SMALL QUANTUM GROUPS AND THE CLASSIFICATION OF POINTED HOPF ALGEBRAS

NICOLÁS ANDRUSKIEWITSCH AND HANS-JÜRGEN SCHNEIDER

INTRODUCTION

In this paper we apply the theory of the quantum groups $U_q(\mathfrak{g})$, and of the small quantum groups $u_q(\mathfrak{g})$ for q a root of unity, \mathfrak{g} a semisimple complex Lie algebra, to obtain a classification result for an abstractly defined class of Hopf algebras. Since these Hopf algebras turn out to be deformations of a natural class of generalized small quantum groups, our result can be read as an axiomatic description of generalized small quantum groups.

Let k be an algebraically closed ground-field of characteristic 0. A Hopf algebra A is called *pointed*, if any simple subcoalgebra of A, or equivalently, any simple A-comodule is one-dimensional. If A is cocommutative, or if A is generated as an algebra by group-like and skew-primitive elements, then A is pointed. In particular, the quantum groups $U_q(\mathfrak{g})$ and $u_q(\mathfrak{g})$ are pointed.

Let $G(A) = \{g \in A \mid \Delta(g) = g \otimes g, \varepsilon(g) = 1\}$ be the group of grouplike elements of A. We want to classify finite-dimensional pointed Hopf algebras A with abelian group G(A).

We first describe the data $\mathcal{D}, \lambda, \mu$ we need to define the Hopf algebras of the class we are considering. We fix a finite abelian group Γ .

The datum \mathcal{D} **.** A datum \mathcal{D} of finite Cartan type for Γ ,

$$\mathcal{D} = \mathcal{D}(\Gamma, (g_i)_{1 \le i \le \theta}, (\chi_i)_{1 \le i \le \theta}, (a_{ij})_{1 \le i, j \le \theta})$$

consists of elements $g_i \in \Gamma, \chi_i \in \widehat{\Gamma}, 1 \leq i \leq \theta$, and a Cartan matrix $(a_{ij})_{1 \leq i,j \leq \theta}$ of finite type satisfying

(0.1)
$$q_{ij}q_{ji} = q_{ii}^{a_{ij}}, q_{ii} \neq 1$$
, with $q_{ij} = \chi_j(g_i)$ for all $1 \le i, j \le \theta$.

Results of this paper were obtained during a visit of H.-J. S. at the University of Córdoba, partially supported through a grant of CONICET. The work of N. A. was partially supported by CONICET, Fundación Antorchas, Agencia Córdoba Ciencia, ANPCyT and Secyt (UNC).

The Cartan condition (0.1) implies in particular,

 $\mathbf{2}$

(0.2)
$$q_{ii}^{a_{ij}} = q_{jj}^{a_{ji}} \text{ for all } 1 \le i, j \le \theta.$$

The explicit classification of all data of finite Cartan type for a given finite abelian group Γ is a computational problem. But at least it is a finite problem since the size θ of the Cartan matrix is bounded by $2(\operatorname{ord}(\Gamma))^2$ by [AS2, 8.1], if Γ is an abelian group of odd order. For groups of prime order, all possibilities for \mathcal{D} are listed in [AS2].

Let Φ be the root system of the Cartan matrix $(a_{ij})_{1 \leq i,j \leq \theta}, \alpha_1, \ldots, \alpha_{\theta}$ a system of simple roots, and \mathcal{X} the set of connected components of the Dynkin diagram of Φ . Let $\Phi_J, J \in \mathcal{X}$, be the root system of the component J. We write $i \sim j$, if α_i and α_j are in the same connected component of the Dynkin diagram of Φ . For a positive root $\alpha = \sum_{i=1}^{\theta} n_i \alpha_i, n_i \in \mathbb{N} = \{0, 1, 2, \ldots\}$, for all i, we define

$$g_{\alpha} = \prod_{i=1}^{\theta} g_i^{n_i}, \chi_{\alpha} = \prod_{i=1}^{\theta} \chi_i^{n_i}.$$

We assume that the order of q_{ii} is odd for all i, and that the order of q_{ii} is prime to 3 for all i in a connected component of type G_2 . Then it follows from (0.2) that the order N_i of q_{ii} is constant in each connected component J, and we define $N_J = N_i$ for all $i \in J$.

The parameter λ . Let $\lambda = (\lambda_{ij})_{1 \le i < j \le \theta, i \not\sim j}$ be a family of elements in k satisfying the following condition for all $1 \le i < j \le \theta, i \not\sim j$: If $g_i g_j = 1$ or $\chi_i \chi_j \neq \varepsilon$, then $\lambda_{ij} = 0$.

The parameter μ . Let $\mu = (\mu_{\alpha})_{\alpha \in \Phi^+}$ be a family of elements in k such that for all $\alpha \in \Phi_J^+, J \in \mathcal{X}$, if $g_{\alpha}^{N_J} = 1$ or $\chi_{\alpha}^{N_J} \neq \varepsilon$, then $\mu_{\alpha} = 0$.

Thus λ and μ are finite families of free parameters in k. We can normalize λ and assume that $\lambda_{ij} = 1$, if $\lambda_{ij} \neq 0$.

The Hopf algebra $u(\mathcal{D}, \lambda, \mu)$. The definition of $u(\mathcal{D}, \lambda, \mu)$ in Section 4.2 can be summarized as follows. In Definition 2.13 we associate to any μ and $\alpha \in \Phi^+$ an element $u_{\alpha}(\mu)$ in the group algebra $k[\Gamma]$. By construction, $u_{\alpha}(\mu)$ lies in the augmentation ideal of $k[g_i^{N_i} | 1 \leq i \leq \theta]$. The braided adjoint action $ad_c(x_i)$ of x_i is defined in (1.12), and the root vectors x_{α} are explained in Section 2.1.

The Hopf algebra $u(\mathcal{D}, \lambda, \mu)$ is generated as an algebra by the group Γ , that is, by generators of Γ satisfying the relations of the group, and

 x_1, \ldots, x_{θ} , with the relations:

(Action of the group)	$gx_ig^{-1} = \chi_i(g)x_i$, for all i , and all $g \in \Gamma$,
(Serre relations)	$\operatorname{ad}_c(x_i)^{1-a_{ij}}(x_j) = 0$, for all $i \neq j, i \sim j$,
(Linking relations)	$\operatorname{ad}_{c}(x_{i})(x_{j}) = \lambda_{ij}(1 - g_{i}g_{j}), \text{ for all } i < j, i \nsim j,$
(Root vector relations)	$x_{\alpha}^{N_J} = u_{\alpha}(\mu), \text{ for all } \alpha \in \Phi_J^+, J \in \mathcal{X}.$

The coalgebra structure is given by

$$\Delta(x_i) = g_i \otimes x_i + x_i \otimes 1, \quad \Delta(g) = g \otimes g, \text{ for all } 1 \le i \le \theta, g \in \Gamma.$$

Now we can formulate our main result.

Classification Theorem 0.1. (1) Let \mathcal{D}, λ and μ as above. Assume that q_{ij} has odd order for all i, j, and that the order of q_{ii} is prime to 3 for all i in a connected component of type G_2 . Then $u(\mathcal{D}, \lambda, \mu)$ is a pointed Hopf algebra of dimension $\prod_{J \in \mathcal{X}} N_J^{|\Phi_J^+|} |\Gamma|$, and $G(u(\mathcal{D}, \lambda, \mu)) =$ Γ .

(2) Let A be a finite-dimensional pointed Hopf algebra with abelian group $\Gamma = G(A)$. Assume that all prime divisors of the order of Γ are > 7. Then $A \cong u(\mathcal{D}, \lambda, \mu)$ for some $\mathcal{D}, \lambda, \mu$.

Part (1) of Theorem 0.1 is shown in Theorem 4.4, and part (2) is a special case of Theorem 6.2.

In [AS4] we proved the Classification Theorem for groups of the form $(\mathbb{Z}/(p))^s$, $s \geq 1$, where p is a prime number > 17. In this special case, all the elements μ and $u_{\alpha}(\mu)$ are zero. In [AS1] we proved part (1) of Theorem 0.1 for Dynkin diagrams whose connected components are of type A_1 , and in [AS5] for Dynkin diagrams of type A_n ; in [D2] our construction was extended to Dynkin diagrams whose connected components are of type A_n for various n. In [BDR] the Hopf algebra $u(\mathcal{D}, \lambda, \mu)$ was introduced for type B_2 .

Our proof of Theorem 0.1 is based on [AS1, AS2, AS3, AS4, AS5], and on previous work on quantum groups in [dCK, dCP, L1, L2, L3, M1, Ro], in particular on Lusztig's theory of the small quantum groups. Another essential ingredient of our proof are the recent results of Heckenberger on Nichols algebras of diagonal type in [H1, H2, H3] which use Kharchenko's theory [K] of PBW-bases in braided Hopf algebras of diagonal type.

In [AS2, 1.4] we conjectured that any finite-dimensional pointed Hopf algebra (over an algebraically closed field of characteristic 0) is generated by group-like and skew-primitive elements. Our Classification Theorem and Theorem 6.2 confirm this conjecture for a large class of Hopf algebras.

4 NICOLÁS ANDRUSKIEWITSCH AND HANS-JÜRGEN SCHNEIDER

Finally we note that the following analog of Cauchy's Theorem from group theory holds for the Hopf algebras $A = u(\mathcal{D}, \lambda, \mu)$: If p is a prime divisor of the dimension of A, then A contains a group-like element of order p. We conjecture that Cauchy's Theorem holds for all finitedimensional pointed Hopf algebras.

1. BRAIDED HOPF ALGEBRAS

1.1. Yetter-Drinfeld modules over abelian groups and the tensor algebra. Let Γ be an abelian group, and $\widehat{\Gamma}$ the character group of all group homomorphisms from Γ to the multiplicative group k^{\times} of the field k. The braided category ${}_{\Gamma}^{\Gamma} \mathcal{YD}$ of (left) Yetter-Drinfeld modules over Γ is the category of left $k[\Gamma]$ -modules which are Γ -graded vector spaces $V = \bigoplus_{g \in \Gamma} V_g$ such that each homogeneous component V_g is stable under the action of Γ . Morphisms are Γ -linear maps $f : \bigoplus_{g \in \Gamma} V_g \to \bigoplus_{g \in \Gamma} W_g$ with $f(V_g) \subset W_g$ for all $g \in \Gamma$. The Γ -grading is equivalent to a left $k[\Gamma]$ -comodule structure $\delta : V \to k[\Gamma] \otimes V$, where $\delta(v) = g \otimes v$ is equivalent to $v \in V_g$. We use a Sweedler notation $\delta(v) = v_{(-1)} \otimes v_{(0)}$ for all $v \in V$.

If $V = \bigoplus_{g \in \Gamma} V_g$ and $W = \bigoplus_{g \in \Gamma} W_g$ are in ${}_{\Gamma}^{\Gamma} \mathcal{YD}$, the monoidal structure is given by the usual tensor product $V \otimes W$ with Γ -action $g(v \otimes w) = gv \otimes gw, v \in V, w \in W$, and Γ -grading $(V \otimes W)_g = \bigoplus_{ab=q} V_a \otimes W_b$ for all $g \in \Gamma$. The braiding in ${}_{\Gamma}^{\Gamma} \mathcal{YD}$ is the isomorphism

$$c = c_{V,W} : V \otimes W \to W \otimes V$$

defined by $c(v \otimes w) = g \cdot w \otimes v$ for all $g \in \Gamma, v \in V_g$, and $w \in W$. Thus each Yetter-Drinfeld module V defines a braided vector space $(V, c_{V,V})$.

If χ is a character of Γ and V a left Γ -module, we define

$$V^{\chi} := \{ v \in V \mid g \cdot v = \chi(g)v \text{ for all } g \in \Gamma \}.$$

Let $\theta \geq 1$ be a natural number, $g_1, \ldots, g_\theta \in \Gamma$, and $\chi_1, \ldots, \chi_\theta \in \widehat{\Gamma}$. Let V be a vector space with basis x_1, \ldots, x_θ . V is an object in ${}_{\Gamma}^{\Gamma} \mathcal{YD}$ by defining $x_i \in V_{g_i}^{\chi_i}$ for all i. Thus each x_i has degree g_i , and the group Γ acts on x_i via the character χ_i . We define

$$q_{ij} := \chi_j(g_i)$$
 for all $1 \le i, j \le \theta$.

The braiding on V is determined by the matrix (q_{ij}) since

$$c(x_i \otimes x_j) = q_{ij}x_j \otimes x_i$$
 for all $1 \le i, j \le \theta$.

We will identify the tensor algebra T(V) with the free associative algebra $k\langle x_1, \ldots, x_{\theta} \rangle$. It is an algebra in ${}_{\Gamma}^{\Gamma} \mathcal{YD}$, where a monomial

$$x = x_{i_1} x_{i_1} \cdots x_{i_n}, 1 \le i_1, \dots, i_n \le \theta$$

has Γ -degree $g_{i_1}g_{i_1}\cdots g_{i_n}$ and the action of $g \in \Gamma$ on x is given by $g \cdot x = \chi_{i_1}\chi_{i_1}\cdots\chi_{i_n}(g)x$. T(V) is a braided Hopf algebra in ${}_{\Gamma}^{\Gamma}\mathcal{YD}$ with comultiplication

$$\Delta_{T(V)}: T(V) \to T(V) \underline{\otimes} T(V), \ x_i \mapsto x_i \otimes 1 + 1 \otimes x_i, \ 1 \le i \le \theta.$$

Here we write $T(V) \underline{\otimes} T(V)$ to indicate the braided algebra structure on the vector space $T(V) \otimes T(V)$, that is

$$(x\otimes y)(x'\otimes y')=x(g\cdot x')\otimes yy',$$

for all $x, x', y, y' \in T(V)$ and $y \in T(V)_g, g \in \Gamma$.

Let $I = \{1, 2, ..., \theta\}$, and $\mathbb{Z}[I]$ the free abelian group of rank θ with basis $\alpha_1, \ldots, \alpha_{\theta}$. Given the matrix (q_{ij}) , we define the bilinear map

(1.1)
$$\mathbb{Z}[I] \times \mathbb{Z}[I] \to k^{\times}, \ (\alpha, \beta) \mapsto q_{\alpha, \beta}, \text{ by } q_{\alpha_i, \alpha_j} = q_{ij}, 1 \le i, j \le \theta.$$

We consider V as a Yetter-Drinfeld module over $\mathbb{Z}[I]$ by defining $x_i \in V_{\alpha_i}^{\psi_i}$ for all $1 \leq i \leq \theta$, where ψ_j is the character of $\mathbb{Z}[I]$ with

$$\psi_j(\alpha_i) = q_{ij} \text{ for all } 1 \leq i, j \leq \theta.$$

Thus $T(V) = k \langle x_1, \ldots, x_{\theta} \rangle$ is also a braided Hopf algebra in $\mathbb{Z}^{[I]}_{\mathbb{Z}[I]} \mathcal{YD}$. The $\mathbb{Z}[I]$ -degree of a monomial $x = x_{i_1}x_{i_1}\cdots x_{i_n}, 1 \leq i_1, \ldots, i_n \leq \theta$, is $\sum_{i=1}^{\theta} n_i \alpha_i$, where for all i, n_i is the number of occurences of i in the sequence (i_1, i_2, \ldots, i_n) . The braiding on T(V) as a Yetter-Drinfeld module over Γ or $\mathbb{Z}[I]$ is in both cases given by

(1.2)
$$c(x \otimes y) = q_{\alpha,\beta}y \otimes x$$
, where $x \in T(V)_{\alpha}, y \in T(V)_{\beta}, \alpha, \beta \in \mathbb{Z}[I]$.

The comultiplication of T(V) as a braided Hopf algebra in ${}_{\Gamma}^{\Gamma} \mathcal{YD}$ only depends on the matrix (q_{ij}) , hence it coincides with the comultiplication of T(V) as a coalgebra in ${}_{\mathbb{Z}[I]}^{\mathbb{Z}[I]}\mathcal{YD}$. In particular, the comultiplication of T(V) is $\mathbb{Z}[I]$ -graded.

1.2. Bosonization and twisting. Let R be a braided Hopf algebra in ${}_{\Gamma}^{\Gamma}\mathcal{YD}$. We will use a Sweedler notation for the comultiplication

$$\Delta_R : R \to R \otimes R, \ \Delta_R(r) = r^{(1)} \otimes r^{(2)}.$$

For Hopf algebras A in the usual sense, we always use the Sweedler notation

$$\Delta: A \to A \otimes A, \ \Delta(a) = a_{(1)} \otimes a_{(2)}.$$

Then the smash product $A = R \# k[\Gamma]$ is a Hopf algebra in the usual sense (the bosonization of R). As vector spaces, $R \# k[\Gamma] = R \otimes k[\Gamma]$. Multiplication and comultiplication are defined by

(1.3)
$$(r\#g)(s\#h) = r(g \cdot s)\#gh, \ \Delta(r\#g) = r^{(1)}\#r^{(2)}{}_{(-1)}g \otimes r^{(2)}{}_{(0)}\#g.$$

Then the maps

$$\iota: k[\Gamma] \to R \# k[\Gamma], \text{ and } \pi: R \# k[\Gamma] \to k[\Gamma]$$

with $\iota(g) = 1 \# g$ and $\pi(r \# g) = r$ for all $r \in R, g \in \Gamma$ are Hopf algebra maps with $\pi \iota = \text{id}$.

Conversely, if A is a Hopf algebra in the usual sense with Hopf algebra maps $\iota : k[\Gamma] \to A$ and $\pi : A \to k[\Gamma]$ such that $\pi \iota = id$, then

$$R = \{a \in A \mid (\mathrm{id} \otimes \pi)\Delta(a) = a \otimes 1\}$$

is a braided Hopf algebra in ${}_{\Gamma}^{\Gamma} \mathcal{YD}$ in the following way. As an algebra, R is a subalgebra of A. The $k[\Gamma]$ -coaction, Γ -action and comultiplication of R are defined by

(1.4)
$$\delta(r) = \pi(r^{(1)}) \otimes r^{(2)}, \ g \cdot r = \iota(g) r \iota(g^{-1})$$

and

(1.5)
$$\Delta_R(r) = \vartheta(r_{(1)}) \otimes r_{(2)}.$$

Here, $\Delta_A(r) = r_{(1)} \otimes r_{(2)}$, and ϑ is the map

(1.6)
$$\vartheta: A \to R, \ \vartheta(r) = r_{(1)}\iota(S(\pi(r_{(2)}))),$$

where S is the antipode of A. Then

(1.7)
$$R \# k[\Gamma] \to A, \ r \# g \mapsto r\iota(g), \ r \in R, g \in \Gamma,$$

is an isomorphism of Hopf algebras.

We recall the notion of *twisting* the algebra structure of an arbitrary Hopf algebra A, see for example [KS, 10.2.3]. Let $\sigma : A \otimes A \to k$ be a convolution invertible linear map, and a normalized 2-cocycle, that is, for all $x, y, z \in A$,

(1.8)
$$\sigma(x_{(1)}, y_{(1)})\sigma(x_{(2)}y_{(2)}, z) = \sigma(y_{(1)}, z_{(1)})\sigma(x, y_{(2)}z_{(2)}),$$

and $\sigma(x, 1) = \varepsilon(x) = \sigma(1, x)$. The Hopf algebra A_{σ} with twisted algebra structure is equal to A as a coalgebra, and has multiplication \cdot_{σ} with

(1.9)
$$x \cdot_{\sigma} y = \sigma(x_{(1)}, y_{(1)}) x_{(2)} y_{(2)} \sigma^{-1}(x_{(3)}, y_{(3)})$$
 for all $x, y \in A$.

In the situation $A = R \# k[\Gamma]$ above, let $\sigma : \Gamma \times \Gamma \to k^{\times}$ be a normalized 2-cocycle of the group Γ . Then σ extends to a 2-cocycle of the group algebra $k[\Gamma]$ and it defines a normalized and invertible 2-cocycle $\sigma_{\pi} = \sigma(\pi \otimes \pi)$ of the Hopf algebra A. Since $k[\Gamma]$ is cocommutative, ι and π are Hopf algebra maps

 $\iota: k[\Gamma] \to A_{\sigma_{\pi}} \text{ and } \pi: A_{\sigma_{\pi}} \to k[\Gamma].$

Hence the coinvariant elements

$$R_{\sigma} = \{ a \in A_{\sigma_{\pi}} \mid (\mathrm{id} \otimes \pi) \Delta(a) = a \otimes 1 \}$$

6

form a braided Hopf algebra in ${}_{\Gamma}^{\Gamma} \mathcal{YD}$. As a vector space, R_{σ} coincides with R, but R_{σ} and R have different multiplication and comultiplication.

To simplify the formulas, we will treat ι as an inclusion map.

In any braided Hopf algebra R with multiplication m and braiding $c : R \otimes R \to R \otimes R$ we define the *braided commutator* of elements $x, y \in R$ by

(1.10)
$$[x,y]_c = xy - mc(x \otimes y).$$

If $x \in R$ is a primitive element, then

(1.11)
$$(\mathrm{ad}_c x)(y) = [x, y]_c$$

denotes the *braided adjoint action* of x on R. For example, in the situation of the free algebra in Section 1.1 with braiding (1.2), we have for all x_i and $y = x_{j_1} \cdots x_{j_n}$,

(1.12)
$$(\mathrm{ad}_c x_i)(y) = x_i y - q_{ij_1} \cdots q_{ij_n} y x_i$$

In the formulation of the next lemma we need one more notation. If V is a left C-comodule over a coalgebra C, then V is a right module over the dual algebra C^* by $v \leftarrow p = p(v_{(-1)})v_{(0)}$ for all $v \in V, p \in C^*$. In particular, if R is a braided Hopf algebra in $_{\Gamma}^{\Gamma} \mathcal{YD}$, then the $k[\Gamma]$ -coaction defines a left $k[\Gamma] \otimes k[\Gamma]$ -comodule structure on $R \otimes R$, hence a right $(k[\Gamma] \otimes k[\Gamma])^*$ -module structure on $R \otimes R$ denoted by \leftarrow .

Lemma 1.1. Let Γ be an abelian group, $\sigma : \Gamma \times \Gamma \to k^{\times}$ a normalized 2-cocycle, R a braided Hopf algebra in ${}_{\Gamma}^{\Gamma} \mathcal{YD}$, $g, h \in \Gamma$, and $x \in R_g, y \in R_h, r \in R$.

- (1) $x \cdot_{\sigma} y = \sigma(g, h) x y$.
- (2) $\Delta_{R_{\sigma}}(r) = \Delta_R(r) \leftarrow \sigma^{-1}$.
- (3) If $y \in R_h^{\eta}$ for some character $\eta \in \widehat{\Gamma}$, and R as an algebra is generated by primitive elements, then $g \cdot_{\sigma} y = \sigma(g, h) \sigma^{-1}(h, g) \eta(g) y$, and hence $[x, y]_{c_{\sigma}} = \sigma(g, h) [x, y]_{\sigma}$.

Proof. (1) and (3) are [AS5, (2-11), (2-14)]. To prove (2), using the cocommutativity of the group algebra we compute

$$\Delta_{R_{\sigma}}(r) = r_{(1)} \cdot_{\sigma} S(\pi(r_{(2)})) \otimes r_{(3)}$$

= $\sigma(\pi(r_{(1)}), S(\pi(r_{(5)}))) \vartheta(r_{(2)}) \sigma^{-1}(\pi(r_{(3)}), S(\pi(r_{(4)}))) \otimes r_{(6)}.$

On the other hand, $\Delta_R(r) = r_{(1)}S\pi(r_{(2)}) \otimes r_{(3)}$, hence

 $r^{(1)}_{(-1)} \otimes r^{(2)}_{(-1)} \otimes r^{(1)}_{(0)} \otimes r^{(2)}_{(0)} = \pi(r_{(1)}S(r_{(3)})) \otimes \pi(r_{(4)}) \otimes \vartheta(r_{(2)}) \otimes r_{(5)},$ and

 $\Delta_R(r) \leftarrow \sigma^{-1} = \sigma^{-1}(\pi(r_{(1)}S(r_{(3)})), \pi(r_{(4)}))\vartheta(r_{(2)}) \otimes r_{(5)}$. Hence the claim follows from the equality

$$\sigma(a, S(b_{(3)}))\sigma^{-1}(b_{(1)}, S(b_{(2)})) = \sigma^{-1}(aS(b_{(1)}), b_{(2)}))$$

for all $a, b \in k[\Gamma]$. It is enough to check this equation for elements $a, b \in \Gamma$. Then the equality follows from the group cocycle condition.

We now apply the twisting procedure to the braided Hopf algebra $T(V) \in \mathbb{Z}^{[I]}_{\mathbb{Z}^{[I]}} \mathcal{YD}.$

Lemma 1.2. Let $\theta \geq 1$, and $(q_{ij})_{1\leq i,j\leq\theta}$, $(q'_{ij})_{1\leq i,j\leq\theta}$ matrices with coefficients in k. Let $V \in \mathbb{Z}^{[I]}_{\mathbb{Z}[I]}\mathcal{YD}$ with basis x_1, \ldots, x_{θ} and $x_i \in V_{\alpha_i}^{\psi_i}, \psi_j(\alpha_i) = q_{ij}$ for all i, j as in Section 1.1, and $V' \in \mathbb{Z}^{[I]}_{\mathbb{Z}[I]}\mathcal{YD}$ with basis $x'_1, \ldots, x'_{\theta}$ and $x'_i \in V_{\alpha_i}^{\psi'_i}, \psi'_j(\alpha_i) = q'_{ij}$ for all i, j. Then T(V) and T(V') are braided Hopf algebras in $\mathbb{Z}^{[I]}_{\mathbb{Z}[I]}\mathcal{YD}$ as in Section 1.1. Assume

(1.13)
$$q_{ij}q_{ji} = q'_{ij}q'_{ji}, \text{ and } q_{ii} = q'_{ii} \text{ for all } 1 \le i, j \le \theta.$$

Then there is a 2-cocycle $\sigma : \mathbb{Z}[I] \times \mathbb{Z}[I] \to k^{\times}$ with

(1.14)
$$\sigma(\alpha,\beta)\sigma^{-1}(\beta,\alpha) = q_{\alpha\beta}q_{\alpha\beta}^{\prime-1} \text{ for all } \alpha,\beta \in \mathbb{Z}[I],$$

and a k-linear isomorphism $\varphi : T(V) \to T(V')$ with $\varphi(x_i) = x'_i$ for all iand such that for all $\alpha, \beta \in \mathbb{Z}[I], x \in T(V)_{\alpha}, y \in T(V)_{\beta}$ and $z \in T(V)$

(1) $\varphi(xy) = \sigma(\alpha, \beta)\varphi(x)\varphi(y).$

8

- (2) $\Delta_{T(V')}(\varphi(z)) = (\varphi \otimes \varphi)(\Delta_{T(V)}(z)) \leftarrow \sigma.$
- (3) $\varphi([x,y]_c) = \sigma(\alpha,\beta)[\varphi(x),\varphi(y)]_{c'}.$

Proof. Define σ as the bilinear map with $\sigma(\alpha_i, \alpha_j) = q_{ij}q_{ij}^{\prime-1}$ if $i \leq j$, and $\sigma(\alpha_i, \alpha_j) = 1$ if i > j (see [AS5, Prop. 3.9]).

Let $\varphi : T(V) \to T(V')_{\sigma}$ be the algebra map with $\varphi(x_i) = x'_i$ for all *i*. Then φ is bijective since it follows from Lemma 1.1 (1) and the bilinearity of σ that for all monomials $x = x_{i_1} x_{i_2} \cdots x_{i_n}$ of length $n \ge 1$ with $x' = x'_{i_1} x'_{i_2} \cdots x'_{i_n}$,

$$\varphi(x) = \prod_{r < s} \sigma(\alpha_{i_r}, \alpha_{i_s}) x'.$$

In particular, φ is $\mathbb{Z}[I]$ -graded. To see that φ is $\mathbb{Z}[I]$ -linear, let $\alpha, \beta \in \mathbb{Z}[I]$ and $x \in T(V)_{\beta}$. Then by Lemma 1.1 (3),

$$\alpha \cdot x = q_{\alpha\beta}x$$
, and $\alpha \cdot_{\sigma} \varphi(x) = \sigma(\alpha, \beta)\sigma^{-1}(\beta, \alpha)q'_{\alpha\beta}\varphi(x)$,

and $\varphi(\alpha \cdot x) = \alpha \cdot_{\sigma} \varphi(x)$ follows by (1.14). Since the elements x_i and x'_i are primitive we now see that $\varphi: T(V) \to T(V')_{\sigma}$ is an isomorphism of braided Hopf algebras. Then the claim follows from Lemma 1.1.

2. Serre relations and root vectors

2.1. Datum of finite Cartan type and root vectors.

Definition 2.1. A datum of Cartan type

 $\mathcal{D} = \mathcal{D}(\Gamma, (g_i)_{1 \le i \le \theta}, (\chi_i)_{1 \le i \le \theta}, (a_{ij})_{1 \le i, j \le \theta})$

consists of an abelian group Γ , elements $g_i \in \Gamma, \chi_i \in \widehat{\Gamma}, 1 \leq i \leq \theta$, and a Cartan matrix (a_{ij}) of size θ satisfying

(2.1)
$$q_{ij}q_{ji} = q_{ii}^{a_{ij}}, q_{ii} \neq 1$$
, with $q_{ij} = \chi_j(g_i)$ for all $1 \le i, j \le \theta$.

A datum \mathcal{D} of Cartan type will be called of finite Cartan type if (a_{ij}) is of finite type.

Example 2.2. A Cartan datum (I, \cdot) in the sense of Lusztig [L3, 1.1.1] defines a datum of Cartan type for the free abelian group ZI with $g_i = \alpha_i, \chi_i = \psi_i, 1 \le i \le \theta$, as in Section 1.1, where

$$q_{ij} = v^{d_i a_{ij}}, d_i = \frac{i \cdot i}{2}, a_{ij} = 2\frac{i \cdot j}{i \cdot i} \text{ for all } 1 \le i, j \le \theta.$$

In Example 2.2, $d_i a_{ij} = i \cdot j$ is the symmetrized Cartan matrix, and $q_{ij} = q_{ji}$ for all $1 \le i, j \le \theta$. In general, the matrix (q_{ij}) of a datum of Cartan type is not symmetric, but by Lemma 1.2 we can reduce to the symmetric case by twisting.

We fix a finite abelian group Γ and a datum

$$\mathcal{D} = \mathcal{D}(\Gamma, (g_i)_{1 \le i \le \theta}, (\chi_i)_{1 \le i \le \theta}, (a_{ij})_{1 \le i, j \le \theta})$$

of finite Cartan type. The Weyl group $W \subset \operatorname{Aut}(\mathbb{Z}[I])$ of (a_{ij}) is generated by the reflections $s_i : \mathbb{Z}[I] \to \mathbb{Z}[I]$ with $s_i(\alpha_j) = \alpha_j - a_{ij}\alpha_i$ for all i, j. The root system is $\Phi = \bigcup_{i=1}^{\theta} W(\alpha_i)$, and

$$\Phi^+ = \{ \alpha \in \Phi \mid \alpha = \sum_{i=1}^{\theta} n_i \alpha_i, n_i \ge 0 \text{ for all } 1 \le i \le \theta \}$$

denotes the set of positive roots with respect to the basis of simple roots $\alpha_1, \ldots, \alpha_{\theta}$. Let p be the number of positive roots. For $\alpha = \sum_{i=1}^{\theta} n_i \alpha_i \in \mathbb{Z}[I], n_i \in \mathbb{Z}$ for all i we define

(2.2)
$$g_{\alpha} = g_1^{n_1} g_2^{n_2} \cdots g_{\theta}^{n_{\theta}} \text{ and } \chi_{\alpha} = \chi_1^{n_1} \chi_2^{n_2} \cdots \chi_{\theta}^{n_{\theta}}.$$

In this section, we assume that the Dynkin diagram of (a_{ij}) is con*nected.* In this case we say that \mathcal{D} is connected.

We fix a reduced decomposition of the longest element

$$w_0 = s_{i_1} s_{i_2} \cdots s_{i_p}$$

of W in terms of the simple reflections. Then

$$\beta_l = s_{i_1} \cdots s_{i_{l-1}}(\alpha_{i_l}), 1 \le l \le p,$$

is a convex ordering of the positive roots.

Let $d_1, \ldots, d_{\theta} \in \{1, 2, 3\}$ such that $d_i a_{ij} = d_j a_{ji}$ for all i, j. We assume for all $1 \leq i, j \leq \theta$,

- (2.3) q_{ij} has odd order, and
- (2.4) the order of q_{ii} is prime to 3, if (a_{ij}) is of type G_2 .

Then it follows from (2.1) ([AS2, 4.3]) that the elements q_{ii} have the same order in k^{\times} . We define

(2.5)
$$N = \text{ order of } q_{ii}, 1 \le i \le \theta.$$

Definition 2.3. Let $V = V(\mathcal{D})$ be a vector space with basis x_1, \ldots, x_{θ} , and let $V \in {}_{\Gamma}^{\Gamma} \mathcal{YD}$ by $x_i \in V_{g_i}^{\chi_i}$ for all $1 \leq i \leq \theta$. Then T(V) is a braided Hopf algebra in ${}_{\Gamma}^{\Gamma} \mathcal{YD}$ as in Section 1.1. Let

$$R(\mathcal{D}) = T(V) / ((\mathrm{ad}_c x_i)^{1-a_{ij}}(x_j) \mid 1 \le i, j \le \theta)$$

be the quotient Hopf algebra in ${}^{\Gamma}_{\Gamma}\mathcal{YD}$.

It is well-known that the elements $(\mathrm{ad}_c x_i)^{1-a_{ij}}(x_j), 1 \leq i, j \leq \theta$ are primitive in the free algebra T(V) (see for example [AS2, A.1]), hence they generate a Hopf ideal. By abuse of language, we denote the images of the elements x_i in $R(\mathcal{D})$ again by x_i .

In the situation of Example 2.2, Lusztig [L2] defined root vectors x_{α} in $R(\mathcal{D}) = U^+$ for each positive root α using the convex ordering of the positive roots. As noted in [AS4], these root vectors can be seen to be iterated braided commutators of the elements x_1, \ldots, x_{θ} with respect to the braiding given by the matrix $(v^{d_i a_{ij}})$. This follows for example from the inductive definition of the root vectors in [Ri].

In the case of our general braiding given by (q_{ij}) we define root vectors $x_{\alpha} \in R(\mathcal{D})$ for each $\alpha \in \Phi^+$ by the same iterated braided commutator of the elements x_1, \ldots, x_{θ} as in Lusztig's case but with respect to the general braiding.

Definition 2.4. Let $K(\mathcal{D})$ be the subalgebra of $R(\mathcal{D})$ generated by the elements $x_{\alpha}^{N}, \alpha \in \Phi^{+}$.

Theorem 2.5. Let \mathcal{D} be a connected datum of finite Cartan type, and assume (2.3), (2.4).

(1) The elements

$$x_{\beta_1}^{a_1} x_{\beta_2}^{a_2} \cdots x_{\beta_p}^{a_p}, a_1, a_2, \dots, a_p \ge 0,$$

form a basis of $R(\mathcal{D})$.

- (2) $K(\mathcal{D})$ is a braided Hopf subalgebra of $R(\mathcal{D})$.
- (3) For all $\alpha, \beta \in \Phi^+, x_{\alpha} x_{\beta}^{N} = \chi_{\beta}^{N}(g_{\alpha}) x_{\beta}^{N} x_{\alpha}$, that is, $[x_{\alpha}, x_{\beta}^{N}]_{c} = 0$.

Proof. (a) In the situation of 2.2, the elements in (1) form Lusztig's PBW-basis of U^+ over $\mathbb{Z}[v, v^{-1}]$ by [L2, 5.7].

(b) Now we assume that the braiding has the form $(q_{ij} = q^{d_i a_{ij}})$, where $(d_i a_{ij})$ is the symmetrized Cartan matrix, and q is a non-zero element in k of odd order, and not divisible by 3 if the Dynkin diagram of (a_{ij}) is G_2 . Then (1) follows from Lusztig's result by extension of scalars, and (2) is shown in [dCP, 19.1] (for another proof see [M2, 3.1]). The algebra $K(\mathcal{D})$ is commutative since it is a subalgebra of the commutative algebra Z_0 of [dCP, 19.1]. This proves (3) since $q^N = 1$, hence $\chi^N_\beta(g_\alpha) = 1$

(c) In the situation of a general braiding matrix $(q_{ij})_{1 \le i,j \le \theta}$ assumed in the theorem, we define a matrix $(q'_{ij})_{1 \le i,j \le \theta}$ by $q'_{ii} = q_{ii}$ for all i, and for all $i \ne j$ we define $q'_{ij} = q'_{ji}$ to be a square root of $q_{ij}q_{ji}$. By [AS2, 4.3], $q'_{ij} = q^{d_i a_{ij}}$ for all i, j, and for some $q \in k$. Thus by part (b) of the proof, (1),(2) and (3) hold for the braiding (q'_{ij}) , and hence by Lemma 1.2 for (q_{ij}) .

2.2. The Hopf algebra $K(\mathcal{D}) \# k[\Gamma]$. We assume the situation of Section 2.1. By Theorem 2.5 (2), $K(\mathcal{D})$ is a braided Hopf algebra in ${}_{\Gamma}^{\Gamma} \mathcal{YD}$, and the smash product $K(\mathcal{D}) \# k[\Gamma]$ is a Hopf algebra in the usual sense. We want to describe all Hopf algebra maps

$$K(\mathcal{D}) \# k[\Gamma] \to k[\Gamma]$$

which are the identity on the group algebra $k[\Gamma]$.

Definition 2.6. For any $1 \leq l \leq p$ and $a = (a_1, a_2, \ldots, a_p) \in \mathbb{N}^p$ we define

$$h_{l} = g_{\beta_{l}}^{N},$$

$$\eta_{l} = \chi_{\beta_{l}}^{N},$$

$$z_{l} = x_{\beta_{l}}^{N},$$

$$z^{a} = z_{1}^{a_{1}} z_{2}^{a_{2}} \cdots z_{p}^{a_{p}} \in K(\mathcal{D}),$$

$$h^{a} = h_{1}^{a_{1}} h_{2}^{a_{2}} \cdots h_{p}^{a_{p}} \in \Gamma,$$

$$\eta^{a} = \eta_{1}^{a_{1}} \eta_{2}^{a_{2}} \cdots \eta_{p}^{a_{p}} \in \widehat{\Gamma},$$

$$\underline{a} = a_{1}\beta_{1} + a_{2}\beta_{2} + \cdots + a_{p}\beta_{p} \in \mathbb{Z}[I].$$

For $\alpha = \sum_{i=1}^{\theta} n_i \alpha_i \in \mathbb{Z}[I], n_i \in \mathbb{Z}$ for all i, we call $\operatorname{ht}(\alpha) = \sum_{i=1}^{\theta} n_i$ the height of α . Let $e_l = (\delta_{kl})_{1 \leq k \leq p} \in \mathbb{N}^p$, where $\delta_{kl} = 1$ if k = l and $\delta_{kl} = 0$ if $k \neq l$.

Note that for all $a, b, c \in \mathbb{N}^p$,

(2.6)
$$h^a = h^b h^c, \ \eta^a = \eta^b \eta^c, \ \text{if } \underline{a} = \underline{b} + \underline{c},$$

12 NICOLÁS ANDRUSKIEWITSCH AND HANS-JÜRGEN SCHNEIDER

(2.7)
$$\operatorname{ht}(\underline{b}) < \operatorname{ht}(\underline{a}), \text{ if } \underline{a} = \underline{b} + \underline{c} \text{ and } c \neq 0.$$

As explained in Section 1.1, we view T(V) as a braided Hopf algebra in $\mathbb{Z}^{[I]}_{\mathbb{Z}[I]}\mathcal{YD}$. Then the quotient Hopf algebra $R(\mathcal{D})$ and its Hopf subalgebra $K(\mathcal{D})$ are braided Hopf algebras in $\mathbb{Z}^{[I]}_{\mathbb{Z}[I]}\mathcal{YD}$. In particular, the comultiplication $\Delta_{K(\mathcal{D})} : K(\mathcal{D}) \to K(\mathcal{D}) \otimes K(\mathcal{D})$ is $\mathbb{Z}[I]$ -graded. By construction, for any $\alpha \in \Phi^+$, the root vector x_{α} in $R(\mathcal{D})$ is $\mathbb{Z}[I]$ -homogeneous of $\mathbb{Z}[I]$ -degree α . Thus $x_{\alpha} \in R(\mathcal{D})_{g_{\alpha}}^{\chi_{\alpha}}$, and for all $a \in \mathbb{N}^p$, z^a has $\mathbb{Z}[I]$ -degree $N\underline{a}$, and

(2.8)
$$z^a \in K(\mathcal{D})_{h^a}^{\eta^a}$$

For $z \in K(\mathcal{D}), g \in \Gamma$, we will denote $z \# g \in K(\mathcal{D}) \# k[\Gamma]$ by zg. By Theorem 2.5 the elements $z^a g$ with $a \in \mathbb{N}^p, g \in \Gamma$, form a basis of $K(\mathcal{D}) \# k[\Gamma]$, and it follows that for all $a, b = (b_i), c = (c_i) \in \mathbb{N}^p$,

(2.9)
$$z^{b}z^{c} = \gamma_{b,c}z^{b+c}, \text{ where } \gamma_{b,c} = \prod_{k>l} \eta_{l}(h_{k})^{b_{k}c_{l}},$$

(2.10)
$$h^a z^b = \eta^b (h^a) z^b h^a \text{ in } R \# k[\Gamma]$$

Lemma 2.7. For any $0 \neq a \in \mathbb{N}^p$ there are uniquely determined scalars $t^a_{b,c} \in k, 0 \neq b, c \in \mathbb{N}^p$, such that

(2.11)
$$\Delta_{K(\mathcal{D})}(z^a) = z^a \otimes 1 + 1 \otimes z^a + \sum_{b,c \neq 0, \underline{b} + \underline{c} = \underline{a}} t^a_{b,c} z^b \otimes z^c$$

Proof. Since $\Delta_{K(\mathcal{D})}$ is $\mathbb{Z}[I]$ -graded, $\Delta_{K(\mathcal{D})}(z^a)$ is a linear combination of elements $z^b \otimes z^c$ where $\underline{b} + \underline{c} = \underline{a}$. Hence

$$\Delta_{K(\mathcal{D})}(z^a) = x \otimes 1 + 1 \otimes y + \sum_{b,c \neq 0,\underline{b} + \underline{c} = \underline{a}} t^a_{b,c} \, z^b \otimes z^c,$$

where x, y are elements in $K(\mathcal{D})$. By applying the augmentation ε it follows that $x = y = z^a$.

We now define recursively a family of elements u^a in $k[\Gamma]$ depending on parameters μ_a which behave like the elements z^a with respect to comultiplication.

Lemma 2.8. Let $n \ge 2$. For all $0 \ne b \in \mathbb{N}^p$, $ht(\underline{b}) < n$, let $\mu_b \in k$ and $u^b \in k[\Gamma]$ such that

(2.12)
$$u^{b} = \mu_{b}(1-h^{b}) + \sum_{d,e\neq 0,\underline{d}+\underline{e}=\underline{b}} t^{b}_{d,e} \,\mu_{d} u^{e},$$

(2.13)
$$\Delta(u^b) = h^b \otimes u^b + u^b \otimes 1 + \sum_{d, e \neq 0, \underline{d} + \underline{e} = \underline{b}} t^b_{d, e} \, u^d h^e \otimes u^e.$$

Let $a \in \mathbb{N}^p$ with $ht(\underline{a}) = n$, and $u^a \in k[\Gamma]$. Then the following statements are equivalent:

(2.14)
$$u^{a} = \mu_{a}(1-h^{a}) + \sum_{b,c \neq 0, \underline{b}+\underline{c}=\underline{a}} t^{a}_{b,c} \, \mu_{b} u^{c} \text{ for some } \mu_{a} \in k.$$

(2.15)
$$\Delta(u^a) = h^a \otimes u^a + u^a \otimes 1 + \sum_{b,c \neq 0, \underline{b} + \underline{c} = \underline{a}} t^a_{b,c} u^b h^c \otimes u^c.$$

Proof. Let

$$v_a = u^a - \sum_{b,c \neq 0, \underline{b} + \underline{c} = \underline{a}} t^a_{b,c} \,\mu_b u^c.$$

Then u^a can be written as in (2.14) if and only if $\Delta(v_a) = h^a \otimes v_a + v_a \otimes 1$. Hence it is enough to prove that

$$\Delta(v_a) - h^a \otimes v_a - v_a \otimes 1 = \Delta(u^a) - h^a \otimes u^a - u^a \otimes 1 - \sum_{b,c \neq 0, \underline{b} + \underline{c} = \underline{a}} t^a_{b,c} u^b h^c \otimes u^c.$$

We compute

$$\begin{split} \Delta(v_a) - h^a \otimes v_a - v_a \otimes 1 &= \\ &= \Delta(u^a) - \sum_{b,c \neq 0, \underline{b} + \underline{c} = \underline{a}} t^a_{b,c} \, \mu_b \Delta(u^c) - h^a \otimes v_a - v_a \otimes 1 \\ &= \Delta(u^a) - h^a \otimes u^a - u^a \otimes 1 + \sum_{b,c \neq 0, \underline{b} + \underline{c} = \underline{a}} t^a_{b,c} \, \mu_b(h^a \otimes u^c - h^c \otimes u^c) \\ &- \sum_{\substack{b,c,f,g \neq 0\\ \underline{b} + \underline{c} = \underline{a}, \underline{f} + \underline{g} = \underline{c}} t^a_{b,c} \, t^c_{f,g} \, \mu_b u^f h^g \otimes u^g, \end{split}$$

using the definition of v_a in the first equation, and the formula for $\Delta(u^c)$ from (2.13) in the second equation. Note that the term

$$\sum_{b,c\neq 0,\underline{b}+\underline{c}=\underline{a}} t^a_{b,c}\,\mu_b u^c\otimes 1$$

cancels. Hence we have to show that

$$\sum_{\substack{b,c,f,g\neq 0\\\underline{b}+\underline{c}=\underline{a},\underline{f}+\underline{g}=\underline{c}}} t^{a}_{b,c} t^{c}_{f,g} \mu_{b} u^{f} h^{g} \otimes u^{g} =$$
$$= \sum_{b,c\neq 0,\underline{b}+\underline{c}=\underline{a}} t^{a}_{b,c} (\mu_{b} h^{a} \otimes u^{c} - \mu_{b} h^{c} \otimes u^{c} + u^{b} h^{c} \otimes u^{c}).$$

Since for all $b, c \neq 0, \underline{b} + \underline{c} = \underline{a}$, we have $h^a = h^b h^c$, it follows that

 $\mu_b h^a \otimes u^c - \mu_b h^c \otimes u^c + u^b h^c \otimes u^c = (\mu_b (h^b - 1) + u^b) h^c \otimes u^c.$

14 NICOLÁS ANDRUSKIEWITSCH AND HANS-JÜRGEN SCHNEIDER

Using the formula for u^b from (2.12), we finally have to prove

$$\sum_{\substack{b,c,f,g\neq 0\\\underline{b}+\underline{c}=\underline{a},\underline{f}+\underline{g}=\underline{c}}} t^a_{b,c} t^c_{f,g} \, \mu_b u^f h^g \otimes u^g = \sum_{\substack{b,c,d,e\neq 0\\\underline{b}+\underline{c}=\underline{a},\underline{d}+\underline{g}=\underline{c}}} t^a_{b,c} \, t^b_{d,e} \, \mu_d u^e h^c \otimes u^c.$$

This last equality follows from the coassociativity of $K(\mathcal{D})$. Indeed, from

$$(\mathrm{id} \otimes \Delta_{K(\mathcal{D})}) \Delta_{K(\mathcal{D})}(z^a) = (\Delta_{K(\mathcal{D})} \otimes \mathrm{id}) \Delta_{K(\mathcal{D})}(z^a)$$

we obtain with (2.11) after cancelling several terms

$$\sum_{\substack{b,c,f,g\neq 0\\\underline{b}+\underline{c}=\underline{a},\underline{f}+\underline{g}=\underline{c}}} t^a_{b,c} \, t^c_{f,g} \, z^b \otimes z^f \otimes z^g = \sum_{\substack{b,c,d,e\neq 0\\\underline{b}+\underline{c}=\underline{a},\underline{d}+\underline{e}=\underline{b}}} t^a_{b,c} \, t^b_{d,e} \, z^d \otimes z^e \otimes z^c.$$

Thus mapping $z^r \otimes z^s \otimes z^t, r, s, t \neq 0$, ht(\underline{r}), ht(\underline{s}), ht(\underline{t}) < n, onto $\mu_r u^s h^t \otimes u^t$ proves the claim. Here we are using that the elements z^a are linearly independent by Theorem 2.5.

Let $K(\mathcal{D}) \# k[\Gamma]$ be the Hopf algebra corresponding to the braided Hopf algebra $K(\mathcal{D})$ by (1.3). Thus by definition and Lemma 2.7, for all $0 \neq a \in \mathbb{N}^p$,

(2.16)
$$\Delta_{K(\mathcal{D})\#k[\Gamma]}(z^a) = h^a \otimes z^a + z^a \otimes 1 + \sum_{b,c \neq 0, \underline{b} + \underline{c} = \underline{a}} t^a_{b,c} z^b h^c \otimes z^c.$$

For all $n \ge 0$, let $K(\mathcal{D})_n$ be the vector subspace spanned by all $z^a, a \in \mathbb{N}^p$, ht $(\underline{a}) \le n$. Then $K(\mathcal{D})_n \# k[\Gamma] \subset K(\mathcal{D}) \# k[\Gamma]$ is a subcoalgebra.

In the next Lemma we describe all coalgebra maps

 $\varphi: K(\mathcal{D})_n \# k[\Gamma] \to k[\Gamma] \text{ with } \varphi | \Gamma = \text{id.}$

Note that such a coalgebra map is given by a family of elements $\varphi(z^a) =: u^a, 0 \neq a \in \mathbb{N}^p$, $\operatorname{ht}(\underline{a}) \leq n$, such that (2.15) holds for all $0 \neq a$, $\operatorname{ht}(\underline{a}) \leq n$. It follows by induction on $\operatorname{ht}(\underline{a})$ from Lemma 2.8 with (2.14) that $\varepsilon(u^a) = 0$ for all a.

Lemma 2.9. *Let* $n \ge 1$ *.*

(1) Let $(\mu_a)_{0\neq a\in\mathbb{N}^p, \operatorname{ht}(\underline{a})\leq n}$ be a family of elements in k such that for all a, if $h^a = 1$, then $\mu_a = 0$. Define the family $(u^a)_{0\neq a\in\mathbb{N}^p, \operatorname{ht}(\underline{a})\leq n}$ by induction on $\operatorname{ht}(\underline{a})$ by (2.14). Then

$$\varphi: K(\mathcal{D})_n \# k[\Gamma] \to k[\Gamma], \varphi(z^a g) = u^a g, a \in \mathbb{N}^p, \operatorname{ht}(\underline{a}) \le n, g \in \Gamma,$$

is a coalgebra map.

(2) The map defined in (1) from the set of all $(\mu_a)_{0\neq a\in\mathbb{N}^p, \operatorname{ht}(\underline{a})\leq n}$ such that for all a, if $h^a = 1$, then $\mu_a = 0$, to the set of all coalgebra maps φ with $\varphi|\Gamma = \operatorname{id}$ is bijective.

Proof. This follows from Lemma 2.8 by induction on ht(a). Note that the coefficient μ_a in (2.14) is uniquely determined if we define $\mu_a = 0$ if $h^a = 1$.

Definition 2.10. Let $n \geq 1$. A coalgebra map $\varphi : K(\mathcal{D})_n \# k[\Gamma] \to k[\Gamma]$ with $\varphi | \Gamma = \text{id}$ is called a *partial Hopf algebra map*, if for all $x, y \in$ $K(\mathcal{D})_n \# k[\Gamma]$ with $xy \in K(\mathcal{D})_n \# k[\Gamma]$, we have $\varphi(xy) = \varphi(x)\varphi(y)$.

Lemma 2.11. Let $n \geq 1$, and $\varphi : K(\mathcal{D})_n \# k[\Gamma] \to k[\Gamma]$ a coalgebra map, $(\mu_a)_{0 \neq a \in \mathbb{N}^p, \operatorname{ht}(\underline{a}) \leq n}$ the family of scalars corresponding to φ by Lemma 2.9, and $u^a = \varphi(a)$ for all $a \in \mathbb{N}^p$ with $ht(\underline{a}) \leq n$. Then the following are equivalent:

- (1) φ is a partial Hopf algebra map.
- (2) For all $0 \neq a = (a_1, \ldots, a_p) \in \mathbb{N}^p$ with $ht(\underline{a}) \leq n$, (a) $u^a = \prod_{a_l>0} u_l^{a_l}$, where for all $1 \le l \le p, u_l = u^{e_l}$, if $a_l > 0$, (b) if $\eta^a \neq \varepsilon$, then $\mu_a = 0$, and $u^a = 0$. (3) (a) As (2) (a).
 - - (b) For all $1 \leq l \leq p$ with $ht(e_l) \leq n$, if $\eta_l \neq \varepsilon$, then $u^{e_l} = 0$.

Proof. (1) \Rightarrow (2): If φ is a partial Hopf algebra map, then (a) follows immediately, and to prove (b), let $0 \neq a \in \mathbb{N}^p$, ht(<u>a</u>) $\leq n$, and $g \in \Gamma$, with $\eta^a \neq \varepsilon$. Then

$$\varphi(gz^a) = \eta^a(g)u^a g = u^a g,$$

since $gz^a = \eta^a(g)z^ag$ by (2.10). Thus $u^a = 0$, and it follows by induction on ht(<u>a</u>) from (2.14) that $\mu_a = 0$, since for all $0 \neq b, c \in \mathbb{N}^p$ with $\operatorname{ht}(\underline{b}) + \operatorname{ht}(\underline{c}) = \operatorname{ht}(\underline{a}), \ \eta^b \neq \varepsilon, \ \text{or} \ \eta^c \neq \varepsilon.$

 $(2) \Rightarrow (3)$ is trivial. $(3) \Rightarrow (1)$: The coalgebra map φ is a partial Hopf algebra map if and only if for all $b, c \in \mathbb{N}^p$ with $\operatorname{ht}(\underline{b}) + \operatorname{ht}(\underline{c}) \leq n$, and $g, h \in \Gamma$,

$$p(z^b g z^c h) = u^b g u^c h.$$

By (2.9) and (2.10), $z^b g z^c h = \eta^c(g) \gamma_{b,c} z^{b+c} g h$. Thus (1) is equivalent to (2.17) $\eta^{c}(g)\gamma_{b,c}u^{b+c} = u^{b}u^{c}$ for all $b, c \in \mathbb{N}^{p}$, $\operatorname{ht}(\underline{b}) + \operatorname{ht}(\underline{c}) \leq n, g \in \Gamma$. Let $b, c \in \mathbb{N}^p$, $\operatorname{ht}(\underline{b}) + \operatorname{ht}(\underline{c}) \leq n, g \in \Gamma$. By (a),

$$u^{b+c} = u^b u^c = \prod_{b_l+c_l>0} u_l^{b_l+c_l}.$$

To prove (2.17) assume that $u^b u^c \neq 0$. Then $u_l \neq 0$ for all l with $c_l > 0$. Hence by (b), $\eta_l = \varepsilon$ for all l with $c_l > 0$, and $\eta^c(g) = 1, \gamma_{b,c} = 1$.

To formulate the main result of this section, we define $M(\mathcal{D})$ as the set of all families $(\mu_l)_{1 \le l \le p}$ of elements in k satisfying the following condition for all $1 \leq l \leq p$: If $h_l = 1$ or $\eta_l \neq \varepsilon$, then $\mu_l = 0$.

Theorem 2.12. (1) Let $\mu = (\mu_l)_{1 \le l \le p} \in M(\mathcal{D})$. Then there is exactly one Hopf algebra map

$$\varphi_{\mu}: K(\mathcal{D}) \# k[\Gamma] \to k[\Gamma], \ \varphi | \Gamma = \mathrm{id}$$

such that the family $(\mu_a)_{0 \neq a \in \mathbb{N}^p}$ associated to φ_{μ} by Lemma 2.9 satisfies $\mu_{e_l} = \mu_l$ for all $1 \leq l \leq p$.

(2) The map $\mu \mapsto \varphi_{\mu}$ defined in (1) from $M(\mathcal{D})$ to the set of all Hopf algebra homomorphisms $\varphi : K(\mathcal{D}) \# k[\Gamma] \to k[\Gamma]$ with $\varphi | \Gamma = \text{id is bijective.}$

Proof. (1) We proceed by induction on n to construct partial Hopf algebra maps on $K(\mathcal{D})_n \# k[\Gamma]$, the case n = 0 being trivial. We assume that we are given a partial Hopf algebra map

$$\varphi: K(\mathcal{D})_{n-1} \# k[\Gamma] \to k[\Gamma], \ n \ge 1,$$

such that $\mu_{e_l} = \mu_l$ for all $1 \leq l \leq p$ with $\operatorname{ht}(\underline{e_l}) \leq n-1$. Here $(\mu_a)_{0 \neq a \in \mathbb{N}^p, \operatorname{ht}(\underline{a}) \leq n-1}$ is the family of scalars associated to φ by Lemma 2.9. We define $u^b = \varphi(z^b)$ for all $0 \neq b, \operatorname{ht}(\underline{b}) \leq n-1$. It is enough to show that there is exactly one partial Hopf algebra map

$$\psi: K(\mathcal{D})_n \# k[\Gamma] \to k[\Gamma]$$

extending φ , and such that $\mu_{e_l} = \mu_l$ for all l with $\operatorname{ht}(\underline{e_l}) \leq n$.

Let $a \in \mathbb{N}^p$ with $ht(\underline{a}) = n$. To define $\psi(z^a) =: u^a$ we distinguish two cases.

If $a = e_l$ for some $1 \le l \le p$, we define

(2.18)
$$u^{a} = \mu_{l}(1 - h^{a}) + \sum_{b,c \neq 0, \underline{b} + \underline{c} = \underline{a}} t^{a}_{b,c} \mu_{b} u^{c}.$$

Then (2.15) holds by Lemma 2.8.

If $a = (a_1, \ldots, a_l, 0, \ldots, 0), a_l \ge 1, 1 \le l \le p$, and $a \ne e_l$, then a = r + s, where $0 \ne r, s = e_l$. We define $u^a = u^r u^s$. To see that u^a satisfies (2.15), using (2.16) we write

$$\Delta(z^c) = h^c \otimes z^c + z^c \otimes 1 + T(c), \text{ for all } 0 \neq c \in \mathbb{N}^p.$$

Since $z^r z^s = z^a$ because of (2.9) (note that $\gamma_{r,s} = 1$ in this case) we see that $\Delta(z^r)\Delta(z^s) = h^a \otimes z^a + z^a \otimes 1 + T(r,s)$, where

$$T(r,s) = h^r z^s \otimes z^r + z^r h^s \otimes z^s + (h^r \otimes z^r + z^r \otimes 1)T(s) + T(r)(h^s \otimes z^s + z^s \otimes 1),$$

and T(r,s) = T(a). Since φ on $K(\mathcal{D})_{n-1} \# k[\Gamma]$ is a coalgebra map,

$$\Delta(u^c) = h^c \otimes u^c + u^c \otimes 1 + (\varphi \otimes \varphi)(T(c)),$$

for all $0 \neq c \in \mathbb{N}^p$ with $\operatorname{ht}(\underline{c}) \leq n-1$. In particular,

 $\Delta(u^r)\Delta(u^s) = h^a \otimes u^a + u^a \otimes 1 + (\varphi \otimes \varphi)(T(r,s)).$

Thus $\Delta(u^a) = h^a \otimes u^a + u^a \otimes 1 + (\varphi \otimes \varphi)(T(a))$, that is, u^a satisfies (2.15).

Thus the extension of φ defined by $\psi(z^a g) = u^a g$ for all $g \in \Gamma, a \in \mathbb{N}^p$, ht(\underline{a}) = n is a coalgebra map.

To prove that the extension ψ is a partial Hopf algebra map, we check condition (3) in Lemma 2.11. Since the restriction of ψ to $K(\mathcal{D})_{n-1} \# k[\Gamma]$ is a partial Hopf algebra map, (3) (a) is satisfied. To prove (3)(b), let $1 \leq l \leq p$ with $\operatorname{ht}(\underline{e_l}) = n$, $a = e_l$, and assume $\eta_l \neq \varepsilon$. Then for all $0 \neq b, c \in \mathbb{N}^p$ with $\underline{b} + \underline{c} = \underline{a}$, we have $\eta^b \neq \varepsilon$ or $\eta^c \neq \varepsilon$. Since φ is a Hopf algebra map, it follows from Lemma 2.11 that $\mu_b = 0$ or $u^c = 0$. By assumption, $\mu_l = 0$. Hence by (2.18), $u^a = 0$.

This proves (1) since the uniqueness of the extension follows from Lemma 2.8 and Lemma 2.9.

(2) By Lemma 2.9, the map $\mu \mapsto \varphi_{\mu}$ is injective. To prove surjectivity, let $\varphi : K(\mathcal{D}) \# k[\Gamma] \to k[\Gamma]$ be a Hopf algebra map with $\varphi | \Gamma = \text{id.}$ By Lemma 2.9, φ is defined by a family $(\mu_a)_{0 \neq a \in \mathbb{N}^p}$ of scalars. By (1), φ is determined by the values $\mu_{e_l}, 1 \leq l \leq p$.

Definition 2.13. For any $\mu \in M(\mathcal{D})$ and $1 \leq l \leq p$, let φ_{μ} be the Hopf algebra map defined in Theorem 2.12, and

$$\iota_l(\mu) = \varphi_\mu(z_l) \in k[\Gamma].$$

If α is a positive root in Φ^+ with $\alpha = \beta_l$, we define $u_{\alpha}(\mu) = u_l(\mu)$.

Note that by (2.14), each $u_{\alpha}(\mu)$ lies in the augmentation ideal of $k[g_i^N \mid 1 \leq i \leq \theta]$.

3. Linking

3.1. Notations. In this Section we fix a finite abelian group Γ , and a datum $\mathcal{D} = \mathcal{D}(\Gamma, (g_i)_{1 \leq i \leq \theta}, (\chi_i)_{1 \leq i \leq \theta}, (a_{ij})_{1 \leq i, j \leq \theta})$ of finite Cartan type. We follow the notations of the previous Section, in particular, $q_{ij} = \chi_j(g_i)$ for all i, j.

For all $1 \leq i, j \leq \theta$ we write $i \sim j$ if i and j are in the same connected component of the Dynkin diagram of (a_{ij}) . Let $\mathcal{X} = \{I_1, \ldots, I_t\}$ be the set of connected components of $I = \{1, 2, \ldots, \theta\}$. We assume

(3.1) q_{ij} has odd order for all i, j, and

(3.2) the order of q_{ii} is prime to 3, if *i* lies in a component G_2 .

For all $J \in \mathcal{X}$, let N_J be the common order of $q_{ii}, i \in J$.

As in Section 2.2, for all $J \in \mathcal{X}$, we choose a reduced decomposition of the longest element $w_{0,J}$ of the Weyl group W_J of the root system Φ_J of $(a_{ij})_{i,j\in J}$. Then for all $J, K \in \mathcal{X}$, $w_{0,J}$ and $w_{0,K}$ commute in the Weyl group W of the root system Φ of $(a_{ij})_{1 \le i,j \le \theta}$, and

$$w_0 = w_{0,I_1} w_{0,I_2} \cdots w_{0,I_n}$$

gives a reduced representation of the longest element of W. For all $J \in \mathcal{X}$, let p_J be the number of positive roots in Φ_J^+ , and

$$\Phi_J^+ = \{\beta_{J,1}, \dots, \beta_{J,p_J}\}$$

the corresponding convex ordering. Then

$$\Phi^{+} = \{\beta_{I_{1},1}, \dots, \beta_{I_{1},p_{I_{1}}}, \dots, \beta_{I_{t},1}, \dots, \beta_{I_{t},p_{I_{t}}}\}$$

is the convex ordering corresponding to the reduced representation of $w_0 = w_{0,I_1} w_{0,I_2} \cdots w_{0,I_t}$. We also write

$$\Phi^+ = \{\beta_1, \dots, \beta_p\}, \ p = \sum_{J \in \mathcal{X}} p_J,$$

for this ordering.

In Section 2.1 we have defined root vectors x_{α} in the free algebra $k\langle x_1, \ldots, x_{\theta} \rangle$ for each positive root in $\Phi_J^+ \subset \Phi, J \in \mathcal{X}$.

We recall a notion from [AS4].

Definition 3.1. A family $\lambda = (\lambda_{ij})_{1 \leq i < j \leq \theta, i \neq j}$ of elements in k is called a *family of linking parameters for* \mathcal{D} if the following condition is satisfied for all $1 \leq i < j \leq \theta, i \neq j$: If $g_i g_j = 1$ or $\chi_i \chi_j \neq \varepsilon$, then $\lambda_{ij} = 0$. Vertices $1 \leq i, j \leq \theta$ are called *linkable* if $i \neq j$, $g_i g_j \neq 1$ and $\chi_i \chi_j = \varepsilon$.

Any vertex *i* is linkable to at most one vertex *j*, and if *i*, *j* are linkable, then $q_{ii} = q_{ij}^{-1}$ [AS4, Section 5.1].

The free algebra $k\langle x_1, \ldots, x_\theta \rangle$ is a braided Hopf algebra in ${}_{\Gamma}^{\Gamma} \mathcal{YD}$ as explained in Section 1.1. Then $k\langle x_1, \ldots, x_\theta \rangle \#k[\Gamma]$ is a Hopf algebra as in 1.2. For simplicity we write xg instead of x # g for elements $x \in k\langle x_1, \ldots, x_\theta \rangle$ and $g \in \Gamma$.

3.2. The Hopf algebra $U(\mathcal{D}, \lambda)$. We assume the situation of Section 3.1.

Definition 3.2. Let $\lambda = (\lambda_{ij})_{1 \leq i < j \leq \theta, i \neq j}$ be a family of linking parameters for \mathcal{D} . Let $U(\mathcal{D}, \lambda)$ be the quotient Hopf algebra of $k \langle x_1, \ldots, x_{\theta} \rangle \# k[\Gamma]$ modulo the ideal generated by

(3.3) $\operatorname{ad}_{c}(x_{i})^{1-a_{ij}}(x_{j}), \text{ for all } 1 \leq i, j \leq \theta, i \sim j, i \neq j,$

(3.4) $x_i x_j - q_{ij} x_j x_i - \lambda_{ij} (1 - g_i g_j)$, for all $1 \le i < j \le \theta$, $i \not\sim j$.

We denote the images of x_i and $g \in \Gamma$ in $U(\mathcal{D}, \lambda)$ again by x_i and g. The elements in (3.3) and (3.4) are skew-primitive. Hence $U(\mathcal{D}, \lambda)$ is a Hopf algebra with

$$\Delta(x_i) = g_i \otimes x_i + x_i \otimes 1, \ 1 \le i \le \theta.$$

Theorem 3.3. Let Γ be a finite abelian group, and \mathcal{D} a datum of finite Cartan type satisfying (3.1) and (3.2). Let λ be a family of linking parameters for \mathcal{D} . Then

(1) The elements

$$x_{\beta_1}^{a_1} x_{\beta_2}^{a_2} \cdots x_{\beta_p}^{a_p} g, \ a_1, a_2, \dots, a_p \ge 0, g \in \Gamma,$$

form a basis of the vector space $U(\mathcal{D}, \lambda)$.

(2) Let $J \in \mathcal{X}$, and $\alpha \in \Phi^+, \beta \in \Phi_J^+$. Then $[x_{\alpha}, x_{\beta}^{N_J}]_c = 0$, that is,

$$x_{\alpha}x_{\beta}^{N_J} = q_{\alpha,\beta}^{N_J}x_{\beta}^{N_J}x_{\alpha}$$

Proof. We adapt the method of proof of [AS4, Section 5.3] and proceed by induction on the number t of connected components.

If I is connected, (1) and (2) follow from Theorem 2.5.

If t > 1, we assume that $I_1 = \{1, 2, \ldots, \widetilde{\theta}\}, 1 \leq \widetilde{\theta} < \theta$. For all $1 \leq i \leq \widetilde{\theta}$, let l_i be the least common multiple of the orders of g_i and $\chi_i, 1 \leq i \leq \widetilde{\theta}$. Let $\widetilde{\Gamma} = \langle h_1, \ldots, h_{\widetilde{\theta}} | h_i h_j = h_j h_i, h_i^{l_i} = 1$ for all $i, j \rangle$, and define for all $1 \leq i \leq \widetilde{\theta}$ the character η_j of $\widetilde{\Gamma}$ by $\eta_j(h_i) = \chi_j(g_i), 1 \leq i, j \leq \widetilde{\theta}$. Then we define

$$\mathcal{D}_1 = \mathcal{D}(\Gamma, (h_i)_{1 \le i \le \widetilde{\theta}}, (\eta_i)_{1 \le i \le \widetilde{\theta}}, (a_{ij})_{1 \le i, j \le \widetilde{\theta}}).$$

Let $\mathcal{D}_2 = \mathcal{D}(\Gamma, (g_i)_{\tilde{\theta} < i \leq \theta}, (\chi_i)_{\tilde{\theta} < i \leq \theta}, (a_{ij})_{\tilde{\theta} < i, j \leq \theta})$ be the restriction of \mathcal{D} to $I_2 \cup \cdots \cup I_t$, and $\lambda_2 = (\lambda_{ij})_{\tilde{\theta} < i < j \leq \theta, i \nsim j}$. We define $U = U(\mathcal{D}_1)$ (with empty family of linking parameters) with generators $x_1, \ldots, x_{\tilde{\theta}}$, and $h \in \tilde{\Gamma}$, and $A = U(\mathcal{D}_2, \lambda_2)$ with generators $y_{\tilde{\theta}+1}, \ldots, y_{\theta}$, and $g \in \Gamma$.

It is shown in [AS4, Lemma 5.19] that there are algebra maps γ_i , (ε, γ) -derivations δ_i and a Hopf algebra map φ ,

$$\gamma_i: A \to k, \ \delta_i: A \to k, \ \varphi: U \to (A^0)^{\operatorname{cop}}, \ 1 \le i \le \overline{\theta},$$

such that for all $1 \leq i \leq \tilde{\theta} < j \leq \theta$,

$$\begin{aligned} &\gamma_i |\Gamma = \chi_i, \ \gamma_i(y_j) = 0, \\ &\delta_i |\Gamma = 0, \ \delta_i(y_j) = -\chi_i(g_j)\lambda_{ij}, \\ &\varphi(h_i) = \gamma_i, \ \varphi(x_i) = \delta_i. \end{aligned}$$

Then $\sigma: U \otimes A \otimes U \otimes A \to U \otimes A$, defined for all $u, v \in U, a, b \in A$ by

$$\sigma(u \otimes a, v \otimes b) = \varepsilon(u)\tau(v, a)\varepsilon(b), \ \tau(v, a) = \varphi(v)(a),$$

is a 2-cocycle on the tensor product Hopf algebra of U and A, and $(U \otimes A)_{\sigma}$ is the Hopf algebra with twisted multiplication defined in (1.9). Multiplication in $(U \otimes A)_{\sigma}$ is given for all $u, v \in U, a, b \in A$ by

$$(3.5) (u \otimes a) \cdot_{\sigma} (v \otimes b) = u\tau(v_{(1)}, a_{(1)})v_{(2)} \otimes a_{(2)}\tau^{-1}(v_{(3)}, a_{(3)})b,$$

with $\tau^{-1}(u, a) = \varphi(u)(S^{-1}(a)).$

The group-like elements $h_i \otimes g_i^{-1}$, $1 \leq i \leq \tilde{\theta}$, are central in $(U \otimes A)_{\sigma}$, and as in the last part of the proof of [AS4, Theorem 5.17] it can be seen that the map

$$(U \otimes A)_{\sigma} \to U(\mathcal{D}, \lambda), \ x_i \otimes 1 \mapsto x_i, \ h_i \otimes 1 \mapsto g_i, \ , 1 \otimes y_j \mapsto x_j, \ 1 \otimes g \mapsto g$$

for all $1 \leq i \leq \tilde{\theta} < j \leq \theta, \ g \in \Gamma$, induces an isomorphism of Hopf
algebras

(3.6)
$$(U \otimes A)_{\sigma}/(h_i \otimes g_i^{-1} - 1 \otimes 1 \mid 1 \le i \le \widetilde{\theta}) \cong U(\mathcal{D}, \lambda).$$

By induction and Theorem 2.5, the elements

$$x_{\beta_1}^{a_1}\cdots x_{\beta_{p_1}}^{a_{p_1}}h\otimes y_{\beta_{p_1+1}}^{a_{p_1+1}}\cdots y_{\beta_p}^{a_p}g,\ a_1,\ldots,a_p\geq 0,h\in\Gamma,g\in\Gamma,$$

are a basis of $U \otimes A$. It follows from (3.5) that for all $p_1 < l \leq p$ and $1 \leq i \leq \tilde{\theta}$,

$$(1 \otimes y_{\beta_l}) \cdot_{\sigma} (h_i \otimes 1) = \chi_i(g_{\beta_l}) h_i \otimes y_{\beta_l}.$$

Hence

$$(x_{\beta_1}^{a_1}\cdots x_{\beta_{p_1}}^{a_{p_1}}\otimes y_{\beta_{p_1+1}}^{a_{p_1+1}}\cdots y_{\beta_p}^{a_p})\cdot_{\sigma}(h\otimes g), a_1,\ldots a_p\geq 0, h\in\widetilde{\Gamma}, g\in\Gamma,$$

is a basis of $(U \otimes A)_{\sigma}$.

Let $P = \{h \otimes g \in (U \otimes A)_{\sigma} \mid h \in \widetilde{\Gamma}, g \in \Gamma\}$, and let $\widetilde{P} \subset P$ be the subgroup generated by $h_i \otimes g_i^{-1}$, $1 \leq i \leq \widetilde{\theta}$. Then

$$\Gamma \to P/\widetilde{P}, \ g \mapsto \overline{1 \otimes g},$$

is a group isomorphism. By (3.6), $(U \otimes A)_{\sigma} \otimes_{k[P]} k[P/\tilde{P}] \cong U(\mathcal{D})$. Hence

$$x_{\beta_1}^{a_1} x_{\beta_2}^{a_2} \cdots x_{\beta_p}^{a_p} g, \ a_1, a_2, \dots, a_p \ge 0, g \in \Gamma,$$

is a basis of $U(\mathcal{D}, \lambda)$.

To prove (2), we first show that for all $\tilde{\theta} < i \leq \theta$, and $\beta \in \Phi_{I_1}^+$, with $N = N_{I_1}$

(3.7)
$$(1 \otimes y_i) \cdot_{\sigma} (x_{\beta}^N \otimes 1) = \chi_{\beta}^N(g_i)(x_{\beta}^N \otimes 1) \cdot_{\sigma} (1 \otimes y_i)$$

in $(U \otimes A)_{\sigma}$. We use the notations of Section 2.2 with $N = N_{I_1}, z_{\beta} = x_{\beta}^N$. By (2.16)

$$\Delta_U(z_{\beta}) = g_{\beta}^N \otimes z_{\beta} + z_{\beta} \otimes 1 + \sum_{b,c \neq o, \underline{b} + \underline{c} = \beta} t^a_{b,c} z^b h^c \otimes z^c.$$

Since $\Delta(y_i) = g_i \otimes y_i + y_i \otimes 1$, and

$$\Delta^2(y_i) = g_i \otimes g_i \otimes y_i + g_i \otimes y_i \otimes 1 + y_i \otimes 1 \otimes 1,$$

we have for all $u \in U$ by (3.5)

$$(1 \otimes y_i) \cdot_{\sigma} (u \otimes 1) = \varphi(u_{(1)})(g_i)u_{(2)} \otimes g_i\varphi(u_{(3)})(S^{-1}(y_i)) + \varphi(u_{(1)})(g_i)u_{(2)} \otimes y_i\varphi(u_{(3)})(1) + \varphi(u_{(1)})(y_i)u_{(2)} \otimes 1\varphi(u_{(3)})(1).$$

It follows from the definition of φ that

$$\varphi(x_{\beta_l})(g) = 0$$
 for all $\beta_l \in \Phi_1^+, g \in \Gamma$.

Hence to compute $(1 \otimes y_i) \cdot_{\sigma} (u \otimes 1)$ with $u = z_{\beta}$, we only need to take into account the term $g_{\beta}^N \otimes z_{\beta} \otimes 1$ of $\Delta^2(z_{\beta})$, and we obtain

$$(1 \otimes y_i) \cdot_{\sigma} (u \otimes 1) = \varphi(g^N_{\beta})(y_{i(1)}) z_{\beta} \otimes y_{i(2)} \varphi(1)(S^{-1}(y_{i(3)}))$$
$$= \varphi(g^N_{\beta})(y_{i(1)}) z_{\beta} \otimes y_{i(2)}$$
$$= \varphi(g^N_{\beta})(g_i) z_{\beta} \otimes y_i + \varphi(g^N_{\beta})(y_i) z_{\beta} \otimes 1$$
$$= \chi^N_{\beta}(g_i)(x^N_{\beta} \otimes 1) \cdot_{\sigma} (1 \otimes y_i),$$

since $\varphi(g^N_\beta) = \chi^N_\beta$ and $\varphi(g^N_\beta)(y_i) = 0$ by the definition of φ .

From (3.6) and (3.7) we see that for all simple roots $\alpha \in \Phi_K^+, K \in \mathcal{X}, K \neq I_1$ and all roots $\beta \in \Phi_J^+$ with $J = I_1$

(3.8)
$$x_{\alpha}x_{\beta}^{N_{J}} = \chi_{\beta}^{N_{J}}(g_{\alpha})x_{\beta}^{N_{J}}x_{\alpha}$$

in $U(\mathcal{D}, \lambda)$. Since the root vectors x_{α} are homogeneous, (3.8) holds for all $\alpha \in \Phi_K^+, K \neq I_1$, and $\beta \in \Phi_{I_1}^+$. Since $U(\mathcal{D}, \lambda)$ and the root vectors $x_{\alpha}, \alpha \in \Phi^+$, do not depend on the order of the connected components, we can reorder the connected components and obtain (3.8) for all positive roots α, β lying in different connected components. For roots in the same connected component, (3.8) follows from Theorem 2.5.

4. FINITE-DIMENSIONAL QUOTIENTS

4.1. A general criterion. We need a generalization of Theorem [AS5, 6.24].

In this section, let Γ be an abelian group, A an algebra containing the group algebra $k[\Gamma]$ as a subalgebra and $p \ge 1$. We assume

$$y_1, \ldots, y_p \in A, h_1, \ldots, h_p \in \Gamma, \psi_1, \ldots, \psi_p \in \Gamma, \text{ and } N_1, \ldots, N_p \ge 1,$$

such that

- (4.1) $gy_l = \psi_l(g)y_lg$, for all $1 \le l \le p, g \in \Gamma$,
- (4.2) $y_k y_l^{N_l} = \psi_l^{N_l}(h_k) y_l^{N_l} y_k$, for all $1 \le k, l \le p$,
- (4.3) $y_1^{a_1} \cdots y_p^{a_p} g, a_1, \cdots, a_p \ge 0, g \in \Gamma$, form a basis of A.

For all $a = (a_1, \ldots, a_p) \in \mathbb{N}^p$, we define $y^a = y_1^{a_1} \cdots y_p^{a_p}$ and

$$\mathbb{L} = \{ l = (l_1, \dots, l_p) \in \mathbb{N}^p \mid 0 \le l_i < N_i \text{ for all } 1 \le i \le p \}.$$

Hence any element of $y \in A$ can be written as

$$y = \sum_{l \in \mathbb{L}, a \in \mathbb{N}^p} y^l y^{aN} w_{l,a}, \ w_{l,a} \in k[\Gamma] \text{ for all } l \in \mathbb{L}, a \in \mathbb{N}^p,$$

where the coefficients $w_{l,a} \in k[\Gamma]$ are uniquely determined. In [AS5] we assumed that $A = R \# k[\Gamma]$, and the subalgebra R of A generated by y_1, \ldots, y_p had the basis $y_1^{a_1} \cdots y_p^{a_p}, a_1, \ldots, a_p \ge 0$. Hence for $y \in R$ we could assume that the $w_{l,a}$ were scalars.

Theorem 4.1. Assume the situation above, and let $u_l \in k[\Gamma], 1 \leq l \leq p$. Then the following are equivalent:

- (1) The residue classes of $y_1^{a_1} \cdots y_p^{a_p} g$, $a_1, \cdots, a_p \ge 0, g \in \Gamma$, form a basis of the quotient algebra $A/(y_l^{N_l} - u_l \mid 1 \le l \le p)$.
- (2) For all $1 \leq l \leq p$, u_l is central in A, and if $\psi_l^{N_l} \neq \varepsilon$, then $u_l = 0$.

Proof. As in [AS5] this follows from Lemma [AS5, 6.23]. To extend the proof of this Lemma to the more general case considered here, we use the following rule. Assume (2), and let $u^a = u_1^{a_1} \cdots u_p^{a_p}$, for all $a = (a_1, \ldots, a_p) \in \mathbb{N}^p$. For all $1 \leq l \leq p$, let $\tilde{\psi}_l : k[\Gamma] \to k[\Gamma]$ be the algebra isomorphism with $\tilde{\psi}_l(g) = \psi_l(g)g$ for all $g \in \Gamma$. Then

(4.4)
$$u^a \psi^{aN}(w) = u^a w$$
, for all $w \in k[\Gamma], a \in \mathbb{N}^p$,
where $\widetilde{\psi}^{aN} = \widetilde{\psi}_1^{a_1N_1} \dots \widetilde{\psi}_p^{a_pN_p}$.

4.2. The Hopf algebra $u(\mathcal{D}, \lambda, \mu)$. Let Γ be a finite abelian group, and $\mathcal{D} = \mathcal{D}(\Gamma, (g_i)_{1 \leq i \leq \theta}, (\chi_i)_{1 \leq i \leq \theta}, (a_{ij})_{1 \leq i, j \leq \theta})$ a datum of finite Cartan type. We assume the situation of Section 3.1.

Definition 4.2. A family $\mu = (\mu_{\alpha})_{\alpha \in \Phi^+}$ of elements in k is called a *family of root vector parameters for* \mathcal{D} if the following condition is satisfied for all $\alpha \in \Phi_J^+$, $J \in \mathcal{X}$: If $g_{\alpha}^{N_J} = 1$ or $\chi_{\alpha}^{N_J} \neq \varepsilon$, then $\mu_{\alpha} = 0$.

Let μ be a family of root vector parameters for \mathcal{D} . For all $J \in \mathcal{X}$, and $\alpha \in \Phi_J^+$, we define

(4.5)
$$\pi_J(\mu) = (\mu_\beta)_{\beta \in \Phi_J^+}, \text{ and } u_\alpha(\mu) = u_\alpha(\pi_J(\mu)),$$

where $u_{\alpha}(\pi_J(\mu))$ is introduced in Definition 2.13. Let λ be a family of linking parameters for \mathcal{D} . Then we define

(4.6)
$$u(\mathcal{D},\lambda,\mu) = U(\mathcal{D},\lambda)/(x_{\alpha}^{N_J} - u_{\alpha}(\mu) \mid \alpha \in \Phi_J^+, J \in \mathcal{X}).$$

By abuse of language we still write x_i and g for the images of x_i and $g \in \Gamma$ in $u(\mathcal{D}, \lambda, \mu)$. For all $1 \leq l \leq p$, we define $N_l = N_J$, if $\beta_l \in \Phi_J^+, J \in \mathcal{X}$.

Lemma 4.3. Let \mathcal{D}, λ and μ as above, and $\alpha \in \Phi^+$. Then $u_{\alpha}(\mu)$ is central in $U(\mathcal{D}, \Lambda)$.

Proof. Let $\alpha \in \Phi_J^+$, where $J \in \mathcal{X}$, and $N = N_J$. To simplify the notation, we assume $J = I_1 = \{1, 2, \ldots, \tilde{\theta}\}$, and $\Phi_J^+ = \{\beta_1, \beta_2, \ldots, \beta_{\tilde{p}}\}$. We apply the results and notations of Section 2.2 to the connected component I_1 . For all $a = (a_1, \ldots, a_{\tilde{p}}) \in \mathbb{N}^{\tilde{p}}$, and $1 \leq i \leq \theta$, we will show that

(4.7)
$$\mu_a h^a x_i = \mu_a x_i h^a.$$

We can assume that $\mu_a \neq 0$. Let $1 \leq l \leq \tilde{\theta}$, and $\beta_l = \sum_{j=1}^{\tilde{\theta}} n_j \alpha_j$, where $n_j \in \mathbb{N}$ for all $1 \leq j \leq \tilde{\theta}$. Then by definition, $g_{\beta_l} = \prod_{1 \leq j \leq \tilde{\theta}} g_j^{n_j}$, and $\chi_{\beta_l} = \prod_{1 < j < \tilde{\theta}} \chi_j^{n_j}$. Hence

$$\chi_i(g^N_{\beta_l})\chi^N_{\beta_l}(g_i) = \prod_{1 \le j \le \widetilde{\theta}} q^{a_{ij}Nn_j}_{ii} = 1,$$

since $q_{ii}^N = 1$, if $i \in I_1$, and $a_{ij} = 0$, if $i \notin I_1$. By Lemma 2.11, $\chi_{\beta_l}^N = \varepsilon$ for all $1 \leq l \leq \tilde{\theta}$ with $a_l > 0$. Hence $\chi_i(g_{\beta_l}^N) = 1$ for all l with $a_l > 0$. This implies (4.7) since $h^a x_i = \chi_i(h^a) x_i h^a$.

Finally we prove by induction on $ht(\underline{a})$ using (4.7) and (2.14) that u^a is central in $U(\mathcal{D}, \lambda)$ (and in $k\langle x_1, \ldots, x_\theta \rangle \# k[\Gamma]$).

Theorem 4.4. Let \mathcal{D} be a datum of finite Cartan type satisfying (3.1) and (3.2). Let λ and μ be families of linking and root vector parameters for \mathcal{D} . Then $u(\mathcal{D}, \lambda, \mu)$ is a quotient Hopf algebra of $U(\mathcal{D}, \lambda)$ with group-like elements $G(u(\mathcal{D}, \lambda, \mu)) \cong \Gamma$, and the elements

$$x_{\beta_1}^{a_1} x_{\beta_2}^{a_2} \cdots x_{\beta_p}^{a_p} g, \ 0 \le a_l < N_l, \ 1 \le l \le p, \ g \in \Gamma$$

form a basis of $u(\mathcal{D}, \lambda, \mu)$. In particular,

$$\dim u(\mathcal{D}, \lambda, \mu) = \prod_{J \in \mathcal{X}} N_J^{|\Phi_J^+|} |\Gamma|.$$

Proof. By Theorem 3.3, the elements

$$x_{\beta_1}^{a_1} x_{\beta_2}^{a_2} \cdots x_{\beta_p}^{a_p} g, \ 0 \le a_l, \ 1 \le l \le p, \ g \in \Gamma$$

are a basis of $U(\mathcal{D}, \lambda)$. We want to apply Theorem 4.1 with

$$y_l = x_{\beta_l}, \ \psi_l = \chi_{\beta_l}, \ u_l = u_{\beta_l}(\mu), \ 1 \le l \le p.$$

For each connected component $J \in \mathcal{X}$ we apply the results of Section 2.2 with

$$\eta_l = \chi_{\beta_l}^{N_l}, \ 1 \le l \le p, \ \beta_l \in \Phi_J^+.$$

If $\chi_{\beta_l}^{N_l} \neq \varepsilon$ for some $1 \leq l \leq p, \beta_l \in \Phi_J^+$, then by assumption, $\mu_{\beta_l} = 0$, and by Lemma 2.11, $u_{\beta_l}(\mu) = 0$. By Lemma 4.7, $u_{\beta_l}(\mu)$ is central in $U(\mathcal{D}, \lambda)$. Hence the claim concerning the basis of $u(\mathcal{D}, \lambda, \mu)$ follows from Theorem 3.3 and Theorem 4.1.

We now show that $u(\mathcal{D}, \lambda, \mu)$ is a Hopf algebra. Let $J \in \mathcal{X}$. We denote the restriction of \mathcal{D} to the connected component J by \mathcal{D}_J . By Theorem 2.12, the map $\varphi_{\mu} : K(\mathcal{D}_J) \# k[\Gamma] \to k[\Gamma]$ is a Hopf algebra homomorphism. The kernel of φ_{μ} is generated by all $x_{\alpha}^{N_J} - u_{\alpha}(\mu), \alpha \in \Phi_J^+$. Hence the elements $x_{\alpha}^{N_J} - u_{\alpha}(\mu), \alpha \in \Phi_J^+$, generate a Hopf ideal in $K(\mathcal{D}_J) \# k[\Gamma]$ and in $U(\mathcal{D}, \lambda)$.

The Hopf algebra $u(\mathcal{D}, \lambda, \mu)$ is generated by the skew-primitive elements x_1, \ldots, x_{θ} and the image of Γ . In particular, $G(u(\mathcal{D}, \lambda, \mu)) \cong \Gamma$.

For explicit examples of the Hopf algebras $u(\mathcal{D}, \lambda, \mu)$ see [AS5, Section 6] for type $A_n, n \geq 1$, and [BDR] for type B_2 . In these papers, and for these types, the elements $u_{\alpha}(\mu)$ are precisely written down. An interesting problem is to find an explicit algorithm describing the $u_{\alpha}(\mu)$ for any connected Dynkin diagram.

5. The associated graded Hopf algebra

5.1. Nichols algebras. To determine the structure of a given pointed Hopf algebra, we proceed as in [AS1] and study the associated graded Hopf algebra.

Let A be a pointed Hopf algebra with group of group-like elements $G(A) = \Gamma$. Let

$$A_0 = k[\Gamma] \subset A_1 \subset \cdots \subset A, \ A = \bigcup_{n \ge 0} A_n$$

be the coradical filtration of A. We define the associated graded Hopf algebra [M, 5.2.8] by

$$\operatorname{gr}(A) = \bigoplus_{n>0} A_n / A_{n-1}, \ A_{-1} = 0.$$

Then gr(A) is a pointed Hopf algebra with the same dimension and coradical as A. The projection map $\pi : gr(A) \to k[\Gamma]$ and the inclusion

 $\iota: k[\Gamma] \to \operatorname{gr}(A)$ are Hopf algebra maps with $\iota \pi = \operatorname{id}_{k[\Gamma]}$. Let

(5.1)
$$R = \{ x \in \operatorname{gr}(A) \mid (\operatorname{id} \otimes \pi) \Delta(x) = x \otimes 1 \}$$

be the algebra of $k[\Gamma]$ -coinvariant elements. Then $R = \bigoplus_{n\geq 0} R(n)$ is a graded Hopf algebra in ${}_{\Gamma}^{\Gamma} \mathcal{YD}$, and by (1.7)

(5.2)
$$\operatorname{gr}(A) \cong R \# k[\Gamma].$$

Let $V = P(R) \in {}_{\Gamma}^{\Gamma} \mathcal{YD}$ be the Yetter-Drinfeld module of primitive elements in R. We call its braiding

$$c: V \otimes V \to V \otimes V$$

the infinitesimal braiding of A.

Let $\mathfrak{B}(V)$ be the subalgebra of R generated by V. Thus $B = \mathfrak{B}(V)$ is the *Nichols algebra* of V [AS2], that is,

- (5.3) $B = \bigoplus_{n \ge 0} B(n)$ is a graded Hopf algebra in $_{\Gamma}^{\Gamma} \mathcal{YD}$,
- (5.4) B(0) = k1, B(1) = V,
- (5.5) B(1) = P(B),
- (5.6) B is generated as an algebra by B(1).

 $\mathfrak{B}(V)$ only depends on the vector space V with its Yetter-Drinfeld structure (see the discussion in [AS5, Section 2]). As an algebra and coalgebra, $\mathfrak{B}(V)$ only depends on the braided vector space (V, c).

We assume in addition that A is finite-dimensional and Γ is abelian. Then there are $g_1, \ldots, g_{\theta} \in \Gamma, \chi_1, \ldots, \chi_{\theta} \in \widehat{\Gamma}$ and a basis x_1, \ldots, x_{θ} of V such that $x_i \in V_{g_i}^{\chi_i}$ for all $1 \leq i \leq \theta$. We call

$$(q_{ij} = \chi_j(g_i))_{1 \le i,j \le \theta}$$

the infinitesimal braiding matrix of A.

The first step to classify pointed Hopf algebras is the computation of the Nichols algebra.

Using results of Lusztig [L1],[L2], Rosso [Ro] and Müller [M1] and twisting we proved in [AS4, Theorem 4.5] the following description of the Nichols algebra of Yetter-Drinfeld modules of finite Cartan type.

Theorem 5.1. Let $\mathcal{D} = \mathcal{D}(\Gamma, (g_i)_{1 \leq i \leq \theta}, (\chi_i)_{1 \leq i \leq \theta}, (a_{ij})_{1 \leq i,j \leq \theta})$ be a datum of finite Cartan type with finite abelian group Γ . Assume (3.1) and (3.2). Let $V \in {}_{\Gamma}^{\Gamma} \mathcal{YD}$ be a vector space with basis x_1, \ldots, x_{θ} and $x_i \in V_{g_i}^{\chi_i}$ for all $1 \leq i \leq \theta$. Then $\mathfrak{B}(V)$ is the quotient algebra of T(V) modulo the ideal generated by the elements

- (5.7) $\operatorname{ad}_{c}(x_{i})^{1-a_{ij}}(x_{j}) \text{ for all } 1 \leq i, j \leq \theta, i \neq j,$
- (5.8) $x_{\alpha}^{N_J}$ for all $\alpha \in \Phi_J^+, J \in \mathcal{X}$.

Corollary 5.2. Assume the situation of Theorem 5.1, and let λ and μ be linking and root vector parameters for \mathcal{D} . Then

$$\operatorname{gr}(u(\mathcal{D},\lambda,\mu)) \cong u(\mathcal{D},0,0) \cong \mathfrak{B}(V) \# k[\Gamma].$$

Proof. Let $A = u(\mathcal{D}, \lambda, \mu)$. There is a well-defined Hopf algebra map

$$u(\mathcal{D}, 0, 0) \to \operatorname{gr}(u(\mathcal{D}, \lambda, \mu)),$$

mapping $x_i, 1 \leq i \leq \theta$, onto the residue class of x_i in A_1/A_0 , and $g \in \Gamma$ onto g. Since dim $(u(\mathcal{D}, 0, 0)) = \dim(u(\mathcal{D}, \lambda, \mu)) = \dim(\operatorname{gr}(u(\mathcal{D}, \lambda, \mu)))$ by Theorem 4.4, it follows that $u(\mathcal{D}, 0, 0) \cong \operatorname{gr}(u(\mathcal{D}, \lambda, \mu))$. By Theorem 5.1, $u(\mathcal{D}, 0, 0) \cong \mathfrak{B}(V) \# k[\Gamma]$. \Box

As an application of Corollary 5.2 we derive some information about isomorphisms between Hopf algebras of the form $u(\mathcal{D}, \lambda, \mu)$.

Remark 5.3. Let Γ and Γ' be finite abelian groups, and

$$\mathcal{D} = \mathcal{D}(\Gamma, (g_i)_{1 \le i \le \theta}, (\chi_i)_{1 \le i \le \theta}, (a_{ij})_{1 \le i, j \le \theta}),$$
$$\mathcal{D}' = \mathcal{D}(\Gamma', (g'_i)_{1 \le i \le \theta'}, (\chi'_i)_{1 \le i \le \theta'}, (a'_{ij})_{1 \le i, j \le \theta'})$$

data of finite Cartan type satisfying (3.1) and (3.2). Moreover we assume

(5.9)
$$q_{ii} = \chi_i(g_i) > 3 \text{ for all } 1 \le i \le \theta$$

Let λ and λ' be linking parameters, and μ and μ' root vector parameters for \mathcal{D} and \mathcal{D}' . We assume there is a Hopf algebra isomorphism

$$F: A = u(\mathcal{D}, \lambda, \mu) \to A' = u(\mathcal{D}', \lambda', \mu').$$

Then F preserves the coradical filtration and induces an isomorphism $A_0 = k[\Gamma] \cong A'_0 = k[\Gamma']$, given by a group isomorphism $\varphi : \Gamma \to \Gamma'$, and by Corollary 5.2 an isomorphism

$$A_1 = k[\Gamma] \oplus \bigoplus_{\substack{g \in \Gamma, \\ 1 \le i \le \theta}} kx_i g \cong A'_1 \oplus \bigoplus_{\substack{g' \in \Gamma', \\ 1 \le i \le \theta'}} kx'_i g'.$$

Hence (see [AS2, 6.3]) $\theta = \theta'$, and there are a permutation $\rho \in S_{\theta}$ and elements $0 \neq s_i \in k, 1 \leq i \leq \theta$ such that for all $1 \leq i \leq \theta$,

(5.10)
$$\varphi(g_i) = g'_{\rho(i)},$$

(5.11)
$$\chi_i = \chi'_{\rho(i)}\varphi,$$

(5.12)
$$F(x_i) = s_i x'_{\rho(i)}.$$

Note that the Nichols algebras $u(\mathcal{D}, 0, 0)$ and $u(\mathcal{D}', 0, 0)$ are isomorphic if and only if $\theta = \theta'$, and there are $\varphi, \rho, (s_i)$ with (5.10),(5.11).

Let $q_{ij} = \chi_j(g_i)$, and $q'_{ij} = \chi'_j(g'_i)$, for all $1 \le i, j \le \theta$. Then it follows from (5.10), (5.11) and (5.9) that for all $1 \le i, j \le \theta$,

(5.13)
$$q_{ij} = q'_{\rho(i)\rho(j)},$$

(5.14)
$$a_{ij} = a'_{\rho(i)\rho(j)},$$

since $q_{ii}^{a_{ij}} = q_{ii}^{a'_{\rho(i)\rho(j)}}$, and $a_{ij} - a'_{\rho(i)\rho(j)} \in \{0, \pm 1, \pm 2, \pm 3\}$. We see from (5.13) that for all $1 \le i, j \le \theta$,

(5.15)
$$F([x_i, x_j]_c) = s_i s_j [x'_{\rho(i)}, x'_{\rho(j)}]_{c'},$$

hence by the linking relations for all $1 \le i < j \le \theta, i \not\sim j$,

(5.16)
$$\lambda_{ij} = \begin{cases} s_i s_j \lambda'_{\rho(i)\rho(j)}, & \text{if } \rho(i) < \rho(j), \\ -s_i s_j \chi_j(g_i) \lambda'_{\rho(j)\rho(i)}, & \text{if } \rho(i) > \rho(j). \end{cases}$$

To obtain more precise results we now assume as in [AS5, 6.26] that for all $1 \le i, j \le \theta, i \ne j$,

(5.17)
$$\operatorname{ord}(g_i) = \operatorname{ord}(g'_i) \neq \operatorname{ord}(g_j) = \operatorname{ord}(g'_j).$$

This forces ρ to be the identity, and we can identify the root systems of \mathcal{D} and \mathcal{D}' . Then

(5.18)
$$F(x_{\alpha}) = s_{\alpha} x'_{\alpha} \text{ for all } \alpha \in \Phi^+,$$

where we define $s_{\alpha} = s_1^{n_1} \cdots s_{\theta}^{n_{\theta}}$, if $\alpha = \sum_{i=1}^{\theta} n_i \alpha_i \in \Phi^+$. The root vector relations imply

(5.19)
$$s_{\alpha}^{N_J} u_{\alpha}'(\mu') = F(u_{\alpha}(\mu)) = u_{\alpha}'(\mu), \text{ for all } \alpha \in \Phi_J^+, J \in \mathfrak{X}.$$

It follows from the inductive definition of the $u_{\alpha}(\mu)$, that (5.18) is equivalent to

(5.20)
$$s_{\alpha}^{N_J}\mu'_{\alpha} = \mu_{\alpha}, \text{ for all } \alpha \in \Phi_J^+, J \in \mathfrak{X}$$

Conversely these data allow to define a Hopf algebra isomorphism. Assuming (5.17) and $\theta = \theta'$, we conclude that $u(\mathcal{D}, \lambda, \mu)$ is isomorphic to $u(\mathcal{D}', \lambda', \mu')$ if and only if $a_{ij} = a'_{ij}$ for all $1 \leq i, j \leq \theta$, and there are scalars $0 \neq s_i \in k, 1 \leq i \leq \theta$, and a group isomorphism $\varphi : \Gamma \to \Gamma'$ satisfying

(5.21)
$$\varphi(g_i) = g'_i, \text{ for all } 1 \le i \le \theta$$

(5.22)
$$\chi_i = \chi'_i \varphi$$
, for all $1 \le i \le \theta$

(5.23)
$$\lambda_{ij} = s_i s_j \lambda'_{ij}, \text{ for all } 1 \le i < j \le \theta,$$

(5.24)
$$s_{\alpha}^{N_J}\mu'_{\alpha} = \mu_{\alpha}, \text{ for all } \alpha \in \Phi_J^+, J \in \mathfrak{X}.$$

28 NICOLÁS ANDRUSKIEWITSCH AND HANS-JÜRGEN SCHNEIDER

In [AS2] and [AS4] we determined the structure of finite-dimensional Nichols algebras assuming that V is of Cartan type and satisfies some more assumptions in the case of small orders (≤ 17) of the diagonal elements q_{ii} . Recent results of Heckenberger [H1], [H2], [H3] together with Theorem 5.1 allow to prove the following very general structure theorem on Nichols algebras.

Theorem 5.4. Let Γ be a finite abelian group, and $V \in {}_{\Gamma}^{\Gamma} \mathcal{YD}$ a Yetter-Drinfeld module such that $\mathfrak{B}(V)$ is finite-dimensional. Choose a basis $x_i \in V$ with $x_i \in V_{g_i}^{\chi_i}, g_i \in \Gamma, \chi_i \in \widehat{\Gamma}$, for all $1 \leq i \leq \theta$. For all $1 \leq i, j \leq \theta$, define $q_{ij} = \chi_j(g_i)$, and assume

- (5.25) $\operatorname{ord}(q_{ij})$ is odd, and $\operatorname{ord}(q_{ii})$ is not 3,
- (5.26) $\operatorname{ord}(q_{ii})$ is prime to 3 if $q_{il}q_{li} \in \{q_{ii}^{-3}, q_{ll}^{-3}\}$ for some l.

Then there is a datum $\mathcal{D} = \mathcal{D}(\Gamma, (g_i)_{1 \leq i \leq \theta}, (\chi_i)_{1 \leq i \leq \theta}, (a_{ij})_{1 \leq i, j \leq \theta})$ of finite Cartan type such that

$$\mathfrak{B}(V)\#k[\Gamma] \cong u(\mathcal{D}, 0, 0).$$

Proof. For all $1 \leq i, j \leq \theta, i \neq j$, let V_{ij} be the vector subspace of V spanned by x_i, x_j . Then $\mathfrak{B}(V_{kj})$ is isomorphic to a subalgebra of $\mathfrak{B}(V)$, hence it is finite-dimensional. Heckenberger [H1], [H2] classified finite-dimensional Nichols algebras of rank 2. By (5.25) it follows from the list in [H1, Theorem 4] that V_{ij} is of finite Cartan type, that is, there are $a_{ij}, a_{ji} \in \{0, -1, -2, -3\}$ with $a_{ij}a_{ji} \in \{0, 1, 2, 3\}$, and

$$q_{ij}q_{ji} = q_{ii}^{a_{ij}} = q_{jj}^{a_{ji}}.$$

Since $\mathfrak{B}(V) \# k[\Gamma]$ is finite-dimensional, $q_{ii} \neq 1$ for all $1 \leq i \leq \theta$ by [AS1, Lemma 3.1]. Thus $(q_{ij})_{1\leq i,j\leq\theta}$ is of Cartan type in the sense of [AS2, page 4] with (generalized) Cartan matrix (a_{ij}) . In [H3, Theorem 4] Heckenberger extended part (ii) of [AS2, Theorem 1.1] (where we had to exclude some small primes) and showed that a diagonal braiding (q_{ij}) of a braided vector space V is of finite Cartan type if it is of Cartan type and $\mathfrak{B}(V)$ is finite-dimensional. Hence (a_{ij}) is a Cartan matrix of finite type, and the claim follows from Theorem 5.1.

5.2. Generation in degree one. We generalize our results in [AS4, Section 7]. Let A be a finite-dimensional pointed Hopf algebra with Γ, V , and R as in Section 5.1. To prove that $\mathfrak{B}(V) = R$, we dualize. Let $S = R^*$ the dual Hopf algebra in $_{\Gamma}^{\Gamma} \mathcal{YD}$ as in [AS2, Lemma 5.5]. Then $S = \bigoplus_{n\geq 0} S(n)$ is a graded Hopf algebra in $_{\Gamma}^{\Gamma} \mathcal{YD}$, and by [AS2, Lemma 5.5], R is generated in degree one, that is, $\mathfrak{B}(V) = R$, if and only P(S) = S(1). The dual vector space S(1) of V = R(1) has the same braiding (q_{ij}) (with respect to the dual basis) as V. Our strategy to show P(S) = S(1) is to identify S as a Nichols algebra. In the next Lemma we use [H1, H2] to prove a very general version of [AS4, Lemma 7.2].

Lemma 5.5. Let $\mathcal{D} = \mathcal{D}(\Gamma, (g_i)_{1 \leq i \leq \theta}, (\chi_i)_{1 \leq i \leq \theta}, (a_{ij})_{1 \leq i, j \leq \theta})$ be a datum of finite Cartan type with finite abelian group Γ . Let $S = \bigoplus_{n \geq 0} S_n$ be a finite-dimensional graded Hopf algebra in $\Gamma \mathcal{YD}$ with S(0) = k1, and let x_1, \ldots, x_{θ} be a basis of S(1) with $x_i \in S(1)_{g_i}^{\chi_i}$ for all $1 \leq i \leq \theta$. Assume for all $1 \leq i \leq \theta$ that the order of $q_{ii} = \chi_i(g_i)$ is odd and > 7. Then

(5.27)
$$\operatorname{ad}_{c}(x_{i})^{1-a_{ij}}(x_{j}) = 0 \text{ for all } 1 \leq i, j \leq \theta, i \neq j.$$

Proof. We first note that the Nichols algebra of the primitive elements $P(S) \in {}_{\Gamma}^{\Gamma} \mathcal{YD}$ is finite-dimensional. This can be seen by looking at $\operatorname{gr}(S \# k[\Gamma])$.

Assume that there are $1 \leq i, j \leq \theta, i \neq j$, with $\operatorname{ad}_c(x_i)^{1-a_{ij}}(x_j) \neq 0$. We define

$$y_1 = x_1, y_2 = \operatorname{ad}_c(x_i)^{1-a_{ij}}(x_j)$$

By [AS2, A.1], y_2 is a primitive element. Since y_1, y_2 are non-zero elements of different degree, they are linearly independent. We know that the Nichols algebra of $W = ky_1 + ky_2$ is finite-dimensional, since B(P(S)) is finite-dimensional. We denote

$$h_1 = g_i, h_2 = g_i^{1-a_{ij}} \in \Gamma$$
, and $\eta_1 = \chi_i, \eta_2 = \chi_i^{1-a_{ij}} \chi_j \in \widehat{\Gamma}$.

Thus $y_i \in S_{h_i}^{\eta_i}, 1 \leq i \leq 2$. Let $(Q_{ij} = \eta_j(h_i))_{1 \leq i,j \leq 2}$ be the braiding matrix of y_1, y_2 . We compute

$$Q_{11} = q_{ii}, \ Q_{22} = q_{ii}^{1-a_{ij}} q_{jj}, \ Q_{12}Q_{21} = q_{ii}^{2-a_{ij}}.$$

By assumption, the order of $Q_{11} = q_{ii}$ is odd and > 3. Since B(W) is finite-dimensional, $Q_{22} \neq 1$ by [AS1, Lemma 3.1]. Thus Q_{22} has odd order, since the orders of q_{ii}, q_{jj} are odd. By checking Heckenberger's list in [H1, Theorem 4], and thanks to [H2], we see that the braiding (Q_{ij}) is of finite Cartan type or that we are in case (T3) with

$$Q_{12}Q_{21} = Q_{11}^{-1}.$$

Hence there exists $A_{12} \in \{0, -1, -2, -3\}$ with

$$Q_{12}Q_{21} = Q_{11}^{A_{12}}.$$

Since $Q_{12}Q_{21} = q_{ii}^{2-a_{ij}}$, and $Q_{11} = q_{ii}$, it follows that the order of q_{ii} divides $2 - a_{ij} - A_{12} \in \{2, 3, 4, 5, 6, 7, 8\}$. This is a contradiction since the order of q_{ii} is odd and > 7.

The next theorem is one of the main results of this paper.

Theorem 5.6. Let A be a finite-dimensional pointed Hopf algebra with abelian group $G(A) = \Gamma$ and infinitesimal braiding matrix $(q_{ij})_{1 \le i,j \le \theta}$. Assume for all $1 \le i, j \le \theta$, that the order of q_{ij} is odd, the order of q_{ii} is > 7, and that (5.26) holds. Then A is generated by group-like and skew-primitive elements, that is,

$$R = \mathfrak{B}(V),$$

where R is defined by (5.1), and V = R(1).

Proof. We argue as in the proof of [AS4, Theorem 7.6]. Let $S = R^*$ be the dual Hopf algebra in ${}_{\Gamma}^{\Gamma} \mathcal{YD}$. Then $S(1) = R(1)^*$ has the same braiding (q_{ij}) as R(1) with respect to the dual basis (x_i) of the corresponding basis of R(1). By Theorem 5.4 (q_{ij}) is of finite Cartan type. By Lemma 5.5 the Serre relations (5.7) hold for the elements x_i . Then the root vector relations (5.8) follow by [AS4, Lemma 7.5]. Hence $S \cong \mathfrak{B}(S(1))$ by Theorem 5.1, and S(1) = P(S). By duality, R is a Nichols algebra. \Box

6. LIFTING

¿From Section 5 we know a presentation of gr(A) by generators and relations under the assumptions of Theorems 5.4 and 5.6. To lift this presentation to A we need the following formulation of [AS1, Lemma 5.4] which is a consequence of the theorem of Taft and Wilson [M, Theorem 5.4.1]. Here it is crucial that the group is abelian.

Lemma 6.1. Let A be a finite-dimensional pointed Hopf algebra with abelian group $G(A) = \Gamma$. Write $gr(A) \cong R \# k[\Gamma]$ as in (5.2), and let V = R(1) with basis $x_i \in V_{g_i}^{\chi_i}, g_i \in \Gamma, \chi_i \in \widehat{\Gamma}, 1 \leq i \leq \theta$. Let $A_0 \subset A_1$ be the first two terms of the coradical filtration of A. Then

- $(6.1) \quad \oplus_{g,h\in\Gamma, \varepsilon\neq\chi\in\widehat{\Gamma}} P_{g,h}^{\chi}(A) \xrightarrow{\cong} A_1/A_0 \xleftarrow{\cong} V \# k[\Gamma].$
- (6.2) For all $g \in \Gamma$, $P_{q,1}(A)^{\varepsilon} = k(1-g)$, and if $\varepsilon \neq \chi \in \widehat{\Gamma}$, then
- (6.3) $P_{g,1}(A)^{\chi} \neq 0 \iff g = g_i, \chi = \chi_i, \text{ for some } 1 \le i \le \theta.$

We can now prove our main structure theorem.

Theorem 6.2. Let A be a finite-dimensional pointed Hopf algebra with abelian group $G(A) = \Gamma$ and infinitesimal braiding matrix $(q_{ij})_{1 \leq i,j \leq \theta}$. Assume for all $1 \leq i, j \leq \theta$, that the order of q_{ij} is odd, the order of q_{ii} is > 7, and that (5.26) holds. Then

$$A \cong u(\mathcal{D}, \lambda, \mu),$$

where $\mathcal{D} = \mathcal{D}(\Gamma, (g_i)_{1 \leq i \leq \theta}, (\chi_i)_{1 \leq i \leq \theta}, (a_{ij})_{1 \leq i, j \leq \theta})$ is a datum of finite Cartan type, and λ and μ are families of linking and root vector parameters for \mathcal{D} .

Proof. By Theorems 5.4 and 5.6, there is a datum \mathcal{D} of finite Cartan type such that $gr(A) \cong u(\mathcal{D}, 0, 0)$. By Lemma 6.1, for all $1 \leq i \leq \theta$ we can choose

 $a_i \in P(A)_{g_i,1}^{\chi_i}$ corresponding to x_i in (6.1).

We have shown in Theorem [AS4, 6.8] that

$$\operatorname{ad}_{c}(a_{i})^{1-a_{ij}}(a_{j}) = 0$$
, for all $1 \le i, j \le \theta, i \sim j, i \ne j$,

 $a_i a_j - q_{ij} a_j a_i - \lambda_{ij} (1 - g_i g_j) = 0$, for all $1 \le i < j \le \theta$, $i \not\sim j$,

for some family λ of linking parameters. Thus there is a homomorphism of Hopf algebras

$$\varphi: U(\mathcal{D}, \lambda) \to A, \ \varphi | \Gamma = \mathrm{id}_{\Gamma}, \ \varphi(x_i) = a_i, \text{ for all } 1 \le i \le \theta.$$

By Theorem 5.6, φ is surjective.

We now use the notation of Section 2.2 and show that

(6.4)
$$\varphi(x_{\alpha}^{N_J}) \in k[\Gamma] \text{ for all } \alpha \in \Phi_J^+, J \in \mathcal{X}.$$

We fix $J \in \mathcal{X}$ with $p = |\Phi_J^+|$, and show by induction on $ht(\underline{a})$ that

(6.5) $\varphi(z^a) \in k[\Gamma] \text{ for all } a \in \mathbb{N}^p.$

Let $0 \neq a \in \mathbb{N}^p$. Since φ is a Hopf algebra map, we see from (2.16) that

$$\Delta(\varphi(z^a)) = h^a \otimes \varphi(z^a) + \varphi(z^a) \otimes 1 + w,$$

where by induction

$$w = \sum_{b,c \neq o, \underline{b} + \underline{c} = \underline{a}} t^a_{b,c} \, \varphi(z^b) h^c \otimes \varphi(z^c) \in k[\Gamma] \otimes k[\Gamma].$$

In particular, $\varphi(z^a) \in A_1$ by definition of the coradical filtration. We multiply this equation with $g \otimes g, g \in \Gamma$, from the left and $g^{-1} \otimes g^{-1}$ from the right. Since $gz^ag^{-1} = \eta^a(g)z^a$, we obtain $w = \eta^a(g)w$ for all $g \in \Gamma$.

Suppose $\eta^a \neq \varepsilon$. Then w = 0, and $\varphi(z^a) \in P_{h^{a,1}}^{\eta^a}$. Then $\varphi(z^a) = 0$ by Lemma 6.1 (6.3), since $\chi_l(g_l) \neq 1$ for all $1 \leq l \leq \theta$, but $\eta^a(h^a) = 1$ by the Cartan condition (see the proof of [AS2, Lemma 7.5] for a similar computation).

If $\eta^a = \varepsilon$, then $\varphi(z^a) \in A_1^{\varepsilon} = k[\Gamma]$ by Lemma 6.1 (6.2).

This proves (6.5) and (6.4). Then we conclude for each $J \in \mathcal{X}$ from Theorem 2.12 that the map

$$K(\mathcal{D}_J) \# k[\Gamma] \to U(\mathcal{D}, \lambda) \xrightarrow{\varphi} A$$

has the form φ_{μ^J} for some family of scalars μ^J as in Theorem 2.12 for the connected component J. Define $\mu = (\mu_{\alpha})_{\alpha \in \Phi^+}$ by $\mu_{\alpha} = \mu_{\alpha}^J$ for all $\alpha \in \Phi_J^+$. Then μ is a family of root vector parameters for \mathcal{D} , and the elements $u_{\alpha}(\mu) \in k[\Gamma]$ are defined in (4.5) for each $J \in \mathcal{X}$ and $\alpha \in \Phi_J^+$. It follows that $\varphi(x_{\alpha}^{N_J}) = u_{\alpha}(\mu) = \varphi(u_{\alpha}(\mu))$ for all $J \in \mathcal{X}, \alpha \in \Phi_J^+$. Thus φ factorizes over $u(\mathcal{D}, \lambda, \mu)$. Since dim(A) =dim $(\operatorname{gr}(A)) = \operatorname{dim}(u(\mathcal{D}, \lambda, 0, 0)) = \operatorname{dim}(u(\mathcal{D}, \lambda, \mu))$ by Theorem 4.4, φ induces an isomorphism $u(\mathcal{D}, \lambda, \mu) \cong A$. \Box

Corollary 6.3. Let A be a finite-dimensional pointed Hopf algebra with abelian group $G(A) = \Gamma$ satisfying the assumptions of Theorem 6.2. Then for each prime divisor p of the dimension of A there is a group-like element of order p in A.

Proof. This follows from Theorems 6.2 and 4.4.

We note that the analog of Cauchy's theorem in group theory is false for arbitrary, non-pointed Hopf algebras. Let A be a finite-dimensional Hopf algebra with only trivial group-like elements, such as the dual of the group algebra of a finite group G with G = [G, G]. Then A does not contain any Hopf subalgebra of prime dimension, since any Hopf algebra of prime dimension is a group algebra by Zhu's theorem [Z].

References

- [AS1] N. Andruskiewitsch and H.-J. Schneider, Lifting of Quantum Linear Spaces and Pointed Hopf Algebras of order p³, J. Algebra 209 (1998), 658–691.
- [AS2] _____, Finite quantum groups and Cartan matrices, Adv. in Math. 154 (2000), 1–45.
- [AS3] _____, Lifting of Nichols algebras of type A_2 and Pointed Hopf Algebras of order p^4 , in "Hopf algebras and quantum groups", Proceedings of the Colloquium in Brussels 1998, ed. S. Caeneppel (2000), 1–16.
- [AS4] _____, Finite quantum groups over abelian groups of prime exponent, Ann. Sci. Ec. Norm. Super. **35** (2002), 1–26.
- [AS5] _____, *Pointed Hopf Algebras*, in: Recent developments in Hopf algebra Theory, MSRI Publications **43** (2002), 168, Cambridge Univ. Press.
- [BDR] M. Beattie, S. Dăscălescu and S. Raianu, Lifting of Nichols algebras of type B₂, Israel J. Math. **132** (2002), 1–28.
- [dCK] C. De Concini and V. G. Kac, Representations of quantum groups at roots of 1, in "Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory", ed. A. Connes et al (2000); Birkhäuser, 471–506.
- [dCP] C. de Concini and C. Procesi, *Quantum Groups*, in "D-modules, Representation theory and Quantum Groups", 31–140, Lecture Notes in Maths. 1565 (1993), Springer-Verlag.
- [D1] D. Didt, *Linkable Dynkin diagrams*, J. Algebra **255** (2002), 373-391.
- [D2] Linkable Dynkin diagrams and Quasi-isomorphisms for finite dimensional pointed Hopf algebras, PhD thesis, Ludwig-Maximilians-Universität München, 2002.
- [H1] I. Heckenberger, Finite dimensional rank 2 Nichols algebras of diagonal type I: Examples, Preprint math.QA/0402350v2, 2004.

- [H2] I. Heckenberger, Finite dimensional rank 2 Nichols algebras of diagonal type II: Classification, Preprint math.QA/0404008, 2004.
- [H3] I. Heckenberger, The Weyl-Brandt groupoid of a Nichols algebra of diagonal type, Preprint math.QA/0411477, 2004.
- [K] V. Kharchenko, A quantum analog of the Poincaré-Birkhoff-Witt theorem, Algebra and Logic 38 (1999), 259–276.
- [KS] A. Klimyk and K. Schmüdgen, Quantum Groups and Their Representations, Springer, Texts and Monographs in Physics, 1997.
- [L1] G. Lusztig, Finite dimensional Hopf algebras arising from quantized universal enveloping algebras, J. of Amer. Math. Soc. 3 257–296.
- [L2] G. Lusztig, Quantum groups at roots of 1, Geom. Dedicata 35 (1990), 89– 114.
- [L3] G. Lusztig, Introduction to quantum groups, Birkhäuser, 1993.
- [M] S. Montgomery, Hopf Algebras and Their Actions on Rings, CBMS Conf. Series in Math., vol. 82, Amer. Math. Soc., Providence, RI, 1993.
- [M1] E. Müller, Some Topics on Frobenius-Lusztig Kernels, I, J. Algebra 206 (1998), 624–658.
- [M2] E. Müller, The Coradical Filtration of $U_q(\mathfrak{g})$ at Roots of Unity, Comm. Algebra **28** (2000), 1029–1044.
- [Ri] C. Ringel, Hall algebras and quantum groups, Inventiones Math. 101 (1990), 583–591.
- [Ro] M. Rosso, Quantum groups and quantum shuffles, Inventiones Math. 133 (1998), 399–416.
- Y. Zhu, Hopf algebras of prime dimension, Int. Math. Res. Notes 1 (1994), 53–59.

Facultad de Matemática, Astronomía y física, Universidad Nacional de Córdoba, CIEM - CONICET, (5000) Ciudad Universitaria, Córdoba, Argentina

E-mail address: andrus@mate.uncor.edu

Mathematisches Institut, Universität München, Theresienstr. 39, D-80333 Munich, Germany

E-mail address: Hans-Juergen.Schneider@mathematik.uni-muenchen.de