alpha = \prod_{i=1}^{\theta} \chi_{n_i}^{a_{ii}}. \]

We assume that the order of q_{ii} is odd for all i, and that the order of q_{ii} is prime to 3 for all i in a connected component of type G_2. Then it follows from (0.2) that the order N_i of q_{ii} is constant in each connected component J, and we define $N_J = N_i$ for all $i \in J$.

The parameter λ. Let $\lambda = (\lambda_{ij})_{1 \leq i, j \leq \theta, i \neq j}$ be a family of elements in k satisfying the following condition for all $1 \leq i < j \leq \theta, i \neq j$: If $g_i g_j = 1$ or $\chi_i \chi_j \neq \varepsilon$, then $\lambda_{ij} = 0$.

The parameter μ. Let $\mu = (\mu_\alpha)_{\alpha \in \Phi^+}$ be a family of elements in k such that for all $\alpha \in \Phi_J^+, J \in X$, if $g_\alpha^{N_J} = 1$ or $\chi_\alpha^{N_J} \neq \varepsilon$, then $\mu_\alpha = 0$.

Thus λ and μ are finite families of free parameters in k. We can normalize λ and assume that $\lambda_{ij} = 1$, if $\lambda_{ij} \neq 0$.

The Hopf algebra $u(D, \lambda, \mu)$. The definition of $u(D, \lambda, \mu)$ in Section 4.2 can be summarized as follows. In Definition 2.13 we associate to any μ and $\alpha \in \Phi^+$ an element $u_\alpha(\mu)$ in the group algebra $k[\Gamma]$. By construction, $u_\alpha(\mu)$ lies in the augmentation ideal of $k[g_{Ni}^\theta | 1 \leq i \leq \theta]$. The braided adjoint action $\text{ad}_c(x_i)$ of x_i is defined in (1.12), and the root vectors x_α are explained in Section 2.1.

The Hopf algebra $u(D, \lambda, \mu)$ is generated as an algebra by the group Γ, that is, by generators of Γ satisfying the relations of the group, and
x_1, \ldots, x_\theta, with the relations:

(Action of the group) \quad g x_i g^{-1} = \chi_i(g)x_i, for all i, and all g \in \Gamma;

(Serre relations) \quad \text{ad}_c(x_i)^{1-a_{ij}}(x_j) = 0, for all i \neq j, i \sim j,

(Linking relations) \quad \text{ad}_c(x_i)(x_j) = \lambda_{ij}(1 - g_i g_j), for all i < j, i \sim j,

(Root vector relations) x_{\alpha}^{N_{ij}} = u_{\alpha}(\mu), for all \alpha \in \Phi^+, J \in X.

The coalgebra structure is given by

\[\Delta(x_i) = g_i \otimes x_i + x_i \otimes 1, \quad \Delta(g) = g \otimes g, \text{ for all } 1 \leq i \leq \theta, g \in \Gamma. \]

Now we can formulate our main result.

Classification Theorem 0.1.

(1) Let \(\mathcal{D}, \lambda \) and \(\mu \) as above. Assume that \(q_{ij} \) has odd order for all \(i, j \), and that the order of \(q_{ii} \) is prime to 3 for all \(i \) in a connected component of type \(G_2 \). Then \(u(\mathcal{D}, \lambda, \mu) \) is a pointed Hopf algebra of dimension \(\prod_{J \in X} N^{|\Phi^+|}_J \Gamma | \), and \(G(u(\mathcal{D}, \lambda, \mu)) = \Gamma. \)

(2) Let \(A \) be a finite-dimensional pointed Hopf algebra with abelian group \(\Gamma = G(A) \). Assume that all prime divisors of the order of \(\Gamma \) are \(> 7 \). Then \(A \cong u(\mathcal{D}, \lambda, \mu) \) for some \(\mathcal{D}, \lambda, \mu. \)

Part (1) of Theorem 0.1 is shown in Theorem 4.4, and part (2) is a special case of Theorem 6.2.

In [AS4] we proved the Classification Theorem for groups of the form \((\mathbb{Z}/p)^s, s \geq 1, \) where \(p \) is a prime number \(> 17 \). In this special case, all the elements \(\mu \) and \(u_{\alpha}(\mu) \) are zero. In [AS1] we proved part (1) of Theorem 0.1 for Dynkin diagrams whose connected components are of type \(A_1 \), and in [AS5] for Dynkin diagrams of type \(A_n \); in [D2] our construction was extended to Dynkin diagrams whose connected components are of type \(A_n \) for various \(n \). In [BDR] the Hopf algebra \(u(\mathcal{D}, \lambda, \mu) \) was introduced for type \(B_2. \)

Our proof of Theorem 0.1 is based on [AS1, AS2, AS3, AS4, AS5], and on previous work on quantum groups in [dCK, dCP, L1, L2, L3, M1, Ro], in particular on Lusztig’s theory of the small quantum groups. Another essential ingredient of our proof are the recent results of Heckenberger on Nichols algebras of diagonal type in [H1, H2, H3] which use Kharchenko’s theory [K] of PBW-bases in braided Hopf algebras of diagonal type.

In [AS2, 1.4] we conjectured that any finite-dimensional pointed Hopf algebra (over an algebraically closed field of characteristic 0) is generated by group-like and skew-primitive elements. Our Classification Theorem and Theorem 6.2 confirm this conjecture for a large class of Hopf algebras.
Finally we note that the following analog of Cauchy’s Theorem from group theory holds for the Hopf algebras $A = u(D, \lambda, \mu)$: If p is a prime divisor of the dimension of A, then A contains a group-like element of order p. We conjecture that Cauchy’s Theorem holds for all finite-dimensional pointed Hopf algebras.

1. Braided Hopf algebras

1.1. Yetter-Drinfeld modules over abelian groups and the tensor algebra. Let Γ be an abelian group, and $\hat{\Gamma}$ the character group of all group homomorphisms from Γ to the multiplicative group k^\times of the field k. The braided category \mathcal{YD}_Γ of (left) Yetter-Drinfeld modules over Γ is the category of left $k[\Gamma]$-modules which are Γ-graded vector spaces $V = \bigoplus_{g \in \Gamma} V_g$ such that each homogeneous component V_g is stable under the action of Γ. Morphisms are Γ-linear maps $f : \bigoplus_{g \in \Gamma} V_g \rightarrow \bigoplus_{g' \in \Gamma} W_{g'}$ with $f(V_g) \subset W_{g}$ for all $g \in \Gamma$. The Γ-grading is equivalent to a left $k[\Gamma]$-comodule structure $\delta : V \rightarrow k[\Gamma] \otimes V$, where $\delta(v) = g \cdot v$ is equivalent to $v \in V_g$. We use a Sweedler notation $\delta(v) = v(1) \otimes v(0)$ for all $v \in V$.

If $V = \bigoplus_{g \in \Gamma} V_g$ and $W = \bigoplus_{g' \in \Gamma} W_{g'}$ are in \mathcal{YD}_Γ, the monoidal structure is given by the usual tensor product $V \otimes W$ with Γ-action $g(v \otimes w) = gv \otimes gw$, $v \in V, w \in W$, and Γ-grading $(V \otimes W)_g = \bigoplus_{ab = g} V_a \otimes W_b$ for all $g \in \Gamma$. The braiding in \mathcal{YD}_Γ is the isomorphism

$$c = c_{V,W} : V \otimes W \rightarrow W \otimes V$$

defined by $c(v \otimes w) = g \cdot w \otimes v$ for all $g \in \Gamma, v \in V_g$, and $w \in W$. Thus each Yetter-Drinfeld module V defines a braided vector space $(V, c_{V,V})$.

If χ is a character of Γ and V a left Γ-module, we define

$$V^\chi := \{v \in V \mid g \cdot v = \chi(g)v \text{ for all } g \in \Gamma\}.$$

Let $\theta \geq 1$ be a natural number, $g_1, \ldots, g_\theta \in \Gamma$, and $\chi_1, \ldots, \chi_\theta \in \hat{\Gamma}$. Let V be a vector space with basis x_1, \ldots, x_θ. V is an object in \mathcal{YD}_Γ by defining $x_i \in V^\chi_{g_i}$ for all i. Thus each x_i has degree g_i, and the group Γ acts on x_i via the character χ_i. We define

$$q_{ij} := \chi_j(g_i) \text{ for all } 1 \leq i,j \leq \theta.$$

The braiding on V is determined by the matrix (q_{ij}) since

$$c(x_i \otimes x_j) = q_{ij} x_j \otimes x_i \text{ for all } 1 \leq i,j \leq \theta.$$

We will identify the tensor algebra $T(V)$ with the free associative algebra $k\langle x_1, \ldots, x_\theta \rangle$. It is an algebra in \mathcal{YD}_Γ, where a monomial

$$x = x_{i_1} x_{i_2} \cdots x_{i_n}, 1 \leq i_1, \ldots, i_n \leq \theta,$$
has \(\Gamma \)-degree \(g_{i_1}g_{i_2}\cdots g_{i_n} \) and the action of \(g \in \Gamma \) on \(x \) is given by \(g \cdot x = \chi_{x_1}x_{i_1}\cdots \chi_{x_n}(g)x \). \(T(V) \) is a braided Hopf algebra in \(\mathcal{YD} \) with comultiplication

\[
\Delta_{T(V)} : T(V) \to T(V) \otimes T(V), \quad x_i \mapsto x_i \otimes 1 + 1 \otimes x_i, \quad 1 \leq i \leq \theta.
\]

Here we write \(T(V) \otimes T(V) \) to indicate the braided algebra structure on the vector space \(T(V) \otimes T(V) \), that is

\[
(x \otimes y)(x' \otimes y') = x(g \cdot x') \otimes yy',
\]

for all \(x, x', y, y' \in T(V) \) and \(y \in T(V)_g, g \in \Gamma \).

Let \(I = \{1, 2, \ldots, \theta\} \), and \(\mathbb{Z}[I] \) the free abelian group of rank \(\theta \) with basis \(\alpha_1, \ldots, \alpha_\theta \). Given the matrix \((q_{ij})\), we define the bilinear map

\[
(1.1) \quad \mathbb{Z}[I] \times \mathbb{Z}[I] \to k^\times, \quad (\alpha, \beta) \mapsto q_{\alpha,\beta}, \quad \text{by} \quad q_{\alpha,\alpha_j} = q_{ij}, \quad 1 \leq i, j \leq \theta.
\]

We consider \(V \) as a Yetter-Drinfeld module over \(\mathbb{Z}[I] \) by defining \(x_i \in V_{\alpha_i} \) for all \(1 \leq i \leq \theta \), where \(\psi_j \) is the character of \(\mathbb{Z}[I] \) with

\[
\psi_j(\alpha_i) = q_{ij} \quad \text{for all} \quad 1 \leq i, j \leq \theta.
\]

Thus \(T(V) = k\langle x_1, \ldots, x_\theta \rangle \) is also a braided Hopf algebra in \(\mathbb{Z}[I] \mathcal{YD} \). The \(\mathbb{Z}[I] \)-degree of a monomial \(x = x_{i_1}x_{i_2}\cdots x_{i_n}, 1 \leq i_1, \ldots, i_n \leq \theta \), is \(\sum_{i=1}^\theta n_i \alpha_i \), where for all \(i \), \(n_i \) is the number of occurrences of \(i \) in the sequence \((i_1, i_2, \ldots, i_n) \). The braiding on \(T(V) \) as a Yetter-Drinfeld module over \(\Gamma \) or \(\mathbb{Z}[I] \) is in both cases given by

\[
(1.2) \quad c(x \otimes y) = q_{\alpha,\beta}y \otimes x, \quad \text{where} \quad x \in T(V)_\alpha, y \in T(V)_\beta, \alpha, \beta \in \mathbb{Z}[I].
\]

The comultiplication of \(T(V) \) as a braided Hopf algebra in \(\mathcal{YD} \) only depends on the matrix \((q_{ij})\), hence it coincides with the comultiplication of \(T(V) \) as a coalgebra in \(\mathbb{Z}[I] \mathcal{YD} \). In particular, the comultiplication of \(T(V) \) is \(\mathbb{Z}[I] \)-graded.

1.2. Bosonization and twisting. Let \(R \) be a braided Hopf algebra in \(\mathcal{YD} \). We will use a Sweedler notation for the comultiplication

\[
\Delta_R : R \to R \otimes R, \quad \Delta_R(r) = r^{(1)} \otimes r^{(2)}.
\]

For Hopf algebras \(A \) in the usual sense, we always use the Sweedler notation

\[
\Delta : A \to A \otimes A, \quad \Delta(a) = a^{(1)} \otimes a^{(2)}.
\]

Then the smash product \(A = R \# k[\Gamma] \) is a Hopf algebra in the usual sense (the bosonization of \(R \)). As vector spaces, \(R \# k[\Gamma] = R \otimes k[\Gamma] \). Multiplication and comultiplication are defined by

\[
(1.3) \quad (r \# g)(s \# h) = r(g \cdot s) \# gh, \quad \Delta(r \# g) = r^{(1)} \# r^{(2)}(-1)^g \otimes r^{(2)}(0) \# g.
\]
Then the maps
$$\iota: k[\Gamma] \to R\#k[\Gamma], \quad \pi: R\#k[\Gamma] \to k[\Gamma]$$
with $\iota(g) = 1\#g$ and $\pi(r\#g) = r$ for all $r \in R, g \in \Gamma$ are Hopf algebra maps with $\pi\iota = \text{id}$.

Conversely, if A is a Hopf algebra in the usual sense with Hopf algebra maps $\iota: k[\Gamma] \to A$ and $\pi: A \to k[\Gamma]$ such that $\pi\iota = \text{id}$, then
$$R = \{ a \in A \mid (\text{id} \otimes \pi)\Delta(a) = a \otimes 1 \}$$
is a braided Hopf algebra in \mathcal{YD} in the following way. As an algebra, R is a subalgebra of A. The $k[\Gamma]$-coaction, Γ-action and comultiplication of R are defined by
\begin{equation}
\delta(r) = \pi(r^{(1)}) \otimes r^{(2)}, \quad g \cdot r = \iota(g)r\iota(g^{-1})
\end{equation}
and
\begin{equation}
\Delta_R(r) = \vartheta(r^{(1)}) \otimes r^{(2)}.
\end{equation}
Here, $\Delta_A(r) = r^{(1)} \otimes r^{(2)}$, and ϑ is the map
\begin{equation}
\vartheta: A \to R, \quad \vartheta(r) = r^{(1)}\iota(S(\pi(r^{(2)}))),
\end{equation}
where S is the antipode of A. Then
\begin{equation}
R\#k[\Gamma] \to A, \quad r\#g \mapsto r\iota(g), \quad r \in R, g \in \Gamma,
\end{equation}
is an isomorphism of Hopf algebras.

We recall the notion of twisting the algebra structure of an arbitrary Hopf algebra A, see for example [KS, 10.2.3]. Let $\sigma: A \otimes A \to k$ be a convolution invertible linear map, and a normalized 2-cocycle, that is, for all $x, y, z \in A$,
\begin{equation}
\sigma(x^{(1)}, y^{(1)})\sigma(x^{(2)}y^{(2)}, z) = \sigma(y^{(1)}, z^{(1)})\sigma(x, y^{(2)}z^{(2)}),
\end{equation}
and $\sigma(x, 1) = \varepsilon(x) = \sigma(1, x)$. The Hopf algebra A_σ with twisted algebra structure is equal to A as a coalgebra, and has multiplication \cdot_σ with
\begin{equation}
x \cdot_\sigma y = \sigma(x^{(1)}, y^{(1)})x^{(2)}y^{(2)}\sigma^{-1}(x^{(3)}, y^{(3)}) \text{ for all } x, y \in A.
\end{equation}
In the situation $A = R\#k[\Gamma]$ above, let $\sigma : \Gamma \times \Gamma \to k^\times$ be a normalized 2-cocycle of the group Γ. Then σ extends to a 2-cocycle of the group algebra $k[\Gamma]$ and it defines a normalized and invertible 2-cocycle $\sigma_\pi = \sigma(\pi \otimes \pi)$ of the Hopf algebra A. Since $k[\Gamma]$ is cocommutative, ι and π are Hopf algebra maps
$$\iota: k[\Gamma] \to A_{\sigma_\pi} \text{ and } \pi: A_{\sigma_\pi} \to k[\Gamma].$$
Hence the coinvariant elements
$$R_{\sigma} = \{ a \in A_{\sigma_\pi} \mid (\text{id} \otimes \pi)\Delta(a) = a \otimes 1 \}$$
form a braided Hopf algebra in \mathcal{YD}. As a vector space, R_σ coincides with R, but R_σ and R have different multiplication and comultiplication.

To simplify the formulas, we will treat ι as an inclusion map.

In any braided Hopf algebra R with multiplication m and braiding $c : R \otimes R \to R \otimes R$ we define the braided commutator of elements $x, y \in R$ by

\begin{equation}
[x, y]_c = xy - mc(x \otimes y).
\end{equation}

If $x \in R$ is a primitive element, then

\begin{equation}
(\text{ad}_c x)(y) = [x, y]_c
\end{equation}

denotes the braided adjoint action of x on R. For example, in the situation of the free algebra in Section 1.1 with braiding (1.2), we have for all x_i and $y = x_{j_1} \cdots x_{j_n}$,

\begin{equation}
(\text{ad}_c x_i)(y) = x_i y - q_{ij_1} \cdots q_{ij_n} y x_i.
\end{equation}

In the formulation of the next lemma we need one more notation. If V is a left C-comodule over a coalgebra C, then V is a right module over the dual algebra C^* by $v \mapsto p = p(u_{(-1)})v_{(0)}$ for all $v \in V, p \in C^*$. In particular, if R is a braided Hopf algebra in \mathcal{YD}, then the $k[\Gamma]$-coaction defines a left $k[\Gamma] \otimes k[\Gamma]$-comodule structure on $R \otimes R$, hence a right $(k[\Gamma] \otimes k[\Gamma])^*$-module structure on $R \otimes R$ denoted by \leftarrow.

Lemma 1.1. Let Γ be an abelian group, $\sigma : \Gamma \times \Gamma \to k^*$ a normalized 2-cocycle, R a braided Hopf algebra in \mathcal{YD}, $g, h \in \Gamma$, and $x \in R_g, y \in R_h, r \in R$.

1. $x \cdot \sigma y = \sigma(g, h)xy$.
2. $\Delta_{R_\sigma}(r) = \Delta_R(r) \leftarrow \sigma^{-1}.$
3. If $y \in R^n_h$ for some character $\eta \in \hat{\Gamma}$, and R as an algebra is generated by primitive elements, then $g \cdot \sigma y = \sigma(g, h)\sigma^{-1}(h, g)\eta(g)y$, and hence $[x, y]_{c_\sigma} = \sigma(g, h)[x, y]_\sigma$.

Proof. (1) and (3) are [AS5, (2-11), (2-14)]. To prove (2), using the cocommutativity of the group algebra we compute

\begin{align*}
\Delta_{R_\sigma}(r) &= r_{(1)} \cdot \sigma S(\pi(r_{(2)})) \otimes r_{(3)} \\
&= \sigma(\pi(r_{(1)}), S(\pi(r_{(5)})))\vartheta(r_{(2)})\sigma^{-1}(\pi(r_{(3)}), S(\pi(r_{(4)}))) \otimes r_{(6)}.
\end{align*}

On the other hand, $\Delta_R(r) = r_{(1)}S\pi(r_{(2)}) \otimes r_{(3)}$, hence

\begin{align*}
r_{(1)}(-1) \otimes r_{(2)}(-1) \otimes r_{(1)(0)} \otimes r_{(2)(0)} &= \pi(r_{(1)}S(r_{(3)})) \otimes \pi(r_{(4)}) \otimes \vartheta(r_{(2)}) \otimes r_{(5)},
\end{align*}

and
Δ_R(r) \leftarrow \sigma^{-1} = \sigma^{-1} (\pi(r_1) S(r_3), \pi(r_4)) \vartheta(r_2) \otimes r_5. \text{ Hence the claim follows from the equality}

\sigma(a, S(b(3)))\sigma^{-1}(b(1), S(b(2))) = \sigma^{-1}(a S(b(1)), b(2))

for all a, b \in k[\Gamma]. \text{ It is enough to check this equation for elements } a, b \in \Gamma. \text{ Then the equality follows from the group cocycle condition.} \quad \Box

We now apply the twisting procedure to the braided Hopf algebra

\[T(V) \in \mathbb{Z}[\mathbb{Z}[I]] \mathcal{YD}. \]

Lemma 1.2. Let \(\theta \geq 1 \) and \((q_{ij})_{1 \leq i,j \leq \theta}, (q'_{ij})_{1 \leq i,j \leq \theta}\) matrices with coefficients in \(k \). Let \(V \in \mathbb{Z}[\mathbb{Z}[I]] \mathcal{YD} \) with basis \(x_1, \ldots, x_\theta \) and \(x_i \in V_{\alpha_i} \). Let \(V' \in \mathbb{Z}[\mathbb{Z}[I]] \mathcal{YD} \) with basis \(x'_1, \ldots, x'_\theta \) and \(x'_i \in V'_{\alpha_i} \) for all \(i,j \). Then \(T(V) \) and \(T(V') \) are braided Hopf algebras in \(\mathbb{Z}[\mathbb{Z}[I]] \mathcal{YD} \) as in Section 1.1. Assume

\[(1.13) \quad q_{ij}q_{ji} = q'_{ij}q'_{ji} \quad \text{and} \quad q_{ii} = q'_ii \quad \text{for all } 1 \leq i,j \leq \theta. \]

Then there is a 2-cocycle \(\sigma: \mathbb{Z}[I] \times \mathbb{Z}[I] \to k^\times \) with

\[(1.14) \quad \sigma(\alpha, \beta)\sigma^{-1}(\beta, \alpha) = q_{\alpha \beta}q'_{\alpha \beta} \quad \text{for all } \alpha, \beta \in \mathbb{Z}[I], \]

and a \(k \)-linear isomorphism \(\varphi: T(V) \to T(V') \) with \(\varphi(x_i) = x'_i \) for all \(i \) and such that for all \(\alpha, \beta \in \mathbb{Z}[I], x \in T(V)_\alpha, y \in T(V)_\beta \) and \(z \in T(V) \)

1. \(\varphi(xy) = \sigma(\alpha, \beta)\varphi(x)\varphi(y) \).
2. \(\Delta_T(V')_\varphi(z) = (\varphi \otimes \varphi)(\Delta_T(V)_\varphi(z)) \leftarrow \sigma \).
3. \(\varphi([x, y]_\varphi) = \sigma(\alpha, \beta)\varphi(x, \varphi(y))_\varphi \).

Proof. Define \(\sigma \) as the bilinear map with \(\sigma(\alpha_i, \alpha_j) = q_{ij}q'^{-1}_{ij} \) if \(i \leq j \), and \(\sigma(\alpha_i, \alpha_j) = 1 \) if \(i > j \) (see [AS5, Prop. 3.9]).

Let \(\varphi: T(V) \to T(V')_\sigma \) be the algebra map with \(\varphi(x_i) = x'_i \) for all \(i \). Then \(\varphi \) is bijective since it follows from Lemma 1.1 (1) and the bilinearity of \(\sigma \) that for all monomials \(x = x_{i_1}x_{i_2} \cdots x_{i_n} \) of length \(n \geq 1 \) with \(x' = x'_{i_1}x'_{i_2} \cdots x'_{i_n} \),

\[\varphi(x) = \prod_{r<s} \sigma(\alpha_{i_r}, \alpha_{i_s})x'_r. \]

In particular, \(\varphi \) is \(\mathbb{Z}[I] \)-graded. To see that \(\varphi \) is \(\mathbb{Z}[I] \)-linear, let \(\alpha, \beta \in \mathbb{Z}[I] \) and \(x \in T(V)_\beta \). Then by Lemma 1.1 (3),

\[\alpha \cdot x = q_{\alpha \beta}x, \quad \text{and} \quad \alpha \cdot \varphi(x) = \varphi(\alpha, \beta)\varphi^{-1}(\beta, \alpha)q_{\alpha \beta}\varphi(x), \]

and \(\varphi(\alpha \cdot x) = \alpha \cdot \varphi(x) \) follows by (1.14). Since the elements \(x_i \) and \(x'_i \) are primitive we now see that \(\varphi: T(V) \to T(V')_\sigma \) is an isomorphism of braided Hopf algebras. Then the claim follows from Lemma 1.1. \quad \Box
2. Serre relations and root vectors

2.1. Datum of finite Cartan type and root vectors.

Definition 2.1. A datum of Cartan type

\[\mathcal{D} = \mathcal{D}(\Gamma, (g_i)_{1 \leq i \leq \theta}, (\chi_i)_{1 \leq i \leq \theta}, (a_{ij})_{1 \leq i,j \leq \theta}) \]

consists of an abelian group \(\Gamma \), elements \(g_i \in \Gamma, \chi_i \in \hat{\Gamma}, 1 \leq i \leq \theta \), and a Cartan matrix \((a_{ij}) \) of size \(\theta \) satisfying

\[q_{ij}q_{ji} = q_{ii}a_{ij}, q_{ii} \neq 1, \]

with \(q_{ij} = \chi_j(g_i) \) for all \(1 \leq i,j \leq \theta \).

A datum \(\mathcal{D} \) of Cartan type will be called of finite Cartan type if \((a_{ij}) \) is of finite type.

Example 2.2. A Cartan datum \((I, \cdot) \) in the sense of Lusztig [L3, 1.1.1] defines a datum of Cartan type for the free abelian group \(\mathbb{Z}I \) with \(g_i = \alpha_i, \chi_i = \psi_i, 1 \leq i \leq \theta, \) as in Section 1.1, where

\[q_{ij} = v^{d_{ij}}a_{ij}, d_{ij} = i \cdot j \text{ for all } 1 \leq i,j \leq \theta. \]

In Example 2.2, \(d_{ij}a_{ij} = i \cdot j \) is the symmetrized Cartan matrix, and \(q_{ij} = q_{ji} \) for all \(1 \leq i,j \leq \theta \). In general, the matrix \((q_{ij}) \) of a datum of Cartan type is not symmetric, but by Lemma 1.2 we can reduce to the symmetric case by twisting.

We fix a finite abelian group \(\Gamma \) and a datum

\[\mathcal{D} = \mathcal{D}(\Gamma, (g_i)_{1 \leq i \leq \theta}, (\chi_i)_{1 \leq i \leq \theta}, (a_{ij})_{1 \leq i,j \leq \theta}) \]

of finite Cartan type. The Weyl group \(W \subset \text{Aut} \left(\mathbb{Z}[I] \right) \) of \((a_{ij}) \) is generated by the reflections \(s_i : \mathbb{Z}[I] \to \mathbb{Z}[I] \) with \(s_i(\alpha_j) = \alpha_j - a_{ij}\alpha_i \) for all \(i,j \). The root system is \(\Phi = \bigcup_{i=1}^{\theta} W(\alpha_i) \), and

\[\Phi^+ = \{ \alpha \in \Phi \mid \alpha = \sum_{i=1}^{\theta} n_i\alpha_i, n_i \geq 0 \text{ for all } 1 \leq i \leq \theta \} \]

denotes the set of positive roots with respect to the basis of simple roots \(\alpha_1, \ldots, \alpha_\theta \). Let \(p \) be the number of positive roots.

For \(\alpha = \sum_{i=1}^{\theta} n_i\alpha_i \in \mathbb{Z}[I], n_i \in \mathbb{Z} \) for all \(i \) we define

\[g_\alpha = g_1^{n_1}g_2^{n_2} \cdots g_\theta^{n_\theta} \text{ and } \chi_\alpha = \chi_1^{n_1}\chi_2^{n_2} \cdots \chi_\theta^{n_\theta}. \]

In this section, we assume that the Dynkin diagram of \((a_{ij}) \) is connected. In this case we say that \(\mathcal{D} \) is connected.

We fix a reduced decomposition of the longest element

\[w_0 = s_{i_1}s_{i_2} \cdots s_{i_p} \]

of \(W \) in terms of the simple reflections. Then

\[\beta_l = s_{i_1} \cdots s_{i_{l-1}}(\alpha_{i_l}), 1 \leq l \leq p, \]
is a convex ordering of the positive roots.

Let \(d_1, \ldots, d_\theta \in \{1, 2, 3\} \) such that \(d_i a_{ij} = d_j a_{ji} \) for all \(i, j \). We assume for all \(1 \leq i, j \leq \theta \),

\[q_{ij} \text{ has odd order, and} \]
\[\text{the order of } q_{ii} \text{ is prime to } 3, \text{ if } (a_{ij}) \text{ is of type } G_2. \]

Then it follows from (2.1) ([AS2, 4.3]) that the elements \(q_{ii} \) have the same order in \(k^\times \). We define

\[N = \text{order of } q_{ii}, 1 \leq i \leq \theta. \]

Definition 2.3. Let \(V = V(D) \) be a vector space with basis \(x_1, \ldots, x_\theta \), and let \(V \in \mathcal{YD} \) by \(x_i \in V_{si} \) for all \(1 \leq i \leq \theta \). Then \(T(V) \) is a braided Hopf algebra in \(\mathcal{YD} \) as in Section 1.1. Let

\[R(D) = T(V)/((\text{ad}_c x_i)^{1-a_{ij}}(x_j) \mid 1 \leq i, j \leq \theta) \]

be the quotient Hopf algebra in \(\mathcal{YD} \).

It is well-known that the elements \((\text{ad}_c x_i)^{1-a_{ij}}(x_j), 1 \leq i, j \leq \theta \) are primitive in the free algebra \(T(V) \) (see for example [AS2, A.1]), hence they generate a Hopf ideal. By abuse of language, we denote the images of the elements \(x_i \) in \(R(D) \) again by \(x_i \).

In the situation of Example 2.2, Lusztig [L2] defined root vectors \(x_\alpha \) in \(R(D) = U^+ \) for each positive root \(\alpha \) using the convex ordering of the positive roots. As noted in [AS4], these root vectors can be seen to be iterated braided commutators of the elements \(x_1, \ldots, x_\theta \) with respect to the braiding given by the matrix \((v_{d_ia_{ij}})\). This follows for example from the inductive definition of the root vectors in [Ri].

In the case of our general braiding given by \((q_{ij}) \) we define root vectors \(x_\alpha \in R(D) \) for each \(\alpha \in \Phi^+ \) by the same iterated braided commutator of the elements \(x_1, \ldots, x_\theta \) as in Lusztig’s case but with respect to the general braiding.

Definition 2.4. Let \(K(D) \) be the subalgebra of \(R(D) \) generated by the elements \(x^N_\alpha, \alpha \in \Phi^+ \).

Theorem 2.5. Let \(D \) be a connected datum of finite Cartan type, and assume (2.3), (2.4).

1. The elements

\[x_\beta^a x_\beta^b \cdots x_\beta^p, a_1, a_2, \ldots, a_p \geq 0, \]

form a basis of \(R(D) \).
2. \(K(D) \) is a braided Hopf subalgebra of \(R(D) \).
3. For all \(\alpha, \beta \in \Phi^+ \), \(x_\alpha x_\beta^N = \chi^N_\beta(g_\alpha)x_\beta^N x_\alpha \), that is, \([x_\alpha, x_\beta^N]_c = 0 \).
Proof. (a) In the situation of 2.2, the elements in (1) form Lusztig’s PBW-basis of \(U^+\) over \(\mathbb{Z}[v, v^{-1}]\) by [L2, 5.7].

(b) Now we assume that the braiding has the form \((q_{ij} = q_d a_{ij})\), where \((d_i a_{ij})\) is the symmetrized Cartan matrix, and \(q\) is a non-zero element in \(k\) of odd order, and not divisible by 3 if the Dynkin diagram of \((a_{ij})\) is \(G_2\). Then (1) follows from Lusztig’s result by extension of scalars, and (2) is shown in [dCP, 19.1] (for another proof see [M2, 3.1]). The algebra \(K(D)\) is commutative since it is a subalgebra of the commutative algebra \(\mathbb{Z}_0\) of [dCP, 19.1]. This proves (3) since \(q^N = 1\), hence \(\chi^N(g_a) = 1\).

(c) In the situation of a general braiding matrix \((q_{ij})\) assumed in the theorem, we define a matrix \((q'_{ij})\) by \(q'_{ii} = q_{ii}\) for all \(i\), and for all \(i \neq j\) we define \(q'_{ij} = q'_{ji}\) to be a square root of \(q_{ij} q_{ji}\). By [AS2, 4.3], \(q'_{ij} = q_d a_{ij}\) for all \(i, j\), and for some \(q \in k\). Thus by part (b) of the proof, (1),(2) and (3) hold for the braiding \((q'_{ij})\), and hence by Lemma 1.2 for \((q_{ij})\).

\[\square \]

2.2. The Hopf algebra \(K(D)\# k[\Gamma]\). We assume the situation of Section 2.1. By Theorem 2.5 (2), \(K(D)\) is a braided Hopf algebra in \(\mathcal{YD}\), and the smash product \(K(D)\# k[\Gamma]\) is a Hopf algebra in the usual sense.

We want to describe all Hopf algebra maps

\[K(D)\# k[\Gamma] \rightarrow k[\Gamma] \]

which are the identity on the group algebra \(k[\Gamma]\).

Definition 2.6. For any \(1 \leq l \leq p\) and \(a = (a_1, a_2, \ldots, a_p) \in \mathbb{N}^p\) we define

\[
\begin{align*}
 h_l &= g_N, \\
 \eta_l &= \chi_N, \\
 z_l &= z_N, \\
 z^a &= z_1^{a_1} z_2^{a_2} \cdots z_p^{a_p} \in K(D), \\
 h^a &= h_1^{a_1} h_2^{a_2} \cdots h_p^{a_p} \in \Gamma, \\
 \eta^a &= \eta_1^{a_1} \eta_2^{a_2} \cdots \eta_p^{a_p} \in \hat{\Gamma}, \\
 a &= a_1 \beta_1 + a_2 \beta_2 + \cdots + a_p \beta_p \in \mathbb{Z}[I].
\end{align*}
\]

For \(\alpha = \sum_{i=1}^n n_i \alpha_i \in \mathbb{Z}[I], n_i \in \mathbb{Z}\) for all \(i\), we call \(\text{ht}(\alpha) = \sum_{i=1}^n n_i\) the height of \(\alpha\). Let \(e_l = (\delta_{kl})_{1 \leq k \leq p} \in \mathbb{N}^p\), where \(\delta_{kl} = 1\) if \(k = l\) and \(\delta_{kl} = 0\) if \(k \neq l\).

Note that for all \(a, b, c \in \mathbb{N}^p\),

\[
(2.6) \quad h^a = h^b h^c, \quad \eta^a = \eta^b \eta^c, \quad \text{if } a = b + c.
\]
As explained in Section 1.1, we view $T(V)$ as a braided Hopf algebra in $\mathbb{Z}[I][YD]$. Then the quotient Hopf algebra $R(D)$ and its Hopf subalgebra $K(D)$ are braided Hopf algebras in $\mathbb{Z}[I][YD]$. In particular, the comultiplication $\Delta_{K(D)} : K(D) \to K(D) \otimes K(D)$ is $\mathbb{Z}[I]$-graded. By construction, for any $\alpha \in \Phi^+$, the root vector x_α in $R(D)$ is $\mathbb{Z}[I]$-homogeneous of $\mathbb{Z}[I]$-degree α. Thus $x_\alpha \in R(D)_g$, and for all $a \in \mathbb{N}^p$, z^a has $\mathbb{Z}[I]$-degree N_a, and

$$(2.8) \quad z^a \in K(D)_{\eta_a}.$$ For $z \in K(D), g \in \Gamma$, we will denote $z\#g \in K(D)\#k[\Gamma]$ by zg. By Theorem 2.5 the elements z^ag with $a \in \mathbb{N}^p, g \in \Gamma$, form a basis of $K(D)\#k[\Gamma]$, and it follows that for all $a, b = (b_i), c = (c_i) \in \mathbb{N}^p$,

$$(2.9) \quad z^b z^c = \gamma_{b,c} z^{b+c}, \text{ where } \gamma_{b,c} = \prod_{k>l} \eta_k(h_k)^{b_k c_l},$$

$$(2.10) \quad h^a z^b = \eta(h^a) z^b h^a \text{ in } R\#k[\Gamma].$$

Lemma 2.7. For any $0 \neq a \in \mathbb{N}^p$ there are uniquely determined scalars $t_{b,c}^a \in k, 0 \neq b, c \in \mathbb{N}^p$, such that

$$(2.11) \quad \Delta_{K(D)}(z^a) = z^a \otimes 1 + 1 \otimes z^a + \sum_{b,c \neq 0, b+c=a} t_{b,c}^a z^b \otimes z^c.$$

Proof. Since $\Delta_{K(D)}$ is $\mathbb{Z}[I]$-graded, $\Delta_{K(D)}(z^a)$ is a linear combination of elements $z^b \otimes z^c$ where $b + c = a$. Hence

$$\Delta_{K(D)}(z^a) = x \otimes 1 + 1 \otimes y + \sum_{b,c \neq 0, b+c=a} t_{b,c}^a z^b \otimes z^c,$$

where x, y are elements in $K(D)$. By applying the augmentation ε it follows that $x = y = z^a$. \hfill \Box

We now define recursively a family of elements u^a in $k[\Gamma]$ depending on parameters μ_a which behave like the elements z^a with respect to comultiplication.

Lemma 2.8. Let $n \geq 2$. For all $0 \neq b \in \mathbb{N}^p, \text{ht}(b) < n$, let $\mu_b \in k$ and $u^b \in k[\Gamma]$ such that

$$(2.12) \quad u^b = \mu_b(1 - h^b) + \sum_{d,e \neq 0, d+e=b} t_{d,e}^b \mu_d u^e,$$

$$(2.13) \quad \Delta(u^b) = h^b \otimes u^b + u^b \otimes 1 + \sum_{d,e \neq 0, d+e=b} t_{d,e}^b u^d h^e \otimes u^e.$$
Let \(a \in \mathbb{N}^p \) with \(\text{ht}(a) = n \), and \(u^a \in k[\Gamma] \). Then the following statements are equivalent:

\[(2.14) \quad u^a = \mu_a (1 - h^a) + \sum_{b,c \neq 0, b + c = a} t_{b,c}^a \mu_b u^c \text{ for some } \mu_a \in k.\]

\[(2.15) \quad \Delta(u^a) = h^a \otimes u^a + u^a \otimes 1 + \sum_{b,c \neq 0, b + c = a} t_{b,c}^a u^b h^c \otimes u^c.\]

Proof. Let \(v_a = u^a - \sum_{b,c \neq 0, b + c = a} t_{b,c}^a \mu_b u^c.\)

Then \(u^a \) can be written as in (2.14) if and only if \(\Delta(v_a) = h^a \otimes v_a + v_a \otimes 1.\) Hence it is enough to prove that

\[
\Delta(v_a) - h^a \otimes v_a - v_a \otimes 1 = \Delta(u^a) - h^a \otimes u^a - u^a \otimes 1 - \sum_{b,c \neq 0, b + c = a} t_{b,c}^a u^b h^c \otimes u^c.
\]

We compute

\[
\begin{align*}
\Delta(v_a) - h^a \otimes v_a - v_a \otimes 1 &= \Delta(u^a) - \sum_{b,c \neq 0, b + c = a} t_{b,c}^a \mu_b \Delta(u^c) - h^a \otimes v_a - v_a \otimes 1 \\
&= \Delta(u^a) - h^a \otimes u^a - u^a \otimes 1 + \sum_{b,c \neq 0, b + c = a} t_{b,c}^a \mu_b (h^a \otimes u^c - h^c \otimes u^c) \\
&\quad - \sum_{b,c,f,g \neq 0, b + c + f + g = a} t_{b,c}^a t_{f,g}^c \mu_b u^f h^g \otimes u^g,
\end{align*}
\]

using the definition of \(v_a \) in the first equation, and the formula for \(\Delta(u^c) \) from (2.13) in the second equation. Note that the term

\[
\sum_{b,c \neq 0, b + c = a} t_{b,c}^a \mu_b u^c \otimes 1
\]

cancels. Hence we have to show that

\[
\sum_{b,c,f,g \neq 0, b + c + f + g = a} t_{b,c}^a t_{f,g}^c \mu_b u^f h^g \otimes u^g = \sum_{b,c \neq 0, b + c = a} t_{b,c}^a (\mu_b h^a \otimes u^c - \mu_b h^c \otimes u^c + u^b h^c \otimes u^c).
\]

Since for all \(b, c \neq 0, b + c = a \), we have \(h^a = h^b h^c \), it follows that

\[
\mu_b h^a \otimes u^c - \mu_b h^c \otimes u^c + u^b h^c \otimes u^c = (\mu_b(h^b - 1) + u^b) h^c \otimes u^c.
\]
Using the formula for \(u^b \) from (2.12), we finally have to prove
\[
\sum_{b,c,f,g \neq 0 \atop b+c=a, f+g=c} t_{b,c}^a t_{f,g}^c \mu_{b} u^f h^g \otimes u^g = \sum_{b,c,d,e \neq 0 \atop b+c=a, d+e=b} t_{b,c}^a t_{d,e}^b \mu_{d} u^e h^c \otimes u^e.
\]
This last equality follows from the coassociativity of \(K(\mathcal{D}) \). Indeed, from
\[(\text{id} \otimes \Delta_{K(\mathcal{D})}) \Delta_{K(\mathcal{D})}(z^a) = (\Delta_{K(\mathcal{D})} \otimes \text{id}) \Delta_{K(\mathcal{D})}(z^a)\]
we obtain with (2.11) after cancelling several terms
\[
\sum_{b,c,f,g \neq 0 \atop b+c=a, f+g=c} t_{b,c}^a t_{f,g}^c z^b \otimes z^f \otimes z^g = \sum_{b,c,d,e \neq 0 \atop b+c=a, d+e=b} t_{b,c}^a t_{d,e}^b z^d \otimes z^c \otimes z^e.
\]
Thus mapping \(z^r \otimes z^s \otimes z^t \), \(r, s, t \neq 0, \text{ht}(z), \text{ht}(t) < n \), onto \(\mu_{r} u^r h^s \otimes u^t \) proves the claim. Here we are using that the elements \(z^a \) are linearly independent by Theorem 2.5.

Let \(K(\mathcal{D}) \# k[\Gamma] \) be the Hopf algebra corresponding to the braided Hopf algebra \(K(\mathcal{D}) \) by (1.3). Thus by definition and Lemma 2.7, for all \(0 \neq a \in \mathbb{N}^\circ \),
\[
\Delta_{K(\mathcal{D}) \# k[\Gamma]}(z^a) = h^a \otimes z^a + z^a \otimes 1 + \sum_{b,c \neq 0 \atop \text{ht}(b) = \text{ht}(c) = a} t_{b,c}^a z^b h^c \otimes z^c.
\]
For all \(n \geq 0 \), let \(K(\mathcal{D})_n \) be the vector subspace spanned by all \(z^a, a \in \mathbb{N}^\circ, \text{ht}(a) \leq n \). Then \(K(\mathcal{D})_n \# k[\Gamma] \subset K(\mathcal{D}) \# k[\Gamma] \) is a subcoalgebra.

In the next Lemma we describe all coalgebra maps
\[\varphi : K(\mathcal{D})_n \# k[\Gamma] \to k[\Gamma] \text{ with } \varphi | \Gamma = \text{id}. \]
Note that such a coalgebra map is given by a family of elements \(\varphi(z^a) = u^a, 0 \neq a \in \mathbb{N}^\circ, \text{ht}(a) \leq n \), such that (2.15) holds for all \(0 \neq a, \text{ht}(a) \leq n \). It follows by induction on \(\text{ht}(a) \) from Lemma 2.8 with (2.14) that \(\varphi(u^a) = 0 \) for all \(a \).

Lemma 2.9. Let \(n \geq 1 \).

1. Let \((\mu_a)_{0 \neq a \in \mathbb{N}^\circ, \text{ht}(a) \leq n} \) be a family of elements in \(k \) such that for all \(a, \text{ht}(a) = 1 \), then \(\mu_a = 0 \). Define the family \((u^a)_{0 \neq a \in \mathbb{N}^\circ, \text{ht}(a) \leq n} \) by induction on \(\text{ht}(a) \) by (2.14). Then
\[\varphi : K(\mathcal{D})_n \# k[\Gamma] \to k[\Gamma], \varphi(z^a g) = u^a g, a \in \mathbb{N}^\circ, \text{ht}(a) \leq n, g \in \Gamma, \]
is a coalgebra map.

2. The map defined in (1) from the set of all \((\mu_a)_{0 \neq a \in \mathbb{N}^\circ, \text{ht}(a) \leq n} \) such that for all \(a, \text{ht}(a) = 1 \), then \(\mu_a = 0 \), to the set of all coalgebra maps \(\varphi \) with \(\varphi | \Gamma = \text{id} \) is bijective.
Proof. This follows from Lemma 2.8 by induction on $ht(a)$. Note that the coefficient μ_a in (2.14) is uniquely determined if we define $\mu_a = 0$ if $h^a = 1$.

Definition 2.10. Let $n \geq 1$. A coalgebra map $\varphi : K(D)_n \# k[\Gamma] \to k[\Gamma]$ with $\varphi|\Gamma = id$ is called a partial Hopf algebra map, if for all $x, y \in K(D)_n \# k[\Gamma]$ with $xy \in K(D)_n \# k[\Gamma]$, we have $\varphi(xy) = \varphi(x)\varphi(y)$.

Lemma 2.11. Let $n \geq 1$, and $\varphi : K(D)_n \# k[\Gamma] \to k[\Gamma]$ a coalgebra map, $(\mu_a)_{0 \neq a \in N^p, ht(a) \leq n}$ the family of scalars corresponding to φ by Lemma 2.9, and $u^a = \varphi(a)$ for all $a \in N^p$ with $ht(a) \leq n$. Then the following are equivalent:

1. φ is a partial Hopf algebra map.
2. For all $0 \neq a = (a_1, \ldots, a_p) \in N^p$ with $ht(a) \leq n$,
 - (a) $u^a = \prod_{a_l>0} u^a_l$, where for all $1 \leq l \leq p, u_l = u^{a_l},$ if $a_l > 0$,
 - (b) if $\eta^a \neq \varepsilon$, then $\mu_a = 0$, and $u^a = 0$.
3. (a) As (2) (a).
 - (b) For all $1 \leq l \leq p$ with $ht(c_l) \leq n$, if $\eta^l \neq \varepsilon$, then $u^{c_l} = 0$.

Proof. (1) \Rightarrow (2): If φ is a partial Hopf algebra map, then (a) follows immediately, and to prove (b), let $0 \neq a \in N^p, ht(a) \leq n$, and $g \in \Gamma$, with $\eta^a \neq \varepsilon$. Then

$$\varphi(g^a) = \eta^a(g)u^a g = u^a g,$$

since $g^a = \eta^a(g)g^a$ by (2.10). Thus $u^a = 0$, and it follows by induction on $ht(a)$ from (2.14) that $\mu_a = 0$, since for all $0 \neq b, c \in N^p$ with $ht(b) + ht(c) = ht(a)$, $\eta^b \neq \varepsilon$, or $\eta^c \neq \varepsilon$.

(2) \Rightarrow (3) is trivial. (3) \Rightarrow (1): The coalgebra map φ is a partial Hopf algebra map if and only if for all $b, c \in N^p$ with $ht(b) + ht(c) \leq n$, and $g, h \in \Gamma$,

$$\varphi(z^b g^c h) = u^b g u^c h.$$

By (2.9) and (2.10), $z^b g^c h = \eta^c(g)\gamma_{b,c} z^b+c g h$. Thus (1) is equivalent to (2.17) \[\eta^c(g)\gamma_{b,c} u^{b+c} = u^b u^c \] for all $b, c \in N^p, ht(b) + ht(c) \leq n, g \in \Gamma$.

Let $b, c \in N^p, ht(b) + ht(c) \leq n$. By (a),

$$u^{b+c} = u^b u^c = \prod_{b_l+c_l>0} u^a_l.$$

To prove (2.17) assume that $u^b u^c \neq 0$. Then $u_l \neq 0$ for all l with $c_l > 0$. Hence by (b), $\eta_l = \varepsilon$ for all l with $c_l > 0$, and $\eta^c(g) = 1, \gamma_{b,c} = 1$.

To formulate the main result of this section, we define $M(D)$ as the set of all families $(\mu_l)_{1 \leq l \leq p}$ of elements in k satisfying the following condition for all $1 \leq l \leq p$: If $h_l = 1$ or $\eta_l \neq \varepsilon$, then $\mu_l = 0$.

Theorem 2.12. (1) Let $\mu = (\mu_l)_{1 \leq l \leq p} \in M(D)$. Then there is exactly one Hopf algebra map

$$\varphi_\mu : K(D)\#k[\Gamma] \to k[\Gamma], \varphi|\Gamma = \text{id}$$

such that the family $(\mu_a)_{a \neq 0 \in \mathbb{N}^p}$ associated to φ_μ by Lemma 2.9 satisfies $\mu_{e_l} = \mu_l$ for all $1 \leq l \leq p$.

(2) The map $\mu \mapsto \varphi_\mu$ defined in (1) from $M(D)$ to the set of all Hopf algebra homomorphisms $\varphi : K(D)\#k[\Gamma] \to k[\Gamma]$ with $\varphi|\Gamma = \text{id}$ is bijective.

Proof. (1) We proceed by induction on n to construct partial Hopf algebra maps on $K(D)_{n}\#k[\Gamma]$, the case $n = 0$ being trivial. We assume that we are given a partial Hopf algebra map

$$\varphi : K(D)_{n-1}\#k[\Gamma] \to k[\Gamma], \ n \geq 1,$$

such that $\mu_{e_l} = \mu_l$ for all $1 \leq l \leq p$ with $ht(e_l) \leq n - 1$. Here $(\mu_a)_{a \neq 0 \in \mathbb{N}^p, ht(a) \leq n-1}$ is the family of scalars associated to φ by Lemma 2.9. We define $u^a = \varphi(z^b)$ for all $0 \neq b, ht(b) \leq n - 1$. It is enough to show that there is exactly one partial Hopf algebra map

$$\psi : K(D)_{n}\#k[\Gamma] \to k[\Gamma]$$

extending φ, and such that $\mu_{e_l} = \mu_l$ for all l with $ht(e_l) \leq n$.

Let $a \in \mathbb{N}^p$ with $ht(a) = n$. To define $\psi(z^a) =: u^a$ we distinguish two cases.

If $a = e_l$ for some $1 \leq l \leq p$, we define

$$u^a = \mu_l(1 - h^a) + \sum_{b,c \neq 0, b+c = 2} t^a_{b,c} \mu_b u^c.$$ \(\text{(2.18)}\)

Then (2.15) holds by Lemma 2.8.

If $a = (a_1, \ldots, a_l, 0, \ldots, 0), a_l \geq 1, 1 \leq l \leq p$, and $a \neq e_l$, then $a = r + s$, where $0 \neq r, s = e_l$. We define $u^a = u^r u^s$. To see that u^a satisfies (2.15), using (2.16) we write

$$\Delta(z^r) = h^c \otimes z^c + z^c \otimes 1 + T(c),$$

for all $0 \neq c \in \mathbb{N}^p$.

Since $z^r z^s = z^a$ because of (2.9) (note that $\gamma_{r,s} = 1$ in this case) we see that

$$\Delta(z^r)\Delta(z^s) = h^a \otimes z^a + z^a \otimes 1 + T(r, s),$$

where

$$T(r, s) = h^r z^s \otimes z^r + h^r \otimes z^s + (h^r \otimes z^r + z^r \otimes 1)T(s) + T(r)(h^s \otimes z^s + z^s \otimes 1),$$

and $T(r, s) = T(a)$. Since φ on $K(D)_{n-1}\#k[\Gamma]$ is a coalgebra map,

$$\Delta(u^c) = h^c \otimes u^c + u^c \otimes 1 + (\varphi \otimes \varphi)(T(c)),$$

for all $0 \neq c \in \mathbb{N}^p$ with $ht(c) \leq n - 1$. In particular,

$$\Delta(u^r)\Delta(u^s) = h^a \otimes u^a + u^a \otimes 1 + (\varphi \otimes \varphi)(T(r, s)).$$
Thus \(\Delta(u^a) = h^a \otimes u^a + u^a \otimes 1 + (\varphi \otimes \varphi)(T(a)) \), that is, \(u^a \) satisfies (2.15).

Thus the extension of \(\varphi \) defined by \(\psi(z^ag) = u^ag \) for all \(g \in \Gamma, a \in \mathbb{N}^p, \text{ht}(a) = n \) is a coalgebra map.

To prove that the extension \(\psi \) is a partial Hopf algebra map, we check condition (3) in Lemma 2.11. Since the restriction of \(\psi \) to \(K(D)_{n-1}\#k[\Gamma] \) is a partial Hopf algebra map, (3) (a) is satisfied. To prove (3)(b), let \(1 \leq l \leq p \) with \(\text{ht}(e_l) = n \), \(a = e_l \), and assume \(\eta_l \neq \varepsilon \).

Then for all \(b, c \in \mathbb{N}^p \) with \(b + c = a \), we have \(\eta^b \neq \varepsilon \) or \(\eta^c \neq \varepsilon \). Since \(\varphi \) is a Hopf algebra map, it follows from Lemma 2.11 that \(\mu_b = 0 \) or \(u^a = 0 \). By assumption, \(\mu_l = 0 \). Hence by (2.18), \(u^a = 0 \).

This proves (1) since the uniqueness of the extension follows from Lemma 2.8 and Lemma 2.9.

(2) By Lemma 2.9, the map \(\mu \mapsto \varphi_\mu \) is injective. To prove surjectivity, let \(\varphi : K(D)\#k[\Gamma] \to k[\Gamma] \) be a Hopf algebra map with \(\varphi|\Gamma = \text{id} \).

By Lemma 2.9, \(\varphi \) is defined by a family \(\{\mu_a\}_{0 \neq a \in \mathbb{N}^p} \) of scalars. By (1), \(\varphi \) is determined by the values \(\mu_{e_l}, 1 \leq l \leq p \).

\[u_l(\mu) = \varphi_\mu(z_l) \in k[\Gamma]. \]

If \(\alpha \) is a positive root in \(\Phi^+ \) with \(\alpha = \beta_l \), we define \(u_\alpha(\mu) = u_l(\mu) \).

Note that by (2.14), each \(u_\alpha(\mu) \) lies in the augmentation ideal of \(k[g_i^{N_i} \mid 1 \leq i \leq \theta] \).

3. Linking

3.1. Notations

In this Section we fix a finite abelian group \(\Gamma \), and a datum \(D = D(\Gamma, (g_i)_{1 \leq i \leq \theta}, (\chi_i)_{1 \leq i \leq \theta}, (a_{ij})_{1 \leq i,j \leq \theta}) \) of finite Cartan type. We follow the notations of the previous Section, in particular, \(q_{ij} = \chi_j(g_i) \) for all \(i, j \).

For all \(1 \leq i, j \leq \theta \) we write \(i \sim j \) if \(i \) and \(j \) are in the same connected component of the Dynkin diagram of \((a_{ij}) \). Let \(\mathcal{X} = \{I_1, \ldots, I_t\} \) be the set of connected components of \(I = \{1, 2, \ldots, \theta\} \). We assume

1. \(q_{ij} \) has odd order for all \(i, j \), and
2. the order of \(q_{ii} \) is prime to 3, if \(i \) lies in a component \(G_2 \).

For all \(J \in \mathcal{X} \), let \(N_{J} \) be the common order of \(q_{ii}, i \in J \).

As in Section 2.2, for all \(J \in \mathcal{X} \), we choose a reduced decomposition of the longest element \(w_{0,J} \) of the Weyl group \(W_J \) of the root system
\(\Phi_J\) of \((a_{ij})_{i,j \in J}\). Then for all \(J, K \in \mathcal{X}\), \(w_{0,J}\) and \(w_{0,K}\) commute in the Weyl group \(W\) of the root system \(\Phi\) of \((a_{ij})_{1 \leq i,j \leq \theta}\), and

\[
w_0 = w_{0, I_1} w_{0, I_2} \cdots w_{0, I_t}\]

gives a reduced representation of the longest element of \(W\). For all \(J \in \mathcal{X}\), let \(p_J\) be the number of positive roots in \(\Phi^+\), and

\[
\Phi^+_J = \{\beta_{j,1}, \ldots, \beta_{j,p_J}\}
\]

the corresponding convex ordering. Then

\[
\Phi^+ = \{\beta_{I,1}, \ldots, \beta_{I,p_I}, \ldots, \beta_{I,p_I}, \ldots, \beta_{I,p_{I_t}}\}
\]

is the convex ordering corresponding to the reduced representation of \(w_0 = w_{0, I_1} w_{0, I_2} \cdots w_{0, I_t}\). We also write

\[
\Phi^+ = \{\beta_1, \ldots, \beta_p\}, \quad p = \sum_{J \in \mathcal{X}} p_J,
\]

for this ordering.

In Section 2.1 we have defined root vectors \(x_\alpha\) in the free algebra \(k\langle x_1, \ldots, x_\theta \rangle\) for each positive root in \(\Phi^+_J \subset \Phi, J \in \mathcal{X}\).

We recall a notion from [AS4].

Definition 3.1. A family \(\lambda = (\lambda_{ij})_{1 \leq i<j \leq \theta, i \not\sim j}\) of elements in \(k\) is called a family of linking parameters for \(D\) if the following condition is satisfied for all \(1 \leq i<j \leq \theta, i \not\sim j\): If \(g_ig_j = 1\) or \(\chi_i \chi_j \neq \varepsilon\), then \(\lambda_{ij} = 0\). Vertices \(1 \leq i, j \leq \theta\) are called linkable if \(i \not\sim j\), \(g_ig_j \neq 1\) and \(\chi_i \chi_j = \varepsilon\).

Any vertex \(i\) is linkable to at most one vertex \(j\), and if \(i, j\) are linkable, then \(q_{ii} = q_{jj}^{-1}\) [AS4, Section 5.1].

The free algebra \(k\langle x_1, \ldots, x_\theta \rangle\) is a braided Hopf algebra in \(\mathcal{Y}D\) as explained in Section 1.1. Then \(k\langle x_1, \ldots, x_\theta \rangle \# k[\Gamma]\) is a Hopf algebra as in 1.2. For simplicity we write \(xg\) instead of \(x \# g\) for elements \(x \in k\langle x_1, \ldots, x_\theta \rangle\) and \(g \in \Gamma\).

3.2. The Hopf algebra \(U(D, \lambda)\)

We assume the situation of Section 3.1.

Definition 3.2. Let \(\lambda = (\lambda_{ij})_{1 \leq i<j \leq \theta, i \not\sim j}\) be a family of linking parameters for \(D\). Let \(U(D, \lambda)\) be the quotient Hopf algebra of \(k\langle x_1, \ldots, x_\theta \rangle \# k[\Gamma]\) modulo the ideal generated by

\[
\begin{align*}
(3.3) \quad & \text{ad}_c(x_i)^{1-a_{ij}}(x_j), \quad \text{for all } 1 \leq i, j \leq \theta, i \sim j, i \not\sim j, \\
(3.4) \quad & x_ix_j - q_{ij}x_jx_i - \lambda_{ij}(1 - g_ig_j), \quad \text{for all } 1 \leq i < j \leq \theta, i \not\sim j.
\end{align*}
\]
We denote the images of x_i and $g \in \Gamma$ in $U(\mathcal{D}, \lambda)$ again by x_i and g. The elements in (3.3) and (3.4) are skew-primitive. Hence $U(\mathcal{D}, \lambda)$ is a Hopf algebra with

$$\Delta(x_i) = g_i \otimes x_i + x_i \otimes 1, \quad 1 \leq i \leq \theta.$$

Theorem 3.3. Let Γ be a finite abelian group, and \mathcal{D} a datum of finite Cartan type satisfying (3.1) and (3.2). Let λ be a family of linking parameters for \mathcal{D}. Then

1. The elements

 $$x_{\beta_1}^{a_1}x_{\beta_2}^{a_2} \cdots x_{\beta_p}^{a_p}g, \quad a_1, a_2, \ldots, a_p \geq 0, \quad g \in \Gamma,$$

 form a basis of the vector space $U(\mathcal{D}, \lambda)$.

2. Let $J \in \mathcal{X}$, and $\alpha \in \Phi^+, \beta \in \Phi_+$. Then $[x_\alpha, x_\beta^N]_c = 0$, that is,

 $$x_\alpha x_\beta^N = q_{\alpha, \beta}^N x_\alpha^N x_\beta.$$

Proof. We adapt the method of proof of [AS4, Section 5.3] and proceed by induction on the number t of connected components.

If I is connected, (1) and (2) follow from Theorem 2.5.

If $t > 1$, we assume that $I_1 = \{1, 2, \ldots, \tilde{\theta}\}$, $1 \leq \tilde{\theta} < \theta$. For all $1 \leq i \leq \tilde{\theta}$, let l_i be the least common multiple of the orders of g_i and χ_i, $1 \leq i \leq \tilde{\theta}$. Let $\Gamma = \{h_1, \ldots, h_{\tilde{\theta}} \mid h_i h_j = h_j h_i, h_i^{l_i} = 1 \text{ for all } i, j\}$, and define for all $1 \leq i \leq \theta$ the character η_i of Γ by $\eta_i(h_i) = \chi_i(g_i)$, $1 \leq i, j \leq \tilde{\theta}$. Then we define

$$\mathcal{D}_1 = \mathcal{D}(\tilde{\Gamma}, (h_i)_{1 \leq i \leq \tilde{\theta}, (\eta_i)_{1 \leq i \leq \tilde{\theta}, (a_{ij})_{1 \leq i, j \leq \tilde{\theta}}}).$$

Let $\mathcal{D}_2 = \mathcal{D}(\Gamma, (g_i)_{\tilde{\theta} \leq i < \theta}, (\chi_i)_{\tilde{\theta} \leq i < \theta}, (a_{ij})_{\tilde{\theta} < i, j < \theta})$ be the restriction of \mathcal{D} to $I_2 \cup \cdots \cup I_t$, and $\lambda_2 = (\chi_i)_{\tilde{\theta} \leq i < \theta, i \neq j}$. We define $U = U(\mathcal{D}_1)$ (with empty family of linking parameters) with generators $x, \ldots, x_{\tilde{\theta}}$, and $h \in \tilde{\Gamma}$, and $A = U(\mathcal{D}_2, \lambda_2)$ with generators $y_{\tilde{\theta} + 1}, \ldots, y_\theta$, and $g \in \tilde{\Gamma}$.

It is shown in [AS4, Lemma 5.19] that there are algebra maps γ_i, (ε, γ)-derivations δ_i, and a Hopf algebra map φ,

$$\gamma_i : A \rightarrow k, \quad \delta_i : A \rightarrow k, \quad \varphi : U \rightarrow (A^0)^{\text{cop}}, \quad 1 \leq i \leq \tilde{\theta},$$

such that for all $1 \leq i \leq \tilde{\theta} < j \leq \theta$,

$$\gamma_i \gamma_j = \gamma_j \gamma_i, \quad \gamma_i(y_j) = 0,$$

$$\delta_i \gamma_j = 0, \quad \delta_i(y_j) = -\chi_i(g_j) \lambda_{ij},$$

$$\varphi(h_i) = \gamma_i, \quad \varphi(x_i) = \delta_i.$$

Then $\sigma : U \otimes A \otimes U \otimes A \rightarrow U \otimes A$, defined for all $u, v \in U$, $a, b \in A$ by

$$\sigma(u \otimes a, v \otimes b) = \varepsilon(u) \tau(v, a) \varepsilon(b), \quad \tau(v, a) = \varphi(v)(a),$$
is a 2-cocycle on the tensor product Hopf algebra of U and A, and $(U \otimes A)_\sigma$ is the Hopf algebra with twisted multiplication defined in (1.9). Multiplication in $(U \otimes A)_\sigma$ is given for all $u, v \in U, a, b \in A$ by

$$(u \otimes a) \cdot_\sigma (v \otimes b) = u \tau(v(1), a(1))v(2) \otimes a(2)\tau^{-1}(v(3), a(3))b,$$

with $\tau^{-1}(u, a) = \varphi(u)(S^{-1}(a))$.

The group-like elements $h_i \otimes g_i^{-1}$, $1 \leq i \leq \tilde{\theta}$, are central in $(U \otimes A)_\sigma$, and as in the last part of the proof of [AS4, Theorem 5.17] it can be seen that the map

$$(U \otimes A)_\sigma \to U(D, \lambda), \quad x_i \otimes 1 \mapsto x_i, \quad h_i \otimes 1 \mapsto g_i, \quad 1 \otimes y_j \mapsto x_j, \quad 1 \otimes g \mapsto g$$

for all $1 \leq i \leq \tilde{\theta} < j \leq \theta$, $g \in \Gamma$, induces an isomorphism of Hopf algebras

$$(U \otimes A)_\sigma/(h_i \otimes g_i^{-1} - 1 \otimes 1 \mid 1 \leq i \leq \tilde{\theta}) \cong U(D, \lambda).$$

By induction and Theorem 2.5, the elements

$$x_{\beta_1} a_{p_1} \cdots x_{\beta_{p_1}} h \otimes y_{\beta_{p_1+1}} a_{p_{p_1+1}} \cdots y_{\beta_p} a_p,$$

$a_1, \ldots, a_p \geq 0, h \in \tilde{\Gamma}, g \in \Gamma,$

are a basis of $U \otimes A$. It follows from (3.5) that for all $p_1 < l \leq p$ and $1 \leq i \leq \tilde{\theta}$,

$$(1 \otimes y_{\beta_i}) \cdot_\sigma (h_i \otimes 1) = \chi_i(g_{\beta_i})h_i \otimes y_{\beta_i}.$$

Hence

$$(x_{\beta_1} a_{p_1} \cdots x_{\beta_{p_1}} h \otimes y_{\beta_{p_1+1}} a_{p_{p_1+1}} \cdots y_{\beta_p} a_p) \cdot_\sigma (h \otimes g), a_1, \ldots, a_p \geq 0, h \in \tilde{\Gamma}, g \in \Gamma,$$

is a basis of $(U \otimes A)_\sigma$.

Let $P = \{ h \otimes g \in (U \otimes A)_\sigma \mid h \in \tilde{\Gamma}, g \in \Gamma \}$, and let $\bar{P} \subset P$ be the subgroup generated by $h_i \otimes g_i^{-1}$, $1 \leq i \leq \tilde{\theta}$. Then

$$\Gamma \to P/\bar{P}, \quad g \mapsto \tilde{\Gamma} \otimes g,$$

is a group isomorphism. By (3.6), $(U \otimes A)_\sigma \otimes_k [P/\bar{P}] \otimes [P/\bar{P}] \cong U(D, \lambda)$. Hence

$$x_{\beta_1} a_{p_1} x_{\beta_2} a_{p_2} \cdots x_{\beta_p} a_p,$$

$a_1, a_2, \ldots, a_p \geq 0, g \in \Gamma,$

is a basis of $U(D, \lambda)$.

To prove (2), we first show that for all $\tilde{\theta} < i \leq \theta$, and $\beta \in \Phi^+_1$, with $N = N_{l_1}$

$$(1 \otimes y_i) \cdot_\sigma (x_{\beta}^N \otimes 1) = \chi_{\beta}(g_i)(x_{\beta}^N \otimes 1) \cdot_\sigma (1 \otimes y_i)$$

in $(U \otimes A)_\sigma$. We use the notations of Section 2.2 with $N = N_{l_1}, z_\beta = x_{\beta}^N$. By (2.16)

$$\Delta_U(z_\beta) = g_{\beta}^N \otimes z_\beta + z_\beta \otimes 1 + \sum_{b,c \neq 0, b+c=\beta} t_{b,c}^a z^b h^c \otimes z^c.$$

Since \(\Delta(y_i) = g_i \otimes y_i + y_i \otimes 1 \), and
\[
\Delta^2(y_i) = g_i \otimes g_i \otimes y_i + g_i \otimes y_i \otimes 1 + y_i \otimes 1 \otimes 1,
\]
we have for all \(u \in U \) by (3.5)
\[
(1 \otimes y_i) \cdot (u \otimes 1) = \varphi(u_{(1)})(g_i)u_{(2)} \otimes g_i \varphi(u_{(3)})(S^{-1}(y_i))
+ \varphi(u_{(1)})(g_i)u_{(2)} \otimes y_i \varphi(u_{(3)})(1)
+ \varphi(u_{(1)})(y_i)u_{(2)} \otimes 1 \varphi(u_{(3)})(1).
\]
It follows from the definition of \(\varphi \) that
\[
\varphi(x_{\beta_i})(g) = 0 \text{ for all } \beta_i \in \Phi^+_1, g \in \Gamma.
\]
Hence to compute \((1 \otimes y_i) \cdot (u \otimes 1) \) with \(u = z_\beta \), we only need to take into account the term \(g_\beta^N \otimes z_\beta \otimes 1 \) of \(\Delta^2(z_\beta) \), and we obtain
\[
(1 \otimes y_i) \cdot (u \otimes 1) = \varphi(g_\beta^N(y_i_{(1)}))z_\beta \otimes y_i_{(2)} \varphi(1)(S^{-1}(y_i_{(3)}))
= \varphi(g_\beta^N(y_i_{(1)}))z_\beta \otimes y_i_{(2)}
= \varphi(g_\beta^N(y_i))z_\beta \otimes y_i + \varphi(g_\beta^N)(y_i)z_\beta \otimes 1
= \chi_\beta^N(g_i) \varphi(x_{\beta_i}(1 \otimes y_i)),
\]
since \(\varphi(g_\beta^N) = \chi_\beta^N \) and \(\varphi(g_\beta^N)(y_i) = 0 \) by the definition of \(\varphi \).

From (3.6) and (3.7) we see that for all simple roots \(\alpha \in \Phi^+_K, K \in \mathcal{X}, K \neq I_1 \) and all roots \(\beta \in \Phi^+_J \) with \(J = I_1 \)
\[
(3.8)
\]
\[
\alpha x_{\beta_i} x_{\beta_j} = \chi_\beta^{N_J}(g_\alpha) x_{\beta_i}^{N_J} x_{\alpha}
\]
in \(U(D, \lambda) \). Since the root vectors \(x_\alpha \) are homogeneous, (3.8) holds for all \(\alpha \in \Phi^+_K, K \neq I_1 \), and \(\beta \in \Phi^+_I \). Since \(U(D, \lambda) \) and the root vectors \(x_\alpha, \alpha \in \Phi^+ \), do not depend on the order of the connected components, we can reorder the connected components and obtain (3.8) for all positive roots \(\alpha, \beta \) lying in different connected components. For roots in the same connected component, (3.8) follows from Theorem 2.5.

\[
\square
\]

4. Finite-dimensional quotients

4.1. A general criterion. We need a generalization of Theorem [AS5, 6.24].

In this section, let \(\Gamma \) be an abelian group, \(A \) an algebra containing the group algebra \(k[\Gamma] \) as a subalgebra and \(p \geq 1 \). We assume
\[
y_1, \ldots, y_p \in A, h_1, \ldots, h_p \in \Gamma, \psi_1, \ldots, \psi_p \in \hat{\Gamma}, \text{ and } N_1, \ldots, N_p \geq 1.
\]
such that
\begin{equation}
(4.1) \quad gy_l = \psi_l(g)y_lg, \quad \text{for all } 1 \leq l \leq p, g \in \Gamma,
\end{equation}
\begin{equation}
(4.2) \quad y_k y_l^{N_i} = \psi_l^{N_i}(h_k)y_k^{N_l} y_l, \quad \text{for all } 1 \leq k, l \leq p,
\end{equation}
\begin{equation}
(4.3) \quad y_p^a \cdots y_p^{a_p} g, \quad a_1, \ldots, a_p \geq 0, g \in \Gamma, \quad \text{form a basis of } A.
\end{equation}
For all \(a = (a_1, \ldots, a_p) \in \mathbb{N}^p\), we define \(y^a = y_1^{a_1} \cdots y_p^{a_p}\) and
\[\mathbb{L} = \{l = (l_1, \ldots, l_p) \in \mathbb{N}^p \mid 0 \leq l_i < N_i \text{ for all } 1 \leq i \leq p\}.\]

Hence any element of \(y \in A\) can be written as
\[y = \sum_{l \in \mathbb{L}, a \in \mathbb{N}^p} y^l y^a N w_{l,a}, \quad w_{l,a} \in k[\Gamma] \text{ for all } l \in \mathbb{L}, a \in \mathbb{N}^p,\]
where the coefficients \(w_{l,a} \in k[\Gamma]\) are uniquely determined. In [AS5] we assumed that \(A = R \# k[\Gamma]\), and the subalgebra \(R\) of \(A\) generated by \(y_1, \ldots, y_p\) had the basis \(y_1^{a_1} \cdots y_p^{a_p}, a_1, \ldots, a_p \geq 0\). Hence for \(y \in R\) we could assume that the \(w_{l,a}\) were scalars.

Theorem 4.1. Assume the situation above, and let \(u_l \in k[\Gamma], 1 \leq l \leq p\). Then the following are equivalent:

1. The residue classes of \(y_1^{a_1} \cdots y_p^{a_p} g, a_1, \ldots, a_p \geq 0, g \in \Gamma, \) form a basis of the quotient algebra \(A/(y_1^{N_1} - u_l \mid 1 \leq l \leq p)\).
2. For all \(1 \leq l \leq p, u_l \) is central in \(A\), and if \(\psi_l^{N_i} \neq \varepsilon\), then \(u_l = 0\).

Proof. As in [AS5] this follows from Lemma [AS5, 6.23]. To extend the proof of this Lemma to the more general case considered here, we use the following rule. Assume (2), and let \(u^a = u_1^{a_1} \cdots u_p^{a_p}\), for all \(a = (a_1, \ldots, a_p) \in \mathbb{N}^p\). For all \(1 \leq l \leq p\), let \(\tilde{\psi}_l : k[\Gamma] \to k[\Gamma]\) be the algebra isomorphism with \(\tilde{\psi}_l(g) = \psi_l(g)g\) for all \(g \in \Gamma\). Then
\begin{equation}
\psi^a w^N (w) = u^a w, \quad \text{for all } w \in k[\Gamma], a \in \mathbb{N}^p,
\end{equation}
where \(\tilde{\psi}^a N = \psi_1^{a_1 N_1} \cdots \psi_p^{a_p N_p}\). \(\square\)

4.2. The Hopf algebra \(u(\mathcal{D}, \lambda, \mu)\).

Let \(\Gamma\) be a finite abelian group, and \(\mathcal{D} = \mathcal{D}(\Gamma, (g_i)_{1 \leq i \leq \theta}, (\chi_i)_{1 \leq i \leq \theta}, (y_{ij})_{1 \leq i, j \leq \theta})\) a datum of finite Cartan type. We assume the situation of Section 3.1.

Definition 4.2. A family \(\mu = (\mu_\alpha)_{\alpha \in \Phi^+}\) of elements in \(k\) is called a **family of root vector parameters** for \(\mathcal{D}\) if the following condition is satisfied for all \(\alpha \in \Phi_j^+, J \in \mathcal{X}\): If \(g_\alpha^{N_J} = 1\) or \(\chi_\alpha^{N_J} \neq \varepsilon\), then \(\mu_\alpha = 0\).

Let \(\mu\) be a family of root vector parameters for \(\mathcal{D}\). For all \(J \in \mathcal{X}\), and \(\alpha \in \Phi_j^+\), we define
\begin{equation}
\pi_j(\mu) = (\mu_\beta)_{\beta \in \Phi_j^+}, \quad \text{and } u_\alpha(\mu) = u_\alpha(\pi_j(\mu)),
\end{equation}
where \(u_\alpha(\pi_J(\mu)) \) is introduced in Definition 2.13. Let \(\lambda \) be a family of linking parameters for \(\mathcal{D} \). Then we define

\[
(4.6) \quad u(\mathcal{D}, \lambda, \mu) = U(\mathcal{D}, \lambda)/(x^{N_J}_\alpha - u_\alpha(\mu) \mid \alpha \in \Phi^+_J, J \in \mathcal{X}).
\]

By abuse of language we still write \(x_i \) and \(g \) for the images of \(x_i \) and \(g \in \Gamma \) in \(u(\mathcal{D}, \lambda, \mu) \). For all \(1 \leq l \leq p \), we define \(N_l = N_{j_l} \), if \(\beta_l \in \Phi^+_J, J \in \mathcal{X} \).

Lemma 4.3. Let \(\mathcal{D}, \lambda \) and \(\mu \) as above, and \(\alpha \in \Phi^+ \). Then \(u_\alpha(\mu) \) is central in \(U(\mathcal{D}, \lambda) \).

Proof. Let \(\alpha \in \Phi^+_J \), where \(J \in \mathcal{X} \), and \(N = N_J \). To simplify the notation, we assume \(J = I_1 = \{1, 2, \ldots, \tilde{\theta}\} \), and \(\Phi^+_J = \{\beta_1, \beta_2, \ldots, \beta_{\tilde{\theta}}\} \). We apply the results and notations of Section 2.2 to the connected component \(I_1 \). For all \(a = (a_1, \ldots, a_{\tilde{\theta}}) \in \mathbb{N}^\tilde{\theta} \), and \(1 \leq i \leq \tilde{\theta} \), we will show that

\[
(4.7) \quad \mu_a h^a x_i = \mu_a x_i h^a.
\]

We can assume that \(\mu_a \neq 0 \). Let \(1 \leq l \leq \tilde{\theta} \), and \(\beta_l = \sum_{j=1}^{\tilde{\theta}} n_j \alpha_j \), where \(n_j \in \mathbb{N} \) for all \(1 \leq j \leq \tilde{\theta} \). Then by definition, \(g_{\beta_l} = \prod_{1 \leq j \leq \tilde{\theta}} g_{\beta_j}^{n_j} \), and \(\chi_{\beta_l} = \prod_{1 \leq j \leq \tilde{\theta}} \chi_{\beta_j}^{n_j} \). Hence

\[
\chi_i(g_{\beta_l}) = \prod_{1 \leq j \leq \tilde{\theta}} q_{\beta_l}^{a_{ij} N_{\beta_j}} = 1,
\]

since \(q_{ii}^N = 1 \), if \(i \in I_1 \), and \(a_{ij} = 0 \), if \(i \notin I_1 \). By Lemma 2.11, \(\chi_{\beta_l}^N = \varepsilon \) for all \(1 \leq l \leq \tilde{\theta} \) with \(a_l > 0 \). Hence \(\chi_i(g_{\beta_l}^N) = 1 \) for all \(l \) with \(a_l > 0 \). This implies (4.7) since \(h^a x_i = \chi_i(h^a) x_i h^a \).

Finally we prove by induction on \(\text{ht}(g) \) using (4.7) and (2.14) that \(a^a \) is central in \(U(\mathcal{D}, \lambda) \) (and in \(k(x_1, \ldots, x_{\tilde{\theta}}) \# k[\Gamma] \)). \(\square \)

Theorem 4.4. Let \(\mathcal{D} \) be a datum of finite Cartan type satisfying (3.1) and (3.2). Let \(\lambda \) and \(\mu \) be families of linking and root vector parameters for \(\mathcal{D} \). Then \(u(\mathcal{D}, \lambda, \mu) \) is a quotient Hopf algebra of \(U(\mathcal{D}, \lambda) \) with group-like elements \(G(u(\mathcal{D}, \lambda, \mu)) \cong \Gamma \), and the elements

\[
x_{\beta_1}^{a_1} x_{\beta_2}^{a_2} \cdots x_{\beta_p}^{a_p} g, \quad 0 \leq a_l < N_l, \quad 1 \leq l \leq p, \quad g \in \Gamma
\]

form a basis of \(u(\mathcal{D}, \lambda, \mu) \). In particular,

\[
\dim u(\mathcal{D}, \lambda, \mu) = \prod_{J \in \mathcal{X}} N_{\beta_l}^{[\Phi^+_J]} |\Gamma|.
\]

Proof. By Theorem 3.3, the elements

\[
x_{\beta_1}^{a_1} x_{\beta_2}^{a_2} \cdots x_{\beta_p}^{a_p} g, \quad 0 \leq a_l, \quad 1 \leq l \leq p, \quad g \in \Gamma
\]
are a basis of $U(D, \lambda)$. We want to apply Theorem 4.1 with
\[y_l = x_{\beta_l}, \quad \psi_l = \chi_{\beta_l}, \quad u_l = u_{\beta_l}(\mu), \quad 1 \leq l \leq p. \]

For each connected component $J \in \mathcal{X}$ we apply the results of Section 2.2 with
\[\eta_l = \chi_{N_J \beta_l}, \quad 1 \leq l \leq p, \beta_l \in \Phi^+_J. \]

If $\chi_{N_J \beta_l} \neq \varepsilon$ for some $1 \leq l \leq p, \beta_l \in \Phi^+_J$, then by assumption, $\mu_{\beta_l} = 0$, and by Lemma 2.11, $u_{\beta_l}(\mu) = 0$. By Lemma 4.7, $u_{\beta_l}(\mu)$ is central in $U(D, \lambda)$. Hence the claim concerning the basis of $u(D, \lambda, \mu)$ follows from Theorem 3.3 and Theorem 4.1.

We now show that $u(D, \lambda, \mu)$ is a Hopf algebra. Let $J \in \mathcal{X}$. We denote the restriction of D to the connected component J by D_J. By Theorem 2.12, the map $\varphi_{\mu} : K(D_J)\#k[\Gamma] \rightarrow k[\Gamma]$ is a Hopf algebra homomorphism. The kernel of φ_{μ} is generated by all $x_{\alpha}^{N_J} - u_{\alpha}(\mu), \alpha \in \Phi^+_J$. Hence the elements $x_{\alpha}^{N_J} - u_{\alpha}(\mu), \alpha \in \Phi^+_J$, generate a Hopf ideal in $K(D_J)\#k[\Gamma]$ and in $U(D, \lambda)$.

The Hopf algebra $u(D, \lambda, \mu)$ is generated by the skew-primitive elements x_1, \ldots, x_{θ} and the image of Γ. In particular, $G(u(D, \lambda, \mu)) \cong \Gamma$. □

For explicit examples of the Hopf algebras $u(D, \lambda, \mu)$ see [AS5, Section 6] for type A_n, $n \geq 1$, and [BDR] for type B_2. In these papers, and for these types, the elements $u_{\alpha}(\mu)$ are precisely written down. An interesting problem is to find an explicit algorithm describing the $u_{\alpha}(\mu)$ for any connected Dynkin diagram.

5. The associated graded Hopf algebra

5.1. Nichols algebras. To determine the structure of a given pointed Hopf algebra, we proceed as in [AS1] and study the associated graded Hopf algebra.

Let A be a pointed Hopf algebra with group of group-like elements $G(A) = \Gamma$. Let
\[A_0 = k[\Gamma] \subset A_1 \subset \cdots \subset A, \quad A = \cup_{n \geq 0} A_n \]
be the coradical filtration of A. We define the associated graded Hopf algebra [M, 5.2.8] by
\[\text{gr}(A) = \oplus_{n \geq 0} A_n/A_{n-1}, \quad A_{-1} = 0. \]

Then $\text{gr}(A)$ is a pointed Hopf algebra with the same dimension and coradical as A. The projection map $\pi : \text{gr}(A) \rightarrow k[\Gamma]$ and the inclusion
ι : k[Γ] → gr(A) are Hopf algebra maps with ιπ = id_k[Γ]. Let
\[R = \{ x ∈ gr(A) \mid (id ⊗ π)Δ(x) = x ⊗ 1 \} \]
be the algebra of k[Γ]-coinvariant elements. Then \(R = \oplus_{n≥0} R(n) \) is a graded Hopf algebra in \(\mathcal{YD} \), and by (1.7)
\[\text{gr}(A) ∼ = R#k[Γ]. \]
Let \(V = P(R) ∈ \mathcal{YD} \) be the Yetter-Drinfeld module of primitive elements in \(R \). We call its braiding
\[c : V ⊗ V → V ⊗ V \]
the \textit{infinitesimal braiding} of \(A \).

Let \(\mathfrak{B}(V) \) be the subalgebra of \(R \) generated by \(V \). Thus \(B = \mathfrak{B}(V) \) is the \textit{Nichols algebra} of \(V \) \cite{AS2}, that is,
\[
(5.3) \quad B = \oplus_{n≥0} B(n) \text{ is a graded Hopf algebra in } \mathcal{YD},
\]
\[
(5.4) \quad B(0) = k1, \quad B(1) = V,
\]
\[
(5.5) \quad B(1) = P(B),
\]
\[
(5.6) \quad B \text{ is generated as an algebra by } B(1).
\]
\(\mathfrak{B}(V) \) only depends on the vector space \(V \) with its Yetter-Drinfeld structure (see the discussion in \cite{AS5, Section 2}). As an algebra and coalgebra, \(\mathfrak{B}(V) \) only depends on the braided vector space \((V, c) \).

We assume in addition that \(A \) is finite-dimensional and \(Γ \) is abelian. Then there are \(g_1, \ldots, g_θ ∈ Γ \), \(χ_1, \ldots, χ_θ ∈ \hat{Γ} \) and a basis \(x_1, \ldots, x_θ \) of \(V \) such that \(x_i ∈ V_{g_i}^{χ_i} \) for all \(1 ≤ i ≤ θ \). We call
\[(q_{ij} = χ_j(g_i))_{1≤i,j≤θ} \]
the \textit{infinitesimal braiding matrix} of \(A \).

The first step to classify pointed Hopf algebras is the computation of the Nichols algebra.

Using results of Lusztig \cite{L1}, \cite{L2}, Rosso \cite{Ro} and Müller \cite{M1} and twisting we proved in \cite[Theorem 4.5]{AS4} the following description of the Nichols algebra of Yetter-Drinfeld modules of finite Cartan type.

\begin{theorem}
Let \(D = D(Γ, (g_i)_{1≤i≤θ}, (χ_i)_{1≤i≤θ}, (a_{ij})_{1≤i,j≤θ}) \) be a datum of finite Cartan type with finite abelian group \(Γ \). Assume (3.1) and (3.2). Let \(V ∈ \mathcal{YD} \) be a vector space with basis \(x_1, \ldots, x_θ \) and \(x_i ∈ V_{g_i}^{χ_i} \) for all \(1 ≤ i ≤ θ \). Then \(\mathfrak{B}(V) \) is the quotient algebra of \(T(V) \) modulo the ideal generated by the elements
\[\text{ad}_c(x_i)^{1-a_{ij}}(x_j) \text{ for all } 1 ≤ i, j ≤ θ, i ≠ j, \]
\[x_α^{N_J} \text{ for all } α ∈ Φ_f^+, J ∈ X. \]
\end{theorem}
Assume the situation of Theorem 5.1, and let λ and μ be linking and root vector parameters for \mathcal{D}. Then
\[
\text{gr}(u(\mathcal{D}, \lambda, \mu)) \cong u(\mathcal{D}, 0, 0) \cong \mathcal{B}(V) \# k[\Gamma].
\]

Proof. Let $A = u(\mathcal{D}, \lambda, \mu)$. There is a well-defined Hopf algebra map
\[
u(\mathcal{D}, 0, 0) \rightarrow \text{gr}(u(\mathcal{D}, \lambda, \mu)),
\]
mapping $x_i, 1 \leq i \leq \theta$, onto the residue class of x_i in A_1/A_0, and $g \in \Gamma$ onto g. Since $\dim(u(\mathcal{D}, 0, 0)) = \dim(u(\mathcal{D}, \lambda, \mu)) = \dim(\text{gr}(u(\mathcal{D}, \lambda, \mu))$ by Theorem 4.4, it follows that $u(\mathcal{D}, 0, 0) \cong \text{gr}(u(\mathcal{D}, \lambda, \mu))$. By Theorem 5.1, $u(\mathcal{D}, 0, 0) \cong \mathcal{B}(V) \# k[\Gamma]$. \square

As an application of Corollary 5.2 we derive some information about isomorphisms between Hopf algebras of the form $u(\mathcal{D}, \lambda, \mu)$.

Remark 5.3. Let Γ and Γ' be finite abelian groups, and
\[
\mathcal{D} = D(\Gamma, (g_i)_{1 \leq i \leq \theta}, (\chi_i)_{1 \leq i \leq \theta}, (a_{ij})_{1 \leq i,j \leq \theta}),
\]
\[
\mathcal{D}' = D(\Gamma', (g'_i)_{1 \leq i \leq \theta'}, (\chi'_i)_{1 \leq i \leq \theta'}, (a'_{ij})_{1 \leq i,j \leq \theta'})
\]
data of finite Cartan type satisfying (3.1) and (3.2). Moreover we assume
\[
q_{ii} = \chi_i(g_i) > 3 \quad \text{for all } 1 \leq i \leq \theta.
\]
Let λ and λ' be linking parameters, and μ and μ' root vector parameters for \mathcal{D} and \mathcal{D}'. We assume there is a Hopf algebra isomorphism
\[
F : A = u(\mathcal{D}, \lambda, \mu) \rightarrow A' = u(\mathcal{D}', \lambda', \mu').
\]
Then F preserves the coradical filtration and induces an isomorphism $A_0 = k[\Gamma] \cong A'_0 = k[\Gamma']$, given by a group isomorphism $\varphi : \Gamma \rightarrow \Gamma'$, and by Corollary 5.2 an isomorphism
\[
A_1 = k[\Gamma] \oplus \bigoplus_{g \in \Gamma, i \leq \theta} kx_i g \cong A'_1 \oplus \bigoplus_{g' \in \Gamma', i \leq \theta'} kx'_i g'.
\]
Hence (see [AS2, 6.3]) $\theta = \theta'$, and there are a permutation $\rho \in S_\theta$ and elements $0 \neq s_i \in k, 1 \leq i \leq \theta$ such that for all $1 \leq i \leq \theta$,
\[
\varphi(g_i) = g'_{\rho(i)},
\]
\[
\chi_{\rho(i)} \varphi = \lambda_{\rho(i)};
\]
\[
F(x_i) = s_i x'_{\rho(i)}.
\]
Note that the Nichols algebras $u(\mathcal{D}, 0, 0)$ and $u(\mathcal{D}', 0, 0)$ are isomorphic if and only if $\theta = \theta'$, and there are $\varphi, \rho, (s_i)$ with (5.10),(5.11).
Let $q_{ij} = \chi_j^i(g_i)$, and $q'_{ij} = \chi_j^i(g'_i)$, for all $1 \leq i, j \leq \theta$. Then it follows from (5.10), (5.11) and (5.9) that for all $1 \leq i, j \leq \theta$,

(5.13) \hspace{1cm} a_{ij} = a'_{\rho(i)\rho(j)};

(5.14) \hspace{1cm} a_{ij} = a'_{\rho(i)\rho(j)};

since $q_{ii}^{a_{ij}} = q'_{ii}^{a'_{\rho(i)\rho(j)}}$, and $a_{ij} - a'_{\rho(i)\rho(j)} \in \{0, \pm 1, \pm 2, \pm 3\}$. We see from (5.13) that for all $1 \leq i, j \leq \theta$,\n
(5.15) \hspace{1cm} F([x_i, x_j]_c) = s_i s_j x'_{\rho(i)} x'_{\rho(j)} e^c,

hence by the linking relations for all $1 \leq i < j \leq \theta, i \neq j$,

(5.16) \hspace{1cm} \lambda_{ij} = \begin{cases} \frac{s_i s_j \chi_{\rho(i)\rho(j)}}, & \text{if } \rho(i) < \rho(j), \\ -\frac{s_i s_j \chi_{\rho(i)\rho(j)}}{\rho(i)}, & \text{if } \rho(i) > \rho(j). \end{cases}

To obtain more precise results we now assume as in [AS5, 6.26] that for all $1 \leq i, j \leq \theta, i \neq j$,

(5.17) \hspace{1cm} \text{ord}(g_i) = \text{ord}(g'_i) \neq \text{ord}(g_j) = \text{ord}(g'_j).

This forces ρ to be the identity, and we can identify the root systems of \mathcal{D} and \mathcal{D}'. Then

(5.18) \hspace{1cm} F(x_\alpha) = s_\alpha x'_\alpha \text{ for all } \alpha \in \Phi^+,

where we define $s_\alpha = s_1^{n_1} \cdots s_\theta^{n_\theta}$, if $\alpha = \sum_{i=1}^{\theta} n_i \alpha_i \in \Phi^+$. The root vector relations imply

(5.19) \hspace{1cm} s_\alpha^{N_j} u'_\alpha(\mu') = F(u_\alpha(\mu)) = u'_\alpha(\mu), \text{ for all } \alpha \in \Phi^+_J, J \in \mathcal{X}.

It follows from the inductive definition of the $u_\alpha(\mu)$, that (5.18) is equivalent to

(5.20) \hspace{1cm} s_\alpha^{N_j} \mu'_\alpha = \mu_\alpha, \text{ for all } \alpha \in \Phi^+_J, J \in \mathcal{X}.

Conversely these data allow to define a Hopf algebra isomorphism. Assuming (5.17) and $\theta = \theta'$, we conclude that $u(\mathcal{D}, \lambda, \mu)$ is isomorphic to $u(\mathcal{D}', \lambda', \mu')$ if and only if $a_{ij} = a'_{ij}$ for all $1 \leq i, j \leq \theta$, and there are scalars $0 \neq s_i \in k, 1 \leq i \leq \theta$, and a group isomorphism $\varphi : \Gamma \to \Gamma'$ satisfying

(5.21) \hspace{1cm} \varphi(g_i) = g'_i, \text{ for all } 1 \leq i \leq \theta

(5.22) \hspace{1cm} \chi_i = \chi'_i \varphi, \text{ for all } 1 \leq i \leq \theta

(5.23) \hspace{1cm} \lambda_{ij} = s_i s_j \lambda'_{ij}, \text{ for all } 1 \leq i < j \leq \theta

(5.24) \hspace{1cm} s_\alpha^{N_j} \mu'_\alpha = \mu_\alpha, \text{ for all } \alpha \in \Phi^+_J, J \in \mathcal{X}.
In [AS2] and [AS4] we determined the structure of finite-dimensional Nichols algebras assuming that V is of Cartan type and satisfies some more assumptions in the case of small orders (≤ 17) of the diagonal elements q_{ij}. Recent results of Heckenberger [H1], [H2], [H3] together with Theorem 5.1 allow to prove the following very general structure theorem on Nichols algebras.

Theorem 5.4. Let Γ be a finite abelian group, and $V \in \mathcal{YD}$ a Yetter-Drinfeld module such that $\mathcal{B}(V)$ is finite-dimensional. Choose a basis $x_i \in V$ with $x_i \in V^\vee_{g_i}, g_i \in \Gamma, \chi_i \in \hat{\Gamma}$, for all $1 \leq i \leq \theta$. For all $1 \leq i, j \leq \theta$, define $q_{ij} = \chi_j(g_i)$, and assume

\begin{align}
(5.25) & \quad \text{ord}(q_{ij}) \text{ is odd, and ord}(q_{ii}) \text{ is not 3,} \\
(5.26) & \quad \text{ord}(q_{ii}) \text{ is prime to 3 if } q_{ii}q_{ii} \in \{q_{ii}^{-3}, q_{ii}^{-3}\} \text{ for some } l.
\end{align}

Then there is a datum $\mathcal{D} = \mathcal{D}(\Gamma, (g_i)_{1 \leq i \leq \theta}, (\chi_i)_{1 \leq i \leq \theta}, (a_{ij})_{1 \leq i,j \leq \theta})$ of finite Cartan type such that

\[\mathcal{B}(V)^\#k[\Gamma] \cong u(\mathcal{D}, 0, 0). \]

Proof. For all $1 \leq i, j \leq \theta, i \neq j$, let V_{ij} be the vector subspace of V spanned by x_i, x_j. Then $\mathcal{B}(V_{ij})$ is isomorphic to a subalgebra of $\mathcal{B}(V)$, hence it is finite-dimensional. Heckenberger [H1], [H2] classified finite-dimensional Nichols algebras of rank 2. By (5.25) it follows from the list in [H1, Theorem 4] that V_{ij} is of finite Cartan type, that is, there are $a_{ij}, a_{ji} \in \{0, -1, -2, -3\}$ with $a_{ij}a_{ji} \in \{0, 1, 2, 3\}$, and

\[q_{ij}q_{ji} = q_{ii}^{a_{ij}} = q_{jj}^{a_{ji}}. \]

Since $\mathcal{B}(V)^\#k[\Gamma]$ is finite-dimensional, $q_{ii} \neq 1$ for all $1 \leq i \leq \theta$ by [AS1, Lemma 3.1]. Thus $(q_{ij})_{1 \leq i,j \leq \theta}$ is of Cartan type in the sense of [AS2, page 4] with (generalized) Cartan matrix (a_{ij}). In [H3, Theorem 4] Heckenberger extended part (ii) of [AS2, Theorem 1.1] (where we had to exclude some small primes) and showed that a diagonal braiding (q_{ij}) of a braided vector space V is of finite Cartan type if it is of Cartan type and $\mathcal{B}(V)$ is finite-dimensional. Hence (a_{ij}) is a Cartan matrix of finite type, and the claim follows from Theorem 5.1. \(\square\)

5.2. Generation in degree one.

We generalize our results in [AS4, Section 7]. Let A be a finite-dimensional pointed Hopf algebra with Γ, V, and R as in Section 5.1. To prove that $\mathcal{B}(V) = R$, we dualize. Let $S = R^*$ the dual Hopf algebra in \mathcal{YD} as in [AS2, Lemma 5.5]. Then $S = \bigoplus_{n \geq 0} S(n)$ is a graded Hopf algebra in \mathcal{YD}, and by [AS2, Lemma 5.5], R is generated in degree one, that is, $\mathcal{B}(V) = R$, if and only $P(S) = S(1)$. The dual vector space $S(1)$ of $V = R(1)$ has the same braiding (q_{ij}) (with respect to the dual basis) as V. Our strategy
to show \(P(S) = S(1) \) is to identify \(S \) as a Nichols algebra. In the next Lemma we use [H1, H2] to prove a very general version of [AS4, Lemma 7.2].

Lemma 5.5. Let \(\mathcal{D} = \mathcal{D}(\Gamma, (g_i)_{1 \leq i \leq \theta}, (\chi_i)_{1 \leq i \leq \theta}, (a_{ij})_{1 \leq i, j \leq \theta}) \) be a datum of finite Cartan type with finite abelian group \(\Gamma \). Let \(S = \oplus_{n \geq 0} S_n \) be a finite-dimensional graded Hopf algebra in \(\frac{1}{k} \mathcal{YD} \) with \(S(0) = k1 \), and let \(x_1, \ldots, x_\theta \) be a basis of \(S(1) \) with \(x_i \in S(1)\chi_i \) for all \(1 \leq i \leq \theta \). Assume for all \(1 \leq i \leq \theta \) that the order of \(q_{ii} = \chi_i(g_i) \) is odd and \(> 7 \). Then

\[
(5.27) \quad \text{ad}_c(x_i)^{1-a_{ij}}(x_j) = 0 \quad \text{for all} \quad 1 \leq i, j \leq \theta, \ i \neq j.
\]

Proof. We first note that the Nichols algebra of the primitive elements \(P(S) \in \frac{1}{k} \mathcal{YD} \) is finite-dimensional. This can be seen by looking at \(\text{gr}(S\#k[\Gamma]) \).

Assume that there are \(1 \leq i, j \leq \theta, i \neq j \), with \(\text{ad}_c(x_i)^{1-a_{ij}}(x_j) \neq 0 \). We define

\[
y_1 = x_1, \ y_2 = \text{ad}_c(x_i)^{1-a_{ij}}(x_j).
\]

By [AS2, A.1], \(y_2 \) is a primitive element. Since \(y_1, y_2 \) are non-zero elements of different degree, they are linearly independent. We know that the Nichols algebra of \(W = ky_1 + ky_2 \) is finite-dimensional, since \(B(P(S)) \) is finite-dimensional. We denote

\[
h_1 = g_i, \ h_2 = g_i^{1-a_{ij}} \in \Gamma, \quad \eta_1 = \chi_i, \ \eta_2 = \chi_i^{1-a_{ij}} \chi_j \in \hat{\Gamma}.
\]

Thus \(y_i \in S_{h_i}^n, 1 \leq i \leq 2 \). Let \((Q_{ij} = \eta_j(h_i))_{1 \leq i, j \leq 2} \) be the braiding matrix of \(y_1, y_2 \). We compute

\[
Q_{11} = q_{ii}, \ Q_{22} = q_{ii}^{1-a_{ij}}q_{jj}, \ Q_{12}Q_{21} = q_{ii}^{2-a_{ij}}.
\]

By assumption, the order of \(Q_{11} = q_{ii} \) is odd and \(> 3 \). Since \(B(W) \) is finite-dimensional, \(Q_{22} \neq 1 \) by [AS1, Lemma 3.1]. Thus \(Q_{22} \) has odd order, since the orders of \(q_{ii}, q_{jj} \) are odd. By checking Heckenberger’s list in [H1, Theorem 4], and thanks to [H2], we see that the braiding \((Q_{ij}) \) is of finite Cartan type or that we are in case (T3) with

\[
Q_{12}Q_{21} = Q_{11}^{-1}.
\]

Hence there exists \(A_{12} \in \{0, -1, -2, -3\} \) with

\[
Q_{12}Q_{21} = Q_{11}^{A_{12}}.
\]

Since \(Q_{12}Q_{21} = q_{ii}^{2-a_{ij}} \), and \(Q_{11} = q_{ii} \), it follows that the order of \(q_{ii} \) divides \(2 - a_{ij} - A_{12} \in \{2, 3, 4, 5, 6, 7, 8\} \). This is a contradiction since the order of \(q_{ii} \) is odd and \(> 7 \). \(\square \)

The next theorem is one of the main results of this paper.
Theorem 5.6. Let A be a finite-dimensional pointed Hopf algebra with abelian group $G(A) = \Gamma$ and infinitesimal braiding matrix $(q_{ij})_{1 \leq i, j \leq \theta}$. Assume for all $1 \leq i, j \leq \theta$, that the order of q_{ij} is odd, the order of q_{ii} is > 7, and that (5.26) holds. Then A is generated by group-like and skew-primitive elements, that is,

$$R = \mathcal{B}(V),$$

where R is defined by (5.1), and $V = R(1)$.

Proof. We argue as in the proof of [AS4, Theorem 7.6]. Let $S = R^*$ be the dual Hopf algebra in \mathcal{YD}. Then $S(1) = R(1)^*$ has the same braiding (q_{ij}) as $R(1)$ with respect to the dual basis (x_i) of the corresponding basis of $R(1)$. By Theorem 5.4 (q_{ij}) is of finite Cartan type. By Lemma 5.5 the Serre relations (5.7) hold for the elements x_i. Then the root vector relations (5.8) follow by [AS4, Lemma 7.5]. Hence $S \sim B(S(1))$ by Theorem 5.1, and $S(1) = P(S)$. By duality, R is a Nichols algebra. \Box

6. Lifting

From Section 5 we know a presentation of $\text{gr}(A)$ by generators and relations under the assumptions of Theorems 5.4 and 5.6. To lift this presentation to A we need the following formulation of [AS1, Lemma 5.4] which is a consequence of the theorem of Taft and Wilson [M, Theorem 5.4.1]. Here it is crucial that the group is abelian.

Lemma 6.1. Let A be a finite-dimensional pointed Hopf algebra with abelian group $G(A) = \Gamma$. Write $\text{gr}(A) \cong R\# k[\Gamma]$ as in (5.2), and let $V = R(1)$ with basis $x_i \in V_{g_i}^\chi$, $g_i \in \Gamma, \chi_i \in \hat{\Gamma}, 1 \leq i \leq \theta$. Let $A_0 \subset A_1$ be the first two terms of the coradical filtration of A. Then

$$\bigoplus_{g,h \in \Gamma, \varepsilon \neq \chi \in \hat{\Gamma}} P_{g,h}(A) \xrightarrow{\cong} A_1/A_0 \cong V\# k[\Gamma].$$

(6.1) For all $g \in \Gamma$, $P_{g,1}(A)^\varepsilon = k(1 - g)$, and if $\varepsilon \neq \chi \in \hat{\Gamma}$, then

$$P_{g,1}(A)^\chi \neq 0 \iff g = g_i, \chi = \chi_i, \text{ for some } 1 \leq i \leq \theta.$$

(6.2) We can now prove our main structure theorem.

Theorem 6.2. Let A be a finite-dimensional pointed Hopf algebra with abelian group $G(A) = \Gamma$ and infinitesimal braiding matrix $(q_{ij})_{1 \leq i, j \leq \theta}$. Assume for all $1 \leq i, j \leq \theta$, that the order of q_{ij} is odd, the order of q_{ii} is > 7, and that (5.26) holds. Then

$$A \cong u(D, \lambda, \mu),$$

where $D = D(\Gamma, (g_i)_{1 \leq i \leq \theta}, (\chi_i)_{1 \leq i \leq \theta}, (a_{ij})_{1 \leq i, j \leq \theta})$ is a datum of finite Cartan type, and λ and μ are families of linking and root vector parameters for D.

Proof. By Theorems 5.4 and 5.6, there is a datum \(\mathcal{D} \) of finite Cartan type such that \(\text{gr}(A) \cong u(\mathcal{D}, 0, 0) \). By Lemma 6.1, for all \(1 \leq i \leq \theta \) we can choose \(a_i \in P(A)_{0,1}^i \) corresponding to \(x_i \) in (6.1).

We have shown in Theorem [AS4, 6.8] that
\[
\text{ad}_c(a_i)1 - a_{ij}(a_j) = 0, \quad \text{for all } 1 \leq i, j \leq \theta, i \sim j, i \neq j,
\]
for some family \(\lambda \) of linking parameters. Thus there is a homomorphism of Hopf algebras
\[
\varphi : U(\mathcal{D}, \lambda) \to A, \quad \varphi| = \text{id}_\Gamma, \quad \varphi(x_i) = a_i, \quad \text{for all } 1 \leq i \leq \theta.
\]
By Theorem 5.6, \(\varphi \) is surjective.

We now use the notation of Section 2.2 and show that
\[
\varphi(x^N_J^\alpha) \in k[\Gamma] \quad \text{for all } \alpha \in \Phi^+J, J \in \mathcal{X}.
\]

We fix \(J \in \mathcal{X} \) with \(p = |\Phi^+_J| \), and show by induction on \(\text{ht}(g) \) that
\[
\varphi(z^a) = h^a \otimes \varphi(z^a) + \varphi(z^a) \otimes 1 + w,
\]
where by induction
\[
w = \sum_{b,c \neq a, b+c = a} t_{b,c}^a \varphi(z^b)h^c \otimes \varphi(z^c) \in k[\Gamma] \otimes k[\Gamma].
\]
In particular, \(\varphi(z^a) \in A_1 \) by definition of the coradical filtration. We multiply this equation with \(g \otimes g, g \in \Gamma \), from the left and \(g^{-1} \otimes g^{-1} \) from the right. Since \(g z^a g^{-1} = \eta^a(g) z^a \), we obtain \(w = \eta^a(g)w \) for all \(g \in \Gamma \).

Suppose \(\eta^a = \varepsilon \). Then \(w = 0 \), and \(\varphi(z^a) \in P^\kappa_{a,1} \). Then \(\varphi(z^a) = 0 \) by Lemma 6.1 (6.3), since \(\chi_l(g_l) \neq 1 \) for all \(1 \leq l \leq \theta \), but \(\eta^a(h^a) = 1 \) by the Cartan condition (see the proof of [AS2, Lemma 7.5] for a similar computation).

If \(\eta^a = \varepsilon \), then \(\varphi(z^a) \in A_1^\varepsilon = k[\Gamma] \) by Lemma 6.1 (6.2).

This proves (6.5) and (6.4). Then we conclude for each \(J \in \mathcal{X} \) from Theorem 2.12 that the map
\[
K(\mathcal{D}, J)\# k[\Gamma] \to U(\mathcal{D}, \lambda) \xrightarrow{\varphi} A
\]
has the form \(\varphi_{\mu^J} \) for some family of scalars \(\mu^J \) as in Theorem 2.12 for the connected component \(J \). Define \(\mu = (\mu_\alpha)_{\alpha \in \Phi^+} \) by \(\mu_\alpha = \mu^J_\alpha \).
for all $\alpha \in \Phi^+_J$. Then μ is a family of root vector parameters for \mathcal{D}, and the elements $u_\alpha(\mu) \in k[\Gamma]$ are defined in (4.5) for each $J \in \mathcal{X}$ and $\alpha \in \Phi^+_J$. It follows that $\varphi(x^N_J) = u_\alpha(\mu) = \varphi(u_\alpha(\mu))$ for all $J \in \mathcal{X}, \alpha \in \Phi^+_J$. Thus φ factorizes over $u(\mathcal{D}, \lambda, \mu)$. Since $\dim(A) = \dim(\text{gr}(A)) = \dim(u(\mathcal{D}, \lambda, 0, 0)) = \dim(u(\mathcal{D}, \lambda, \mu))$ by Theorem 4.4, φ induces an isomorphism $u(\mathcal{D}, \lambda, \mu) \cong A$. \hfill \Box

Corollary 6.3. Let A be a finite-dimensional pointed Hopf algebra with abelian group $G(A) = \Gamma$ satisfying the assumptions of Theorem 6.2. Then for each prime divisor p of the dimension of A there is a group-like element of order p in A.

Proof. This follows from Theorems 6.2 and 4.4. \hfill \Box

We note that the analog of Cauchy’s theorem in group theory is false for arbitrary, non-pointed Hopf algebras. Let A be a finite-dimensional Hopf algebra with only trivial group-like elements, such as the dual of the group algebra of a finite group $G = [G, G]$. Then A does not contain any Hopf subalgebra of prime dimension, since any Hopf algebra of prime dimension is a group algebra by Zhu’s theorem [Z].

REFERENCES

Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, CIEM - CONICET, (5000) Ciudad Universitaria, Córdoba, Argentina
E-mail address: andrus@mate.uncor.edu

Mathematisches Institut, Universität München, Theresienstr. 39, D-80333 Munich, Germany
E-mail address: Hans-Juergen.Schneider@mathematik.uni-muenchen.de