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Introduction

In this paper we apply the theory of the quantum groups Uq(g), and
of the small quantum groups uq(g) for q a root of unity, g a semisimple
complex Lie algebra, to obtain a classification result for an abstractly
defined class of Hopf algebras. Since these Hopf algebras turn out to be
deformations of a natural class of generalized small quantum groups,
our result can be read as an axiomatic description of generalized small
quantum groups.

Let k be an algebraically closed ground-field of characteristic 0. A
Hopf algebra A is called pointed, if any simple subcoalgebra of A, or
equivalently, any simple A-comodule is one-dimensional. If A is co-
commutative, or if A is generated as an algebra by group-like and
skew-primitive elements, then A is pointed. In particular, the quan-
tum groups Uq(g) and uq(g) are pointed.

Let G(A) = {g ∈ A | ∆(g) = g⊗ g, ε(g) = 1} be the group of group-
like elements of A. We want to classify finite-dimensional pointed Hopf
algebras A with abelian group G(A).

We first describe the data D, λ, µ we need to define the Hopf algebras
of the class we are considering. We fix a finite abelian group Γ.

The datum D. A datum D of finite Cartan type for Γ ,

D = D(Γ, (gi)1≤i≤θ, (χi)1≤i≤θ, (aij)1≤i,j≤θ),

consists of elements gi ∈ Γ, χi ∈ Γ̂, 1 ≤ i ≤ θ, and a Cartan matrix
(aij)1≤i,j≤θ of finite type satisfying

(0.1) qijqji = q
aij
ii , qii 6= 1, with qij = χj(gi) for all 1 ≤ i, j ≤ θ.
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The Cartan condition (0.1) implies in particular,

(0.2) q
aij
ii = q

aji
jj for all 1 ≤ i, j ≤ θ.

The explicit classification of all data of finite Cartan type for a given
finite abelian group Γ is a computational problem. But at least it is
a finite problem since the size θ of the Cartan matrix is bounded by
2(ord(Γ))2 by [AS2, 8.1], if Γ is an abelian group of odd order. For
groups of prime order, all possibilities for D are listed in [AS2].

Let Φ be the root system of the Cartan matrix (aij)1≤i,j≤θ, α1, . . . , αθ
a system of simple roots, and X the set of connected components
of the Dynkin diagram of Φ. Let ΦJ , J ∈ X , be the root system of
the component J. We write i ∼ j, if αi and αj are in the same con-
nected component of the Dynkin diagram of Φ. For a positive root
α =

∑θ
i=1 niαi, ni ∈ N = {0, 1, 2, . . . }, for all i, we define

gα =
θ∏
i=1

gnii , χα =
θ∏
i=1

χnii .

We assume that the order of qii is odd for all i, and that the order of
qii is prime to 3 for all i in a connected component of type G2. Then it
follows from (0.2) that the order Ni of qii is constant in each connected
component J , and we define NJ = Ni for all i ∈ J.

The parameter λ. Let λ = (λij)1≤i<j≤θ, i 6∼j be a family of elements
in k satisfying the following condition for all 1 ≤ i < j ≤ θ, i 6∼ j: If
gigj = 1 or χiχj 6= ε, then λij = 0.

The parameter µ. Let µ = (µα)α∈Φ+ be a family of elements in k
such that for all α ∈ Φ+

J , J ∈ X , if gNJα = 1 or χNJα 6= ε, then µα = 0.

Thus λ and µ are finite families of free parameters in k. We can
normalize λ and assume that λij = 1, if λij 6= 0.

The Hopf algebra u(D, λ, µ). The definition of u(D, λ, µ) in Section
4.2 can be summarized as follows. In Definition 2.13 we associate to
any µ and α ∈ Φ+ an element uα(µ) in the group algebra k[Γ]. By
construction, uα(µ) lies in the augmentation ideal of k[gNii | 1 ≤ i ≤ θ].
The braided adjoint action adc(xi) of xi is defined in (1.12), and the
root vectors xα are explained in Section 2.1.

The Hopf algebra u(D, λ, µ) is generated as an algebra by the group
Γ, that is, by generators of Γ satisfying the relations of the group, and
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x1, . . . , xθ, with the relations:

(Action of the group) gxig
−1 = χi(g)xi, for all i, and all g ∈ Γ,

(Serre relations) adc(xi)
1−aij(xj) = 0, for all i 6= j, i ∼ j,

(Linking relations) adc(xi)(xj) = λij(1− gigj), for all i < j, i � j,

(Root vector relations) xNJα = uα(µ), for all α ∈ Φ+
J , J ∈ X .

The coalgebra structure is given by

∆(xi) = gi ⊗ xi + xi ⊗ 1, ∆(g) = g ⊗ g, for all 1 ≤ i ≤ θ, g ∈ Γ.

Now we can formulate our main result.

Classification Theorem 0.1. (1) Let D, λ and µ as above. Assume
that qij has odd order for all i, j, and that the order of qii is prime to
3 for all i in a connected component of type G2. Then u(D, λ, µ) is a

pointed Hopf algebra of dimension
∏

J∈X N
|Φ+
J |

J |Γ|, and G(u(D, λ, µ)) =
Γ.

(2) Let A be a finite-dimensional pointed Hopf algebra with abelian
group Γ = G(A). Assume that all prime divisors of the order of Γ are
> 7. Then A ∼= u(D, λ, µ) for some D, λ, µ.

Part (1) of Theorem 0.1 is shown in Theorem 4.4, and part (2) is a
special case of Theorem 6.2.

In [AS4] we proved the Classification Theorem for groups of the
form (Z/(p))s, s ≥ 1, where p is a prime number > 17. In this special
case, all the elements µ and uα(µ) are zero. In [AS1] we proved part
(1) of Theorem 0.1 for Dynkin diagrams whose connected components
are of type A1, and in [AS5] for Dynkin diagrams of type An; in [D2]
our construction was extended to Dynkin diagrams whose connected
components are of type An for various n. In [BDR] the Hopf algebra
u(D, λ, µ) was introduced for type B2.

Our proof of Theorem 0.1 is based on [AS1, AS2, AS3, AS4, AS5],
and on previous work on quantum groups in [dCK, dCP, L1, L2, L3,
M1, Ro], in particular on Lusztig’s theory of the small quantum groups.
Another essential ingredient of our proof are the recent results of Heck-
enberger on Nichols algebras of diagonal type in [H1, H2, H3] which
use Kharchenko’s theory [K] of PBW-bases in braided Hopf algebras
of diagonal type.

In [AS2, 1.4] we conjectured that any finite-dimensional pointed Hopf
algebra (over an algebraically closed field of characteristic 0) is gener-
ated by group-like and skew-primitive elements. Our Classification
Theorem and Theorem 6.2 confirm this conjecture for a large class of
Hopf algebras.
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Finally we note that the following analog of Cauchy’s Theorem from
group theory holds for the Hopf algebras A = u(D, λ, µ): If p is a prime
divisor of the dimension of A, then A contains a group-like element of
order p. We conjecture that Cauchy’s Theorem holds for all finite-
dimensional pointed Hopf algebras.

1. Braided Hopf algebras

1.1. Yetter-Drinfeld modules over abelian groups and the ten-

sor algebra. Let Γ be an abelian group, and Γ̂ the character group
of all group homomorphisms from Γ to the multiplicative group k× of
the field k. The braided category Γ

ΓYD of (left) Yetter-Drinfeld mod-
ules over Γ is the category of left k[Γ]-modules which are Γ-graded
vector spaces V =

⊕
g∈Γ Vg such that each homogeneous component

Vg is stable under the action of Γ. Morphisms are Γ-linear maps
f :
⊕

g∈Γ Vg →
⊕

g∈ΓWg with f(Vg) ⊂ Wg for all g ∈ Γ. The Γ-grading

is equivalent to a left k[Γ]-comodule structure δ : V → k[Γ]⊗V , where
δ(v) = g ⊗ v is equivalent to v ∈ Vg. We use a Sweedler notation
δ(v) = v(−1) ⊗ v(0) for all v ∈ V.

If V =
⊕

g∈Γ Vg and W =
⊕

g∈ΓWg are in Γ
ΓYD, the monoidal

structure is given by the usual tensor product V ⊗W with Γ-action
g(v ⊗ w) = gv ⊗ gw, v ∈ V,w ∈ W , and Γ-grading (V ⊗ W )g =⊕

ab=g Va ⊗Wb for all g ∈ Γ. The braiding in Γ
ΓYD is the isomorphism

c = cV,W : V ⊗W → W ⊗ V
defined by c(v⊗w) = g ·w⊗ v for all g ∈ Γ, v ∈ Vg, and w ∈ W. Thus
each Yetter-Drinfeld module V defines a braided vector space (V, cV,V ).

If χ is a character of Γ and V a left Γ-module, we define

V χ := {v ∈ V | g · v = χ(g)v for all g ∈ Γ}.

Let θ ≥ 1 be a natural number, g1, . . . , gθ ∈ Γ, and χ1, . . . , χθ ∈ Γ̂. Let
V be a vector space with basis x1, . . . , xθ. V is an object in Γ

ΓYD by
defining xi ∈ V χi

gi
for all i. Thus each xi has degree gi, and the group

Γ acts on xi via the character χi. We define

qij := χj(gi) for all 1 ≤ i, j ≤ θ.

The braiding on V is determined by the matrix (qij) since

c(xi ⊗ xj) = qijxj ⊗ xi for all 1 ≤ i, j ≤ θ.

We will identify the tensor algebra T (V ) with the free associative al-
gebra k〈x1, . . . , xθ〉. It is an algebra in Γ

ΓYD, where a monomial

x = xi1xi1 · · ·xin , 1 ≤ i1, . . . , in ≤ θ,
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has Γ-degree gi1gi1 · · · gin and the action of g ∈ Γ on x is given by
g · x = χi1χi1 · · ·χin(g)x. T (V ) is a braided Hopf algebra in Γ

ΓYD with
comultiplication

∆T (V ) : T (V )→ T (V )⊗T (V ), xi 7→ xi ⊗ 1 + 1⊗ xi, 1 ≤ i ≤ θ.

Here we write T (V )⊗T (V ) to indicate the braided algebra structure
on the vector space T (V )⊗ T (V ), that is

(x⊗ y)(x′ ⊗ y′) = x(g · x′)⊗ yy′,
for all x, x′, y, y′ ∈ T (V ) and y ∈ T (V )g, g ∈ Γ.

Let I = {1, 2, . . . , θ}, and Z[I] the free abelian group of rank θ with
basis α1, . . . , αθ. Given the matrix (qij), we define the bilinear map

(1.1) Z[I]× Z[I]→ k×, (α, β) 7→ qα,β, by qαi,αj = qij, 1 ≤ i, j ≤ θ.

We consider V as a Yetter-Drinfeld module over Z[I] by defining xi ∈
V ψi
αi

for all 1 ≤ i ≤ θ, where ψj is the character of Z[I] with

ψj(αi) = qij for all 1 ≤ i, j ≤ θ.

Thus T (V ) = k〈x1, . . . , xθ〉 is also a braided Hopf algebra in
Z[I]
Z[I]YD.

The Z[I]-degree of a monomial x = xi1xi1 · · ·xin , 1 ≤ i1, . . . , in ≤ θ,

is
∑θ

i=1 niαi, where for all i, ni is the number of occurences of i in
the sequence (i1, i2, . . . , in). The braiding on T (V ) as a Yetter-Drinfeld
module over Γ or Z[I] is in both cases given by

(1.2) c(x⊗ y) = qα,βy ⊗ x, where x ∈ T (V )α, y ∈ T (V )β, α, β ∈ Z[I].

The comultiplication of T (V ) as a braided Hopf algebra in Γ
ΓYD only

depends on the matrix (qij), hence it coincides with the comultiplication

of T (V ) as a coalgebra in
Z[I]
Z[I]YD. In particular, the comultiplication

of T (V ) is Z[I]-graded.

1.2. Bosonization and twisting. Let R be a braided Hopf algebra
in Γ

ΓYD. We will use a Sweedler notation for the comultiplication

∆R : R→ R⊗R, ∆R(r) = r(1) ⊗ r(2).

For Hopf algebras A in the usual sense, we always use the Sweedler
notation

∆ : A→ A⊗ A, ∆(a) = a(1) ⊗ a(2).

Then the smash product A = R#k[Γ] is a Hopf algebra in the usual
sense (the bosonization of R). As vector spaces, R#k[Γ] = R ⊗ k[Γ].
Multiplication and comultiplication are defined by

(1.3) (r#g)(s#h) = r(g ·s)#gh, ∆(r#g) = r(1)#r(2)
(−1)g⊗r(2)

(0)#g.
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Then the maps

ι : k[Γ]→ R#k[Γ], and π : R#k[Γ]→ k[Γ]

with ι(g) = 1#g and π(r#g) = r for all r ∈ R, g ∈ Γ are Hopf algebra
maps with πι = id.

Conversely, if A is a Hopf algebra in the usual sense with Hopf algebra
maps ι : k[Γ]→ A and π : A→ k[Γ] such that πι = id, then

R = {a ∈ A | (id⊗ π)∆(a) = a⊗ 1}
is a braided Hopf algebra in Γ

ΓYD in the following way. As an algebra, R
is a subalgebra of A. The k[Γ]-coaction, Γ-action and comultiplication
of R are defined by

(1.4) δ(r) = π(r(1))⊗ r(2), g · r = ι(g)rι(g−1)

and

(1.5) ∆R(r) = ϑ(r(1))⊗ r(2).

Here, ∆A(r) = r(1) ⊗ r(2), and ϑ is the map

(1.6) ϑ : A→ R, ϑ(r) = r(1)ι(S(π(r(2)))),

where S is the antipode of A. Then

(1.7) R#k[Γ]→ A, r#g 7→ rι(g), r ∈ R, g ∈ Γ,

is an isomorphism of Hopf algebras.

We recall the notion of twisting the algebra structure of an arbitrary
Hopf algebra A, see for example [KS, 10.2.3]. Let σ : A⊗ A→ k be a
convolution invertible linear map, and a normalized 2-cocycle, that is,
for all x, y, z ∈ A,
(1.8) σ(x(1), y(1))σ(x(2)y(2), z) = σ(y(1), z(1))σ(x, y(2)z(2)),

and σ(x, 1) = ε(x) = σ(1, x). The Hopf algebra Aσ with twisted algebra
structure is equal to A as a coalgebra, and has multiplication ·σ with

(1.9) x ·σ y = σ(x(1), y(1))x(2)y(2)σ
−1(x(3), y(3)) for all x, y ∈ A.

In the situation A = R#k[Γ] above, let σ : Γ×Γ→ k× be a normalized
2-cocycle of the group Γ. Then σ extends to a 2-cocycle of the group
algebra k[Γ] and it defines a normalized and invertible 2-cocycle σπ =
σ(π ⊗ π) of the Hopf algebra A. Since k[Γ] is cocommutative, ι and π
are Hopf algebra maps

ι : k[Γ]→ Aσπ and π : Aσπ → k[Γ].

Hence the coinvariant elements

Rσ = {a ∈ Aσπ | (id⊗ π)∆(a) = a⊗ 1}
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form a braided Hopf algebra in Γ
ΓYD. As a vector space, Rσ coincides

with R, but Rσ and R have different multiplication and comultiplica-
tion.

To simplify the formulas, we will treat ι as an inclusion map.
In any braided Hopf algebra R with multiplication m and braiding

c : R ⊗ R → R ⊗ R we define the braided commutator of elements
x, y ∈ R by

(1.10) [x, y]c = xy −mc(x⊗ y).

If x ∈ R is a primitive element, then

(1.11) (adcx)(y) = [x, y]c

denotes the braided adjoint action of x on R. For example, in the
situation of the free algebra in Section 1.1 with braiding (1.2), we have
for all xi and y = xj1 · · ·xjn ,

(1.12) (adcxi)(y) = xiy − qij1 · · · qijnyxi.

In the formulation of the next lemma we need one more notation. If
V is a left C-comodule over a coalgebra C, then V is a right module
over the dual algebra C∗ by v ↼ p = p(v(−1))v(0) for all v ∈ V, p ∈ C∗.
In particular, if R is a braided Hopf algebra in Γ

ΓYD, then the k[Γ]-
coaction defines a left k[Γ]⊗ k[Γ]-comodule structure on R⊗R, hence
a right (k[Γ]⊗ k[Γ])∗-module structure on R⊗R denoted by ↼ .

Lemma 1.1. Let Γ be an abelian group, σ : Γ× Γ→ k× a normalized
2-cocycle, R a braided Hopf algebra in Γ

ΓYD, g, h ∈ Γ, and x ∈ Rg, y ∈
Rh, r ∈ R.

(1) x ·σ y = σ(g, h)xy.
(2) ∆Rσ(r) = ∆R(r) ↼ σ−1.

(3) If y ∈ Rη
h for some character η ∈ Γ̂, and R as an algebra is gen-

erated by primitive elements, then g·σy = σ(g, h)σ−1(h, g)η(g)y,
and hence [x, y]cσ = σ(g, h)[x, y]σ.

Proof. (1) and (3) are [AS5, (2-11), (2-14)]. To prove (2), using the
cocommutativity of the group algebra we compute

∆Rσ(r) = r(1) ·σ S(π(r(2)))⊗ r(3)

= σ(π(r(1)), S(π(r(5))))ϑ(r(2))σ
−1(π(r(3)), S(π(r(4))))⊗ r(6).

On the other hand, ∆R(r) = r(1)Sπ(r(2))⊗ r(3), hence

r(1)
(−1)⊗r(2)

(−1)⊗r(1)
(0)⊗r(2)

(0) = π(r(1)S(r(3)))⊗π(r(4))⊗ϑ(r(2))⊗
r(5), and
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∆R(r) ↼ σ−1 = σ−1(π(r(1)S(r(3))), π(r(4)))ϑ(r(2)) ⊗ r(5). Hence the
claim follows from the equality

σ(a, S(b(3)))σ
−1(b(1), S(b(2))) = σ−1(aS(b(1)), b(2)))

for all a, b ∈ k[Γ]. It is enough to check this equation for elements a, b ∈
Γ. Then the equality follows from the group cocycle condition. �

We now apply the twisting procedure to the braided Hopf algebra

T (V ) ∈ Z[I]
Z[I]YD.

Lemma 1.2. Let θ ≥ 1, and (qij)1≤i,j≤θ, (q
′
ij)1≤i,j≤θ matrices with

coefficients in k. Let V ∈ Z[I]
Z[I]YD with basis x1, . . . , xθ and xi ∈

V ψi
αi
, ψj(αi) = qij for all i, j as in Section 1.1, and V ′ ∈ Z[I]

Z[I]YD with

basis x′1, . . . , x
′
θ and x′i ∈ V

ψ′i
αi , ψ

′
j(αi) = q′ij for all i, j. Then T (V ) and

T (V ′) are braided Hopf algebras in
Z[I]
Z[I]YD as in Section 1.1. Assume

(1.13) qijqji = q′ijq
′
ji, and qii = q′ii for all 1 ≤ i, j ≤ θ.

Then there is a 2-cocycle σ : Z[I]× Z[I]→ k× with

(1.14) σ(α, β)σ−1(β, α) = qαβq
′−1
αβ for all α, β ∈ Z[I],

and a k-linear isomorphism ϕ : T (V )→ T (V ′) with ϕ(xi) = x′i for all i
and such that for all α, β ∈ Z[I], x ∈ T (V )α, y ∈ T (V )β and z ∈ T (V )

(1) ϕ(xy) = σ(α, β)ϕ(x)ϕ(y).
(2) ∆T (V ′)(ϕ(z)) = (ϕ⊗ ϕ)(∆T (V )(z)) ↼ σ.
(3) ϕ([x, y]c) = σ(α, β)[ϕ(x), ϕ(y)]c′ .

Proof. Define σ as the bilinear map with σ(αi, αj) = qijq
′−1
ij if i ≤ j,

and σ(αi, αj) = 1 if i > j (see [AS5, Prop. 3.9]).
Let ϕ : T (V ) → T (V ′)σ be the algebra map with ϕ(xi) = x′i for

all i. Then ϕ is bijective since it follows from Lemma 1.1 (1) and the
bilinearity of σ that for all monomials x = xi1xi2 · · ·xin of length n ≥ 1
with x′ = x′i1x

′
i2
· · ·x′in ,

ϕ(x) =
∏
r<s

σ(αir , αis)x
′.

In particular, ϕ is Z[I]-graded. To see that ϕ is Z[I]-linear, let α, β ∈
Z[I] and x ∈ T (V )β. Then by Lemma 1.1 (3),

α · x = qαβx, and α ·σ ϕ(x) = σ(α, β)σ−1(β, α)q′αβϕ(x),

and ϕ(α ·x) = α ·σ ϕ(x) follows by (1.14). Since the elements xi and x′i
are primitive we now see that ϕ : T (V )→ T (V ′)σ is an isomorphism of
braided Hopf algebras. Then the claim follows from Lemma 1.1. �
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2. Serre relations and root vectors

2.1. Datum of finite Cartan type and root vectors.

Definition 2.1. A datum of Cartan type

D = D(Γ, (gi)1≤i≤θ, (χi)1≤i≤θ, (aij)1≤i,j≤θ)

consists of an abelian group Γ, elements gi ∈ Γ, χi ∈ Γ̂, 1 ≤ i ≤ θ, and
a Cartan matrix (aij) of size θ satisfying

(2.1) qijqji = q
aij
ii , qii 6= 1, with qij = χj(gi) for all 1 ≤ i, j ≤ θ.

A datum D of Cartan type will be called of finite Cartan type if (aij)
is of finite type.

Example 2.2. A Cartan datum (I, ·) in the sense of Lusztig [L3, 1.1.1]
defines a datum of Cartan type for the free abelian group ZI with
gi = αi, χi = ψi, 1 ≤ i ≤ θ, as in Section 1.1, where

qij = vdiaij , di =
i · i
2
, aij = 2

i · j
i · i

for all 1 ≤ i, j ≤ θ.

In Example 2.2, diaij = i · j is the symmetrized Cartan matrix, and
qij = qji for all 1 ≤ i, j ≤ θ. In general, the matrix (qij) of a datum of
Cartan type is not symmetric, but by Lemma 1.2 we can reduce to the
symmetric case by twisting.

We fix a finite abelian group Γ and a datum

D = D(Γ, (gi)1≤i≤θ, (χi)1≤i≤θ, (aij)1≤i,j≤θ)

of finite Cartan type. The Weyl group W ⊂ Aut(Z[I]) of (aij) is
generated by the reflections si : Z[I] → Z[I] with si(αj) = αj − aijαi
for all i, j. The root system is Φ = ∪θi=1W (αi), and

Φ+ = {α ∈ Φ | α =
θ∑
i=1

niαi, ni ≥ 0 for all 1 ≤ i ≤ θ}

denotes the set of positive roots with respect to the basis of simple
roots α1, . . . , αθ. Let p be the number of positive roots.

For α =
∑θ

i=1 niαi ∈ Z[I], ni ∈ Z for all i we define

(2.2) gα = gn1
1 gn2

2 · · · g
nθ
θ and χα = χn1

1 χ
n2
2 · · ·χ

nθ
θ .

In this section, we assume that the Dynkin diagram of (aij) is con-
nected. In this case we say that D is connected.

We fix a reduced decomposition of the longest element

w0 = si1si2 · · · sip
of W in terms of the simple reflections. Then

βl = si1 · · · sil−1
(αil), 1 ≤ l ≤ p,
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is a convex ordering of the positive roots.
Let d1, . . . , dθ ∈ {1, 2, 3} such that diaij = djaji for all i, j. We

assume for all 1 ≤ i, j ≤ θ,

qij has odd order, and(2.3)

the order of qii is prime to 3, if (aij) is of type G2.(2.4)

Then it follows from (2.1) ([AS2, 4.3]) that the elements qii have the
same order in k×. We define

(2.5) N = order of qii, 1 ≤ i ≤ θ.

Definition 2.3. Let V = V (D) be a vector space with basis x1, . . . , xθ,
and let V ∈ Γ

ΓYD by xi ∈ V χi
gi

for all 1 ≤ i ≤ θ. Then T (V ) is a braided

Hopf algebra in Γ
ΓYD as in Section 1.1. Let

R(D) = T (V )/((adcxi)
1−aij(xj) | 1 ≤ i, j ≤ θ)

be the quotient Hopf algebra in Γ
ΓYD.

It is well-known that the elements (adcxi)
1−aij(xj), 1 ≤ i, j ≤ θ are

primitive in the free algebra T (V ) (see for example [AS2, A.1]), hence
they generate a Hopf ideal. By abuse of language, we denote the images
of the elements xi in R(D) again by xi.

In the situation of Example 2.2, Lusztig [L2] defined root vectors xα
in R(D) = U+ for each positive root α using the convex ordering of the
positive roots. As noted in [AS4], these root vectors can be seen to be
iterated braided commutators of the elements x1, . . . , xθ with respect
to the braiding given by the matrix (vdiaij). This follows for example
from the inductive definition of the root vectors in [Ri].

In the case of our general braiding given by (qij) we define root
vectors xα ∈ R(D) for each α ∈ Φ+ by the same iterated braided
commutator of the elements x1, . . . , xθ as in Lusztig’s case but with
respect to the general braiding.

Definition 2.4. Let K(D) be the subalgebra of R(D) generated by
the elements xNα , α ∈ Φ+.

Theorem 2.5. Let D be a connected datum of finite Cartan type, and
assume (2.3), (2.4).

(1) The elements

xa1
β1
xa2
β2
· · ·xapβp , a1, a2, . . . , ap ≥ 0,

form a basis of R(D).
(2) K(D) is a braided Hopf subalgebra of R(D).
(3) For all α, β ∈ Φ+, xαx

N
β = χNβ (gα)xNβ xα, that is, [xα, x

N
β ]c = 0.
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Proof. (a) In the situation of 2.2, the elements in (1) form Lusztig’s
PBW-basis of U+ over Z[v, v−1] by [L2, 5.7].

(b) Now we assume that the braiding has the form (qij = qdiaij),
where (diaij) is the symmetrized Cartan matrix, and q is a non-zero
element in k of odd order, and not divisible by 3 if the Dynkin diagram
of (aij) is G2. Then (1) follows from Lusztig’s result by extension of
scalars, and (2) is shown in [dCP, 19.1] (for another proof see [M2,
3.1]). The algebra K(D) is commutative since it is a subalgebra of the
commutative algebra Z0 of [dCP, 19.1]. This proves (3) since qN = 1,
hence χNβ (gα) = 1

(c) In the situation of a general braiding matrix (qij)1≤i,j≤θ assumed
in the theorem, we define a matrix (q′ij)1≤i,j≤θ by q′ii = qii for all i, and
for all i 6= j we define q′ij = q′ji to be a square root of qijqji. By [AS2,

4.3], q′ij = qdiaij for all i, j, and for some q ∈ k. Thus by part (b) of the
proof, (1),(2) and (3) hold for the braiding (q′ij), and hence by Lemma
1.2 for (qij). �

2.2. The Hopf algebra K(D)#k[Γ]. We assume the situation of Sec-
tion 2.1. By Theorem 2.5 (2), K(D) is a braided Hopf algebra in Γ

ΓYD,
and the smash product K(D)#k[Γ] is a Hopf algebra in the usual sense.
We want to describe all Hopf algebra maps

K(D)#k[Γ]→ k[Γ]

which are the identity on the group algebra k[Γ].

Definition 2.6. For any 1 ≤ l ≤ p and a = (a1, a2, . . . , ap) ∈ Np we
define

hl = gNβl ,

ηl = χNβl ,

zl = xNβl ,

za = za1
1 z

a2
2 · · · zapp ∈ K(D),

ha = ha1
1 h

a2
2 · · ·happ ∈ Γ,

ηa = ηa1
1 η

a2

2
· · · ηapp ∈ Γ̂,

a = a1β1 + a2β2 + · · ·+ apβp ∈ Z[I].

For α =
∑θ

i=1 niαi ∈ Z[I], ni ∈ Z for all i, we call ht(α) =
∑θ

i=1 ni the
height of α. Let el = (δkl)1≤k≤p ∈ Np, where δkl = 1 if k = l and δkl = 0
if k 6= l.

Note that for all a, b, c ∈ Np,
(2.6) ha = hbhc, ηa = ηbηc, if a = b+ c,
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(2.7) ht(b) < ht(a), if a = b+ c and c 6= 0.

As explained in Section 1.1, we view T (V ) as a braided Hopf al-

gebra in
Z[I]
Z[I]YD. Then the quotient Hopf algebra R(D) and its Hopf

subalgebra K(D) are braided Hopf algebras in
Z[I]
Z[I]YD. In particular,

the comultiplication ∆K(D) : K(D) → K(D) ⊗ K(D) is Z[I]-graded.
By construction, for any α ∈ Φ+, the root vector xα in R(D) is Z[I]-
homogeneous of Z[I]-degree α. Thus xα ∈ R(D)χαgα , and for all a ∈ Np,
za has Z[I]-degree Na, and

(2.8) za ∈ K(D)η
a

ha .

For z ∈ K(D), g ∈ Γ, we will denote z#g ∈ K(D)#k[Γ] by zg. By
Theorem 2.5 the elements zag with a ∈ Np, g ∈ Γ, form a basis of
K(D)#k[Γ], and it follows that for all a, b = (bi), c = (ci) ∈ Np,

(2.9) zbzc = γb,cz
b+c, where γb,c =

∏
k>l

ηl(hk)
bkcl ,

(2.10) hazb = ηb(ha)zbha in R#k[Γ].

Lemma 2.7. For any 0 6= a ∈ Np there are uniquely determined scalars
tab,c ∈ k, 0 6= b, c ∈ Np, such that

(2.11) ∆K(D)(z
a) = za ⊗ 1 + 1⊗ za +

∑
b,c6=0,b+c=a

tab,c z
b ⊗ zc.

Proof. Since ∆K(D) is Z[I]-graded, ∆K(D)(z
a) is a linear combination

of elements zb ⊗ zc where b+ c = a. Hence

∆K(D)(z
a) = x⊗ 1 + 1⊗ y +

∑
b,c6=0,b+c=a

tab,c z
b ⊗ zc,

where x, y are elements in K(D). By applying the augmentation ε it
follows that x = y = za. �

We now define recursively a family of elements ua in k[Γ] depending
on parameters µa which behave like the elements za with respect to
comultiplication.

Lemma 2.8. Let n ≥ 2. For all 0 6= b ∈ Np, ht(b) < n, let µb ∈ k and
ub ∈ k[Γ] such that

(2.12) ub = µb(1− hb) +
∑

d,e6=0,d+e=b

tbd,e µdu
e,

(2.13) ∆(ub) = hb ⊗ ub + ub ⊗ 1 +
∑

d,e6=0,d+e=b

tbd,e u
dhe ⊗ ue.
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Let a ∈ Np with ht(a) = n, and ua ∈ k[Γ]. Then the following state-
ments are equivalent:

(2.14) ua = µa(1− ha) +
∑

b,c6=0,b+c=a

tab,c µbu
c for some µa ∈ k.

(2.15) ∆(ua) = ha ⊗ ua + ua ⊗ 1 +
∑

b,c6=0,b+c=a

tab,c u
bhc ⊗ uc.

Proof. Let

va = ua −
∑

b,c6=0,b+c=a

tab,c µbu
c.

Then ua can be written as in (2.14) if and only if ∆(va) = ha⊗va+va⊗1.
Hence it is enough to prove that

∆(va)−ha⊗va−va⊗1 = ∆(ua)−ha⊗ua−ua⊗1−
∑

b,c6=0,b+c=a

tab,c u
bhc⊗uc.

We compute

∆(va)− ha ⊗ va − va ⊗ 1 =

= ∆(ua)−
∑

b,c6=0,b+c=a

tab,c µb∆(uc)− ha ⊗ va − va ⊗ 1

= ∆(ua)− ha ⊗ ua − ua ⊗ 1 +
∑

b,c6=0,b+c=a

tab,c µb(h
a ⊗ uc − hc ⊗ uc)

−
∑

b,c,f,g 6=0
b+c=a,f+g=c

tab,c t
c
f,g µbu

fhg ⊗ ug,

using the definition of va in the first equation, and the formula for
∆(uc) from (2.13) in the second equation. Note that the term∑

b,c6=0,b+c=a

tab,c µbu
c ⊗ 1

cancels. Hence we have to show that∑
b,c,f,g 6=0

b+c=a,f+g=c

tab,c t
c
f,g µbu

fhg ⊗ ug =

=
∑

b,c6=0,b+c=a

tab,c(µbh
a ⊗ uc − µbhc ⊗ uc + ubhc ⊗ uc).

Since for all b, c 6= 0, b+ c = a, we have ha = hbhc, it follows that

µbh
a ⊗ uc − µbhc ⊗ uc + ubhc ⊗ uc = (µb(h

b − 1) + ub)hc ⊗ uc.
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Using the formula for ub from (2.12), we finally have to prove∑
b,c,f,g 6=0

b+c=a,f+g=c

tab,c t
c
f,g µbu

fhg ⊗ ug =
∑

b,c,d,e6=0
b+c=a,d+e=b

tab,c t
b
d,e µdu

ehc ⊗ uc.

This last equality follows from the coassociativity of K(D). Indeed,
from

(id⊗∆K(D))∆K(D)(z
a) = (∆K(D) ⊗ id)∆K(D)(z

a)

we obtain with (2.11) after cancelling several terms∑
b,c,f,g 6=0

b+c=a,f+g=c

tab,c t
c
f,g z

b ⊗ zf ⊗ zg =
∑

b,c,d,e6=0
b+c=a,d+e=b

tab,c t
b
d,e z

d ⊗ ze ⊗ zc.

Thus mapping zr ⊗ zs ⊗ zt, r, s, t 6= 0, ht(r), ht(s), ht(t) < n, onto
µru

sht ⊗ ut proves the claim. Here we are using that the elements
za are linearly independent by Theorem 2.5. �

Let K(D)#k[Γ] be the Hopf algebra corresponding to the braided
Hopf algebra K(D) by (1.3). Thus by definition and Lemma 2.7, for
all 0 6= a ∈ Np,

(2.16) ∆K(D)#k[Γ](z
a) = ha ⊗ za + za ⊗ 1 +

∑
b,c6=0,b+c=a

tab,c z
bhc ⊗ zc.

For all n ≥ 0, let K(D)n be the vector subspace spanned by all za, a ∈
N
p, ht(a) ≤ n. Then K(D)n#k[Γ] ⊂ K(D)#k[Γ] is a subcoalgebra.

In the next Lemma we describe all coalgebra maps

ϕ : K(D)n#k[Γ]→ k[Γ] with ϕ|Γ = id.

Note that such a coalgebra map is given by a family of elements
ϕ(za) =: ua, 0 6= a ∈ Np, ht(a) ≤ n, such that (2.15) holds for all
0 6= a, ht(a) ≤ n. It follows by induction on ht(a) from Lemma 2.8
with (2.14) that ε(ua) = 0 for all a.

Lemma 2.9. Let n ≥ 1.
(1) Let (µa)0 6=a∈Np,ht(a)≤n be a family of elements in k such that for

all a, if ha = 1, then µa = 0. Define the family (ua)0 6=a∈Np,ht(a)≤n by
induction on ht(a) by (2.14). Then

ϕ : K(D)n#k[Γ]→ k[Γ], ϕ(zag) = uag, a ∈ Np, ht(a) ≤ n, g ∈ Γ,

is a coalgebra map.

(2) The map defined in (1) from the set of all (µa)0 6=a∈Np,ht(a)≤n such
that for all a, if ha = 1, then µa = 0, to the set of all coalgebra maps
ϕ with ϕ|Γ = id is bijective.
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Proof. This follows from Lemma 2.8 by induction on ht(a). Note that
the coefficient µa in (2.14) is uniquely determined if we define µa = 0
if ha = 1. �

Definition 2.10. Let n ≥ 1. A coalgebra map ϕ : K(D)n#k[Γ]→ k[Γ]
with ϕ|Γ = id is called a partial Hopf algebra map, if for all x, y ∈
K(D)n#k[Γ] with xy ∈ K(D)n#k[Γ], we have ϕ(xy) = ϕ(x)ϕ(y).

Lemma 2.11. Let n ≥ 1, and ϕ : K(D)n#k[Γ] → k[Γ] a coalge-
bra map, (µa)0 6=a∈Np,ht(a)≤n the family of scalars corresponding to ϕ by
Lemma 2.9, and ua = ϕ(a) for all a ∈ Np with ht(a) ≤ n. Then the
following are equivalent:

(1) ϕ is a partial Hopf algebra map.
(2) For all 0 6= a = (a1, . . . , ap) ∈ Np with ht(a) ≤ n,

(a) ua =
∏

al>0 u
al
l , where for all 1 ≤ l ≤ p, ul = uel , if al > 0,

(b) if ηa 6= ε, then µa = 0, and ua = 0.
(3) (a) As (2) (a).

(b) For all 1 ≤ l ≤ p with ht(el) ≤ n, if ηl 6= ε, then uel = 0.

Proof. (1) ⇒ (2): If ϕ is a partial Hopf algebra map, then (a) follows
immediately, and to prove (b), let 0 6= a ∈ Np, ht(a) ≤ n, and g ∈ Γ,
with ηa 6= ε. Then

ϕ(gza) = ηa(g)uag = uag,

since gza = ηa(g)zag by (2.10). Thus ua = 0, and it follows by induc-
tion on ht(a) from (2.14) that µa = 0, since for all 0 6= b, c ∈ Np with
ht(b) + ht(c) = ht(a), ηb 6= ε, or ηc 6= ε.

(2) ⇒ (3) is trivial. (3) ⇒ (1): The coalgebra map ϕ is a partial
Hopf algebra map if and only if for all b, c ∈ Np with ht(b) + ht(c) ≤ n,
and g, h ∈ Γ,

ϕ(zbgzch) = ubguch.

By (2.9) and (2.10), zbgzch = ηc(g)γb,cz
b+cgh. Thus (1) is equivalent to

(2.17) ηc(g)γb,cu
b+c = ubuc for all b, c ∈ Np, ht(b) + ht(c) ≤ n, g ∈ Γ.

Let b, c ∈ Np, ht(b) + ht(c) ≤ n, g ∈ Γ. By (a),

ub+c = ubuc =
∏

bl+cl>0

ubl+cll .

To prove (2.17) assume that ubuc 6= 0. Then ul 6= 0 for all l with cl > 0.
Hence by (b), ηl = ε for all l with cl > 0, and ηc(g) = 1, γb,c = 1. �

To formulate the main result of this section, we define M(D) as the
set of all families (µl)1≤l≤p of elements in k satisfying the following
condition for all 1 ≤ l ≤ p : If hl = 1 or ηl 6= ε, then µl = 0.
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Theorem 2.12. (1) Let µ = (µl)1≤l≤p ∈M(D). Then there is exactly
one Hopf algebra map

ϕµ : K(D)#k[Γ]→ k[Γ], ϕ|Γ = id

such that the family (µa)0 6=a∈Np associated to ϕµ by Lemma 2.9 satisfies
µel = µl for all 1 ≤ l ≤ p.

(2) The map µ 7→ ϕµ defined in (1) from M(D) to the set of all
Hopf algebra homomorphisms ϕ : K(D)#k[Γ]→ k[Γ] with ϕ|Γ = id is
bijective.

Proof. (1) We proceed by induction on n to construct partial Hopf
algebra maps on K(D)n#k[Γ], the case n = 0 being trivial. We assume
that we are given a partial Hopf algebra map

ϕ : K(D)n−1#k[Γ]→ k[Γ], n ≥ 1,

such that µel = µl for all 1 ≤ l ≤ p with ht(el) ≤ n − 1. Here
(µa)0 6=a∈Np,ht(a)≤n−1 is the family of scalars associated to ϕ by Lemma
2.9. We define ub = ϕ(zb) for all 0 6= b, ht(b) ≤ n − 1. It is enough to
show that there is exactly one partial Hopf algebra map

ψ : K(D)n#k[Γ]→ k[Γ]

extending ϕ, and such that µel = µl for all l with ht(el) ≤ n.
Let a ∈ Np with ht(a) = n. To define ψ(za) =: ua we distinguish two

cases.
If a = el for some 1 ≤ l ≤ p, we define

(2.18) ua = µl(1− ha) +
∑

b,c6=0,b+c=a

tab,cµbu
c.

Then (2.15) holds by Lemma 2.8.
If a = (a1, . . . , al, 0, . . . , 0), al ≥ 1, 1 ≤ l ≤ p, and a 6= el, then

a = r + s, where 0 6= r, s = el. We define ua = urus. To see that ua

satisfies (2.15), using (2.16) we write

∆(zc) = hc ⊗ zc + zc ⊗ 1 + T (c), for all 0 6= c ∈ Np.
Since zrzs = za because of (2.9) (note that γr,s = 1 in this case) we see
that ∆(zr)∆(zs) = ha ⊗ za + za ⊗ 1 + T (r, s), where

T (r, s) = hrzs⊗zr+zrhs⊗zs+(hr⊗zr+zr⊗1)T (s)+T (r)(hs⊗zs+zs⊗1),

and T (r, s) = T (a). Since ϕ on K(D)n−1#k[Γ] is a coalgebra map,

∆(uc) = hc ⊗ uc + uc ⊗ 1 + (ϕ⊗ ϕ)(T (c)),

for all 0 6= c ∈ Np with ht(c) ≤ n− 1. In particular,

∆(ur)∆(us) = ha ⊗ ua + ua ⊗ 1 + (ϕ⊗ ϕ)(T (r, s)).
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Thus ∆(ua) = ha ⊗ ua + ua ⊗ 1 + (ϕ ⊗ ϕ)(T (a)), that is, ua satisfies
(2.15).

Thus the extension of ϕ defined by ψ(zag) = uag for all g ∈ Γ, a ∈
N
p, ht(a) = n is a coalgebra map.

To prove that the extension ψ is a partial Hopf algebra map, we
check condition (3) in Lemma 2.11. Since the restriction of ψ to
K(D)n−1#k[Γ] is a partial Hopf algebra map, (3) (a) is satisfied. To
prove (3)(b), let 1 ≤ l ≤ p with ht(el) = n, a = el, and assume ηl 6= ε.

Then for all 0 6= b, c ∈ Np with b + c = a, we have ηb 6= ε or ηc 6= ε.
Since ϕ is a Hopf algebra map, it follows from Lemma 2.11 that µb = 0
or uc = 0. By assumption, µl = 0. Hence by (2.18), ua = 0.

This proves (1) since the uniqueness of the extension follows from
Lemma 2.8 and Lemma 2.9.

(2) By Lemma 2.9, the map µ 7→ ϕµ is injective. To prove surjectiv-
ity, let ϕ : K(D)#k[Γ] → k[Γ] be a Hopf algebra map with ϕ|Γ = id.
By Lemma 2.9, ϕ is defined by a family (µa)0 6=a∈Np of scalars. By (1),
ϕ is determined by the values µel , 1 ≤ l ≤ p. �

Definition 2.13. For any µ ∈ M(D) and 1 ≤ l ≤ p, let ϕµ be the
Hopf algebra map defined in Theorem 2.12, and

ul(µ) = ϕµ(zl) ∈ k[Γ].

If α is a positive root in Φ+ with α = βl, we define uα(µ) = ul(µ).

Note that by (2.14), each uα(µ) lies in the augmentation ideal of
k[gNi | 1 ≤ i ≤ θ].

3. Linking

3.1. Notations. In this Section we fix a finite abelian group Γ, and a
datum D = D(Γ, (gi)1≤i≤θ, (χi)1≤i≤θ, (aij)1≤i,j≤θ) of finite Cartan type.
We follow the notations of the previous Section, in particular, qij =
χj(gi) for all i, j.

For all 1 ≤ i, j ≤ θ we write i ∼ j if i and j are in the same connected
component of the Dynkin diagram of (aij). Let X = {I1, . . . , It} be the
set of connected components of I = {1, 2, . . . , θ}. We assume

qij has odd order for all i, j, and(3.1)

the order of qii is prime to 3, if i lies in a component G2.(3.2)

For all J ∈ X , let NJ be the common order of qii, i ∈ J.
As in Section 2.2, for all J ∈ X , we choose a reduced decomposition

of the longest element w0,J of the Weyl group WJ of the root system
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ΦJ of (aij)i,j∈J . Then for all J,K ∈ X , w0,J and w0,K commute in the
Weyl group W of the root system Φ of (aij)1≤i,j≤θ, and

w0 = w0,I1w0,I2 · · ·w0,It

gives a reduced representation of the longest element of W . For all
J ∈ X , let pJ be the number of positive roots in Φ+

J , and

Φ+
J = {βJ,1, . . . , βJ,pJ}

the corresponding convex ordering. Then

Φ+ = {βI1,1, . . . , βI1,pI1 , . . . , βIt,1, . . . , βIt,pIt}

is the convex ordering corresponding to the reduced representation of
w0 = w0,I1w0,I2 · · ·w0,It . We also write

Φ+ = {β1, . . . , βp}, p =
∑
J∈X

pJ ,

for this ordering.
In Section 2.1 we have defined root vectors xα in the free algebra

k〈x1, . . . , xθ〉 for each positive root in Φ+
J ⊂ Φ, J ∈ X .

We recall a notion from [AS4].

Definition 3.1. A family λ = (λij)1≤i<j≤θ, i 6∼j of elements in k is called
a family of linking parameters for D if the following condition is satis-
fied for all 1 ≤ i < j ≤ θ, i 6∼ j: If gigj = 1 or χiχj 6= ε, then λij = 0.
Vertices 1 ≤ i, j ≤ θ are called linkable if i 6∼ j, gigj 6= 1 and χiχj = ε.

Any vertex i is linkable to at most one vertex j, and if i, j are linkable,
then qii = q−1

jj [AS4, Section 5.1].

The free algebra k〈x1, . . . , xθ〉 is a braided Hopf algebra in Γ
ΓYD as

explained in Section 1.1. Then k〈x1, . . . , xθ〉#k[Γ] is a Hopf algebra
as in 1.2. For simplicity we write xg instead of x#g for elements
x ∈ k〈x1, . . . , xθ〉 and g ∈ Γ.

3.2. The Hopf algebra U(D, λ). We assume the situation of Section
3.1.

Definition 3.2. Let λ = (λij)1≤i<j≤θ, i 6∼j be a family of linking parame-
ters forD. Let U(D, λ) be the quotient Hopf algebra of k〈x1, . . . , xθ〉#k[Γ]
modulo the ideal generated by

adc(xi)
1−aij(xj), for all 1 ≤ i, j ≤ θ, i ∼ j, i 6= j,(3.3)

xixj − qijxjxi − λij(1− gigj), for all 1 ≤ i < j ≤ θ, i 6∼ j.(3.4)
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We denote the images of xi and g ∈ Γ in U(D, λ) again by xi and g.
The elements in (3.3) and (3.4) are skew-primitive. Hence U(D, λ) is
a Hopf algebra with

∆(xi) = gi ⊗ xi + xi ⊗ 1, 1 ≤ i ≤ θ.

Theorem 3.3. Let Γ be a finite abelian group, and D a datum of finite
Cartan type satisfying (3.1) and (3.2). Let λ be a family of linking
parameters for D. Then

(1) The elements

xa1
β1
xa2
β2
· · ·xapβpg, a1, a2, . . . , ap ≥ 0, g ∈ Γ,

form a basis of the vector space U(D, λ).
(2) Let J ∈ X , and α ∈ Φ+, β ∈ Φ+

J . Then [xα, x
NJ
β ]c = 0, that is,

xαx
NJ
β = qNJα,βx

NJ
β xα.

Proof. We adapt the method of proof of [AS4, Section 5.3] and proceed
by induction on the number t of connected components.

If I is connected, (1) and (2) follow from Theorem 2.5.

If t > 1, we assume that I1 = {1, 2, . . . , θ̃}, 1 ≤ θ̃ < θ. For all

1 ≤ i ≤ θ̃, let li be the least common multiple of the orders of gi and

χi, 1 ≤ i ≤ θ̃. Let Γ̃ = 〈h1, . . . , hθ̃ | hihj = hjhi, h
li
i = 1 for all i, j〉, and

define for all 1 ≤ i ≤ θ̃ the character ηj of Γ̃ by ηj(hi) = χj(gi), 1 ≤
i, j ≤ θ̃. Then we define

D1 = D(Γ̃, (hi)1≤i≤θ̃, (ηi)1≤i≤θ̃, (aij)1≤i,j≤θ̃).

Let D2 = D(Γ, (gi)θ̃<i≤θ, (χi)θ̃<i≤θ, (aij)θ̃<i,j≤θ) be the restriction of D
to I2 ∪ · · · ∪ It, and λ2 = (λij)θ̃<i<j≤θ,i�j. We define U = U(D1) (with

empty family of linking parameters) with generators x1, . . . , xθ̃, and

h ∈ Γ̃, and A = U(D2, λ2) with generators yθ̃+1, . . . , yθ, and g ∈ Γ.
It is shown in [AS4, Lemma 5.19] that there are algebra maps γi,

(ε, γ)−derivations δi and a Hopf algebra map ϕ,

γi : A→ k, δi : A→ k, ϕ : U → (A0)cop, 1 ≤ i ≤ θ̃,

such that for all 1 ≤ i ≤ θ̃ < j ≤ θ,

γi|Γ = χi, γi(yj) = 0,
δi|Γ = 0, δi(yj) = −χi(gj)λij,
ϕ(hi) = γi, ϕ(xi) = δi.

Then σ : U ⊗A⊗U ⊗A→ U ⊗A, defined for all u, v ∈ U, a, b ∈ A by

σ(u⊗ a, v ⊗ b) = ε(u)τ(v, a)ε(b), τ(v, a) = ϕ(v)(a),
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is a 2-cocycle on the tensor product Hopf algebra of U and A, and
(U ⊗ A)σ is the Hopf algebra with twisted multiplication defined in
(1.9). Multiplication in (U ⊗ A)σ is given for all u, v ∈ U, a, b ∈ A by

(3.5) (u⊗ a) ·σ (v ⊗ b) = uτ(v(1), a(1))v(2) ⊗ a(2)τ
−1(v(3), a(3))b,

with τ−1(u, a) = ϕ(u)(S−1(a)).

The group-like elements hi⊗g−1
i , 1 ≤ i ≤ θ̃, are central in (U ⊗A)σ,

and as in the last part of the proof of [AS4, Theorem 5.17] it can be
seen that the map

(U⊗A)σ → U(D, λ), xi⊗1 7→ xi, hi⊗1 7→ gi, , 1⊗yj 7→ xj, 1⊗g 7→ g

for all 1 ≤ i ≤ θ̃ < j ≤ θ, g ∈ Γ, induces an isomorphism of Hopf
algebras

(3.6) (U ⊗ A)σ/(hi ⊗ g−1
i − 1⊗ 1 | 1 ≤ i ≤ θ̃) ∼= U(D, λ).

By induction and Theorem 2.5, the elements

xa1
β1
· · ·xap1βp1

h⊗ yap1+1

βp1+1
· · · yapβpg, a1, . . . , ap ≥ 0, h ∈ Γ̃, g ∈ Γ,

are a basis of U ⊗ A. It follows from (3.5) that for all p1 < l ≤ p and

1 ≤ i ≤ θ̃,
(1⊗ yβl) ·σ (hi ⊗ 1) = χi(gβl)hi ⊗ yβl .

Hence

(xa1
β1
· · ·xap1βp1

⊗ yap1+1

βp1+1
· · · yapβp) ·σ (h⊗ g), a1, . . . ap ≥ 0, h ∈ Γ̃, g ∈ Γ,

is a basis of (U ⊗ A)σ.

Let P = {h ⊗ g ∈ (U ⊗ A)σ | h ∈ Γ̃, g ∈ Γ}, and let P̃ ⊂ P be the

subgroup generated by hi ⊗ g−1
i , 1 ≤ i ≤ θ̃. Then

Γ→ P/P̃ , g 7→ 1⊗ g,

is a group isomorphism. By (3.6), (U ⊗ A)σ ⊗k[P ] k[P/P̃ ] ∼= U(D).
Hence

xa1
β1
xa2
β2
· · ·xapβpg, a1, a2, . . . , ap ≥ 0, g ∈ Γ,

is a basis of U(D, λ).

To prove (2), we first show that for all θ̃ < i ≤ θ, and β ∈ Φ+
I1
, with

N = NI1

(3.7) (1⊗ yi) ·σ (xNβ ⊗ 1) = χNβ (gi)(x
N
β ⊗ 1) ·σ (1⊗ yi)

in (U⊗A)σ. We use the notations of Section 2.2 with N = NI1 , zβ = xNβ .
By (2.16)

∆U(zβ) = gNβ ⊗ zβ + zβ ⊗ 1 +
∑

b,c6=o,b+c=β

tab,cz
bhc ⊗ zc.
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Since ∆(yi) = gi ⊗ yi + yi ⊗ 1, and

∆2(yi) = gi ⊗ gi ⊗ yi + gi ⊗ yi ⊗ 1 + yi ⊗ 1⊗ 1,

we have for all u ∈ U by (3.5)

(1⊗ yi) ·σ (u⊗ 1) = ϕ(u(1))(gi)u(2) ⊗ giϕ(u(3))(S
−1(yi))

+ ϕ(u(1))(gi)u(2) ⊗ yiϕ(u(3))(1)

+ ϕ(u(1))(yi)u(2) ⊗ 1ϕ(u(3))(1).

It follows from the definition of ϕ that

ϕ(xβl)(g) = 0 for all βl ∈ Φ+
1 , g ∈ Γ.

Hence to compute (1⊗ yi) ·σ (u⊗ 1) with u = zβ, we only need to take
into account the term gNβ ⊗ zβ ⊗ 1 of ∆2(zβ), and we obtain

(1⊗ yi) ·σ (u⊗ 1) = ϕ(gNβ )(yi(1))zβ ⊗ yi(2)ϕ(1)(S−1(yi(3)))

= ϕ(gNβ )(yi(1))zβ ⊗ yi(2)

= ϕ(gNβ )(gi)zβ ⊗ yi + ϕ(gNβ )(yi)zβ ⊗ 1

= χNβ (gi)(x
N
β ⊗ 1) ·σ (1⊗ yi),

since ϕ(gNβ ) = χNβ and ϕ(gNβ )(yi) = 0 by the definition of ϕ.

¿From (3.6) and (3.7) we see that for all simple roots α ∈ Φ+
K , K ∈

X , K 6= I1 and all roots β ∈ Φ+
J with J = I1

(3.8) xαx
NJ
β = χNJβ (gα)xNJβ xα

in U(D, λ). Since the root vectors xα are homogeneous, (3.8) holds for
all α ∈ Φ+

K , K 6= I1, and β ∈ Φ+
I1
. Since U(D, λ) and the root vectors

xα, α ∈ Φ+, do not depend on the order of the connected components,
we can reorder the connected components and obtain (3.8) for all pos-
itive roots α, β lying in different connected components. For roots in
the same connected component, (3.8) follows from Theorem 2.5. �

4. Finite-dimensional quotients

4.1. A general criterion. We need a generalization of Theorem [AS5,
6.24].

In this section, let Γ be an abelian group, A an algebra containing
the group algebra k[Γ] as a subalgebra and p ≥ 1. We assume

y1, . . . , yp ∈ A, h1, . . . , hp ∈ Γ, ψ1, . . . , ψp ∈ Γ̂, and N1, . . . , Np ≥ 1,
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such that

gyl = ψl(g)ylg, for all 1 ≤ l ≤ p, g ∈ Γ,(4.1)

yky
Nl
l = ψNll (hk)y

Nl
l yk, for all 1 ≤ k, l ≤ p,(4.2)

ya1
1 · · · yapp g, a1, · · · , ap ≥ 0, g ∈ Γ, form a basis of A.(4.3)

For all a = (a1, . . . , ap) ∈ Np, we define ya = ya1
1 · · · y

ap
p and

L = {l = (l1, . . . , lp) ∈ Np | 0 ≤ li < Ni for all 1 ≤ i ≤ p}.
Hence any element of y ∈ A can be written as

y =
∑

l∈L,a∈Np
ylyaNwl,a, wl,a ∈ k[Γ] for all l ∈ L, a ∈ Np,

where the coefficients wl,a ∈ k[Γ] are uniquely determined. In [AS5] we
assumed that A = R#k[Γ], and the subalgebra R of A generated by
y1, . . . , yp had the basis ya1

1 · · · y
ap
p , a1, . . . , ap ≥ 0. Hence for y ∈ R we

could assume that the wl,a were scalars.

Theorem 4.1. Assume the situation above, and let ul ∈ k[Γ], 1 ≤ l ≤
p. Then the following are equivalent:

(1) The residue classes of ya1
1 · · · y

ap
p g, a1, · · · , ap ≥ 0, g ∈ Γ, form

a basis of the quotient algebra A/(yNll − ul | 1 ≤ l ≤ p).

(2) For all 1 ≤ l ≤ p, ul is central in A, and if ψNll 6= ε, then
ul = 0.

Proof. As in [AS5] this follows from Lemma [AS5, 6.23]. To extend
the proof of this Lemma to the more general case considered here, we
use the following rule. Assume (2), and let ua = ua1

1 · · ·u
ap
p , for all

a = (a1, . . . , ap) ∈ Np. For all 1 ≤ l ≤ p, let ψ̃l : k[Γ] → k[Γ] be the

algebra isomorphism with ψ̃l(g) = ψl(g)g for all g ∈ Γ. Then

(4.4) uaψ̃aN(w) = uaw, for all w ∈ k[Γ], a ∈ Np,

where ψ̃aN = ψ̃a1N1
1 . . . ψ̃

apNp
p . �

4.2. The Hopf algebra u(D, λ, µ). Let Γ be a finite abelian group,
and D = D(Γ, (gi)1≤i≤θ, (χi)1≤i≤θ, (aij)1≤i,j≤θ) a datum of finite Cartan
type. We assume the situation of Section 3.1.

Definition 4.2. A family µ = (µα)α∈Φ+ of elements in k is called
a family of root vector parameters for D if the following condition is
satisfied for all α ∈ Φ+

J , J ∈ X : If gNJα = 1 or χNJα 6= ε, then µα = 0.
Let µ be a family of root vector parameters for D. For all J ∈ X ,

and α ∈ Φ+
J , we define

(4.5) πJ(µ) = (µβ)β∈Φ+
J
, and uα(µ) = uα(πJ(µ)),



CLASSIFICATION OF POINTED HOPF ALGEBRAS 23

where uα(πJ(µ)) is introduced in Definition 2.13. Let λ be a family of
linking parameters for D. Then we define

(4.6) u(D, λ, µ) = U(D, λ)/(xNJα − uα(µ) | α ∈ Φ+
J , J ∈ X ).

By abuse of language we still write xi and g for the images of xi
and g ∈ Γ in u(D, λ, µ). For all 1 ≤ l ≤ p, we define Nl = NJ , if
βl ∈ Φ+

J , J ∈ X .
Lemma 4.3. Let D, λ and µ as above, and α ∈ Φ+. Then uα(µ) is
central in U(D,Λ).

Proof. Let α ∈ Φ+
J , where J ∈ X , and N = NJ . To simplify the

notation, we assume J = I1 = {1, 2, . . . , θ̃}, and Φ+
J = {β1, β2, . . . , βp̃}.

We apply the results and notations of Section 2.2 to the connected
component I1. For all a = (a1, . . . , ap̃) ∈ Np̃, and 1 ≤ i ≤ θ, we will
show that

(4.7) µah
axi = µaxih

a.

We can assume that µa 6= 0. Let 1 ≤ l ≤ θ̃, and βl =
∑θ̃

j=1 njαj,

where nj ∈ N for all 1 ≤ j ≤ θ̃. Then by definition, gβl =
∏

1≤j≤θ̃ g
nj
j ,

and χβl =
∏

1≤j≤θ̃ χ
nj
j . Hence

χi(g
N
βl

)χNβl(gi) =
∏

1≤j≤θ̃

q
aijNnj
ii = 1,

since qNii = 1, if i ∈ I1, and aij = 0, if i /∈ I1. By Lemma 2.11, χNβl = ε

for all 1 ≤ l ≤ θ̃ with al > 0. Hence χi(g
N
βl

) = 1 for all l with al > 0.
This implies (4.7) since haxi = χi(h

a)xih
a.

Finally we prove by induction on ht(a) using (4.7) and (2.14) that
ua is central in U(D, λ) (and in k〈x1, . . . , xθ〉#k[Γ]). �

Theorem 4.4. Let D be a datum of finite Cartan type satisfying (3.1)
and (3.2). Let λ and µ be families of linking and root vector parameters
for D. Then u(D, λ, µ) is a quotient Hopf algebra of U(D, λ) with
group-like elements G(u(D, λ, µ)) ∼= Γ, and the elements

xa1
β1
xa2
β2
· · ·xapβpg, 0 ≤ al < Nl, 1 ≤ l ≤ p, g ∈ Γ

form a basis of u(D, λ, µ). In particular,

dimu(D, λ, µ) =
∏
J∈X

N
|Φ+
J |

J |Γ|.

Proof. By Theorem 3.3, the elements

xa1
β1
xa2
β2
· · ·xapβpg, 0 ≤ al, 1 ≤ l ≤ p, g ∈ Γ
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are a basis of U(D, λ). We want to apply Theorem 4.1 with

yl = xβl , ψl = χβl , ul = uβl(µ), 1 ≤ l ≤ p.

For each connected component J ∈ X we apply the results of Section
2.2 with

ηl = χNlβl , 1 ≤ l ≤ p, βl ∈ Φ+
J .

If χNlβl 6= ε for some 1 ≤ l ≤ p, βl ∈ Φ+
J , then by assumption, µβl = 0,

and by Lemma 2.11, uβl(µ) = 0. By Lemma 4.7, uβl(µ) is central in
U(D, λ). Hence the claim concerning the basis of u(D, λ, µ) follows from
Theorem 3.3 and Theorem 4.1.

We now show that u(D, λ, µ) is a Hopf algebra. Let J ∈ X . We
denote the restriction of D to the connected component J by DJ . By
Theorem 2.12, the map ϕµ : K(DJ)#k[Γ] → k[Γ] is a Hopf algebra
homomorphism. The kernel of ϕµ is generated by all xNJα − uα(µ), α ∈
Φ+
J . Hence the elements xNJα − uα(µ), α ∈ Φ+

J , generate a Hopf ideal in
K(DJ)#k[Γ] and in U(D, λ).

The Hopf algebra u(D, λ, µ) is generated by the skew-primitive el-
ements x1, . . . , xθ and the image of Γ. In particular, G(u(D, λ, µ)) ∼=
Γ. �

For explicit examples of the Hopf algebras u(D, λ, µ) see [AS5, Sec-
tion 6] for type An, n ≥ 1, and [BDR] for type B2. In these papers, and
for these types, the elements uα(µ) are precisely written down. An in-
teresting problem is to find an explicit algorithm describing the uα(µ)
for any connected Dynkin diagram.

5. The associated graded Hopf algebra

5.1. Nichols algebras. To determine the structure of a given pointed
Hopf algebra, we proceed as in [AS1] and study the associated graded
Hopf algebra.

Let A be a pointed Hopf algebra with group of group-like elements
G(A) = Γ. Let

A0 = k[Γ] ⊂ A1 ⊂ · · · ⊂ A, A = ∪n≥0An

be the coradical filtration of A. We define the associated graded Hopf
algebra [M, 5.2.8] by

gr(A) = ⊕n≥0An/An−1, A−1 = 0.

Then gr(A) is a pointed Hopf algebra with the same dimension and
coradical as A. The projection map π : gr(A)→ k[Γ] and the inclusion
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ι : k[Γ]→ gr(A) are Hopf algebra maps with ιπ = idk[Γ]. Let

(5.1) R = {x ∈ gr(A) | (id⊗ π)∆(x) = x⊗ 1}
be the algebra of k[Γ]-coinvariant elements. Then R = ⊕n≥0R(n) is a
graded Hopf algebra in Γ

ΓYD, and by (1.7)

(5.2) gr(A) ∼= R#k[Γ].

Let V = P (R) ∈ Γ
ΓYD be the Yetter-Drinfeld module of primitive

elements in R. We call its braiding

c : V ⊗ V → V ⊗ V
the infinitesimal braiding of A.

Let B(V ) be the subalgebra of R generated by V. Thus B = B(V )
is the Nichols algebra of V [AS2], that is,

B = ⊕n≥0B(n) is a graded Hopf algebra in Γ
ΓYD,(5.3)

B(0) = k1, B(1) = V,(5.4)

B(1) = P (B),(5.5)

B is generated as an algebra by B(1).(5.6)

B(V ) only depends on the vector space V with its Yetter-Drinfeld
structure (see the discussion in [AS5, Section 2]). As an algebra and
coalgebra, B(V ) only depends on the braided vector space (V, c).

We assume in addition that A is finite-dimensional and Γ is abelian.
Then there are g1, . . . , gθ ∈ Γ, χ1, . . . , χθ ∈ Γ̂ and a basis x1, . . . , xθ of
V such that xi ∈ V χi

gi
for all 1 ≤ i ≤ θ. We call

(qij = χj(gi))1≤i,j≤θ

the infinitesimal braiding matrix of A.
The first step to classify pointed Hopf algebras is the computation

of the Nichols algebra.
Using results of Lusztig [L1],[L2], Rosso [Ro] and Müller [M1] and

twisting we proved in [AS4, Theorem 4.5] the following description of
the Nichols algebra of Yetter-Drinfeld modules of finite Cartan type.

Theorem 5.1. Let D = D(Γ, (gi)1≤i≤θ, (χi)1≤i≤θ, (aij)1≤i,j≤θ) be a da-
tum of finite Cartan type with finite abelian group Γ. Assume (3.1)
and (3.2). Let V ∈ Γ

ΓYD be a vector space with basis x1, . . . , xθ and
xi ∈ V χi

gi
for all 1 ≤ i ≤ θ. Then B(V ) is the quotient algebra of T (V )

modulo the ideal generated by the elements

adc(xi)
1−aij(xj) for all 1 ≤ i, j ≤ θ, i 6= j,(5.7)

xNJα for all α ∈ Φ+
J , J ∈ X .(5.8)
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Corollary 5.2. Assume the situation of Theorem 5.1, and let λ and µ
be linking and root vector parameters for D. Then

gr(u(D, λ, µ)) ∼= u(D, 0, 0) ∼= B(V )#k[Γ].

Proof. Let A = u(D, λ, µ). There is a well-defined Hopf algebra map

u(D, 0, 0)→ gr(u(D, λ, µ)),

mapping xi, 1 ≤ i ≤ θ, onto the residue class of xi in A1/A0, and g ∈ Γ
onto g. Since dim(u(D, 0, 0)) = dim(u(D, λ, µ)) = dim(gr(u(D, λ, µ))
by Theorem 4.4, it follows that u(D, 0, 0) ∼= gr(u(D, λ, µ)). By Theo-
rem 5.1, u(D, 0, 0) ∼= B(V )#k[Γ]. �

As an application of Corollary 5.2 we derive some information about
isomorphisms between Hopf algebras of the form u(D, λ, µ).

Remark 5.3. Let Γ and Γ′ be finite abelian groups, and

D = D(Γ, (gi)1≤i≤θ, (χi)1≤i≤θ, (aij)1≤i,j≤θ),

D′ = D(Γ′, (g′i)1≤i≤θ′ , (χ
′
i)1≤i≤θ′ , (a

′
ij)1≤i,j≤θ′)

data of finite Cartan type satisfying (3.1) and (3.2). Moreover we
assume

(5.9) qii = χi(gi) > 3 for all 1 ≤ i ≤ θ.

Let λ and λ′ be linking parameters, and µ and µ′ root vector parameters
for D and D′. We assume there is a Hopf algebra isomorphism

F : A = u(D, λ, µ)→ A′ = u(D′, λ′, µ′).

Then F preserves the coradical filtration and induces an isomorphism
A0 = k[Γ] ∼= A′0 = k[Γ′], given by a group isomorphism ϕ : Γ → Γ′,
and by Corollary 5.2 an isomorphism

A1 = k[Γ]⊕
⊕
g∈Γ,

1≤i≤θ

kxig ∼= A′1 ⊕
⊕
g′∈Γ′,
1≤i≤θ′

kx′ig
′.

Hence (see [AS2, 6.3]) θ = θ′, and there are a permutation ρ ∈ Sθ and
elements 0 6= si ∈ k, 1 ≤ i ≤ θ such that for all 1 ≤ i ≤ θ,

ϕ(gi) = g′ρ(i),(5.10)

χi = χ′ρ(i)ϕ,(5.11)

F (xi) = six
′
ρ(i).(5.12)

Note that the Nichols algebras u(D, 0, 0) and u(D′, 0, 0) are isomorphic
if and only if θ = θ′, and there are ϕ, ρ, (si) with (5.10),(5.11).
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Let qij = χj(gi), and q′ij = χ′j(g
′
i), for all 1 ≤ i, j ≤ θ. Then it follows

from (5.10), (5.11) and (5.9) that for all 1 ≤ i, j ≤ θ,

qij = q′ρ(i)ρ(j),(5.13)

aij = a′ρ(i)ρ(j),(5.14)

since q
aij
ii = q

a′
ρ(i)ρ(j)

ii , and aij − a′ρ(i)ρ(j) ∈ {0,±1,±2,±3}. We see from

(5.13) that for all 1 ≤ i, j ≤ θ,

(5.15) F ([xi, xj]c) = sisj[x
′
ρ(i), x

′
ρ(j)]c′ ,

hence by the linking relations for all 1 ≤ i < j ≤ θ, i 6∼ j,

(5.16) λij =

{
sisjλ

′
ρ(i)ρ(j), if ρ(i) < ρ(j),

−sisjχj(gi)λ′ρ(j)ρ(i), if ρ(i) > ρ(j).

To obtain more precise results we now assume as in [AS5, 6.26] that
for all 1 ≤ i, j ≤ θ, i 6= j,

(5.17) ord(gi) = ord(g′i) 6= ord(gj) = ord(g′j).

This forces ρ to be the identity, and we can identify the root systems
of D and D′. Then

(5.18) F (xα) = sαx
′
α for all α ∈ Φ+,

where we define sα = sn1
1 · · · s

nθ
θ , if α =

∑θ
i=1 niαi ∈ Φ+. The root

vector relations imply

(5.19) sNJα u′α(µ′) = F (uα(µ)) = u′α(µ), for all α ∈ Φ+
J , J ∈ X.

It follows from the inductive definition of the uα(µ), that (5.18) is
equivalent to

(5.20) sNJα µ′α = µα, for all α ∈ Φ+
J , J ∈ X.

Conversely these data allow to define a Hopf algebra isomorphism.
Assuming (5.17) and θ = θ′, we conclude that u(D, λ, µ) is isomorphic
to u(D′, λ′, µ′) if and only if aij = a′ij for all 1 ≤ i, j ≤ θ, and there are
scalars 0 6= si ∈ k, 1 ≤ i ≤ θ, and a group isomorphism ϕ : Γ → Γ′

satisfying

ϕ(gi) = g′i, for all 1 ≤ i ≤ θ(5.21)

χi = χ′iϕ, for all 1 ≤ i ≤ θ(5.22)

λij = sisjλ
′
ij, for all 1 ≤ i < j ≤ θ,(5.23)

sNJα µ′α = µα, for all α ∈ Φ+
J , J ∈ X.(5.24)
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In [AS2] and [AS4] we determined the structure of finite-dimensional
Nichols algebras assuming that V is of Cartan type and satisfies some
more assumptions in the case of small orders (≤ 17) of the diagonal
elements qii. Recent results of Heckenberger [H1], [H2], [H3] together
with Theorem 5.1 allow to prove the following very general structure
theorem on Nichols algebras.

Theorem 5.4. Let Γ be a finite abelian group, and V ∈ Γ
ΓYD a Yetter-

Drinfeld module such that B(V ) is finite-dimensional. Choose a basis

xi ∈ V with xi ∈ V χi
gi
, gi ∈ Γ, χi ∈ Γ̂, for all 1 ≤ i ≤ θ. For all

1 ≤ i, j ≤ θ, define qij = χj(gi), and assume

ord(qij) is odd, and ord(qii) is not 3,(5.25)

ord(qii) is prime to 3 if qilqli ∈ {q−3
ii , q

−3
ll } for some l.(5.26)

Then there is a datum D = D(Γ, (gi)1≤i≤θ, (χi)1≤i≤θ, (aij)1≤i,j≤θ) of fi-
nite Cartan type such that

B(V )#k[Γ] ∼= u(D, 0, 0).

Proof. For all 1 ≤ i, j ≤ θ, i 6= j, let Vij be the vector subspace of V
spanned by xi, xj. Then B(Vkj) is isomorphic to a subalgebra of B(V ),
hence it is finite-dimensional. Heckenberger [H1], [H2] classified finite-
dimensional Nichols algebras of rank 2. By (5.25) it follows from the
list in [H1, Theorem 4] that Vij is of finite Cartan type, that is, there
are aij, aji ∈ {0,−1,−2,−3} with aijaji ∈ {0, 1, 2, 3}, and

qijqji = q
aij
ii = q

aji
jj .

Since B(V )#k[Γ] is finite-dimensional, qii 6= 1 for all 1 ≤ i ≤ θ by
[AS1, Lemma 3.1]. Thus (qij)1≤i,j≤θ is of Cartan type in the sense of
[AS2, page 4] with (generalized) Cartan matrix (aij). In [H3, Theorem
4] Heckenberger extended part (ii) of [AS2, Theorem 1.1] (where we had
to exclude some small primes) and showed that a diagonal braiding (qij)
of a braided vector space V is of finite Cartan type if it is of Cartan
type and B(V ) is finite-dimensional. Hence (aij) is a Cartan matrix of
finite type, and the claim follows from Theorem 5.1. �

5.2. Generation in degree one. We generalize our results in [AS4,
Section 7]. Let A be a finite-dimensional pointed Hopf algebra with
Γ, V, and R as in Section 5.1. To prove that B(V ) = R, we dualize.
Let S = R∗ the dual Hopf algebra in Γ

ΓYD as in [AS2, Lemma 5.5].
Then S = ⊕n≥0S(n) is a graded Hopf algebra in Γ

ΓYD, and by [AS2,
Lemma 5.5], R is generated in degree one, that is, B(V ) = R, if and
only P (S) = S(1). The dual vector space S(1) of V = R(1) has the
same braiding (qij) (with respect to the dual basis) as V . Our strategy
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to show P (S) = S(1) is to identify S as a Nichols algebra. In the next
Lemma we use [H1, H2] to prove a very general version of [AS4, Lemma
7.2].

Lemma 5.5. Let D = D(Γ, (gi)1≤i≤θ, (χi)1≤i≤θ, (aij)1≤i,j≤θ) be a datum
of finite Cartan type with finite abelian group Γ. Let S = ⊕n≥0Sn be a
finite-dimensional graded Hopf algebra in Γ

ΓYD with S(0) = k1, and let
x1, . . . , xθ be a basis of S(1) with xi ∈ S(1)χigi for all 1 ≤ i ≤ θ. Assume
for all 1 ≤ i ≤ θ that the order of qii = χi(gi) is odd and > 7. Then

adc(xi)
1−aij(xj) = 0 for all 1 ≤ i, j ≤ θ, i 6= j.(5.27)

Proof. We first note that the Nichols algebra of the primitive elements
P (S) ∈ Γ

ΓYD is finite-dimensional. This can be seen by looking at
gr(S#k[Γ]).

Assume that there are 1 ≤ i, j ≤ θ, i 6= j, with adc(xi)
1−aij(xj) 6= 0.

We define

y1 = x1, y2 = adc(xi)
1−aij(xj).

By [AS2, A.1], y2 is a primitive element. Since y1, y2 are non-zero
elements of different degree, they are linearly independent. We know
that the Nichols algebra of W = ky1 + ky2 is finite-dimensional, since
B(P (S)) is finite-dimensional. We denote

h1 = gi, h2 = g
1−aij
i ∈ Γ, and η1 = χi, η2 = χ

1−aij
i χj ∈ Γ̂.

Thus yi ∈ Sηihi , 1 ≤ i ≤ 2. Let (Qij = ηj(hi))1≤i,j≤2 be the braiding
matrix of y1, y2. We compute

Q11 = qii, Q22 = q
1−aij
ii qjj, Q12Q21 = q

2−aij
ii .

By assumption, the order of Q11 = qii is odd and > 3. Since B(W ) is
finite-dimensional, Q22 6= 1 by [AS1, Lemma 3.1]. Thus Q22 has odd
order, since the orders of qii, qjj are odd. By checking Heckenberger’s
list in [H1, Theorem 4], and thanks to [H2], we see that the braiding
(Qij) is of finite Cartan type or that we are in case (T3) with

Q12Q21 = Q−1
11 .

Hence there exists A12 ∈ {0,−1,−2,−3} with

Q12Q21 = QA12
11 .

Since Q12Q21 = q
2−aij
ii , and Q11 = qii, it follows that the order of qii

divides 2 − aij − A12 ∈ {2, 3, 4, 5, 6, 7, 8}. This is a contradiction since
the order of qii is odd and > 7. �

The next theorem is one of the main results of this paper.
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Theorem 5.6. Let A be a finite-dimensional pointed Hopf algebra with
abelian group G(A) = Γ and infinitesimal braiding matrix (qij)1≤i,j≤θ.
Assume for all 1 ≤ i, j ≤ θ, that the order of qij is odd, the order of qii
is > 7, and that (5.26) holds. Then A is generated by group-like and
skew-primitive elements, that is,

R = B(V ),

where R is defined by (5.1), and V = R(1).

Proof. We argue as in the proof of [AS4, Theorem 7.6]. Let S = R∗ be
the dual Hopf algebra in Γ

ΓYD. Then S(1) = R(1)∗ has the same braid-
ing (qij) as R(1) with respect to the dual basis (xi) of the corresponding
basis of R(1). By Theorem 5.4 (qij) is of finite Cartan type. By Lemma
5.5 the Serre relations (5.7) hold for the elements xi. Then the root vec-
tor relations (5.8) follow by [AS4, Lemma 7.5]. Hence S ∼= B(S(1)) by
Theorem 5.1, and S(1) = P (S). By duality, R is a Nichols algebra. �

6. Lifting

¿From Section 5 we know a presentation of gr(A) by generators and
relations under the assumptions of Theorems 5.4 and 5.6. To lift this
presentation to A we need the following formulation of [AS1, Lemma
5.4] which is a consequence of the theorem of Taft and Wilson [M,
Theorem 5.4.1]. Here it is crucial that the group is abelian.

Lemma 6.1. Let A be a finite-dimensional pointed Hopf algebra with
abelian group G(A) = Γ. Write gr(A) ∼= R#k[Γ] as in (5.2), and let

V = R(1) with basis xi ∈ V χi
gi
, gi ∈ Γ, χi ∈ Γ̂, 1 ≤ i ≤ θ. Let A0 ⊂ A1

be the first two terms of the coradical filtration of A. Then

⊕g,h∈Γ,ε6=χ∈Γ̂ P
χ
g,h(A)

∼=−→ A1/A0

∼=←− V#k[Γ].(6.1)

For all g ∈ Γ, Pg,1(A)ε = k(1− g), and if ε 6= χ ∈ Γ̂, then(6.2)

Pg,1(A)χ 6= 0 ⇐⇒ g = gi, χ = χi, for some 1 ≤ i ≤ θ.(6.3)

We can now prove our main structure theorem.

Theorem 6.2. Let A be a finite-dimensional pointed Hopf algebra with
abelian group G(A) = Γ and infinitesimal braiding matrix (qij)1≤i,j≤θ.
Assume for all 1 ≤ i, j ≤ θ, that the order of qij is odd, the order of qii
is > 7, and that (5.26) holds.Then

A ∼= u(D, λ, µ),

where D = D(Γ, (gi)1≤i≤θ, (χi)1≤i≤θ, (aij)1≤i,j≤θ) is a datum of finite
Cartan type, and λ and µ are families of linking and root vector pa-
rameters for D.
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Proof. By Theorems 5.4 and 5.6, there is a datum D of finite Cartan
type such that gr(A) ∼= u(D, 0, 0). By Lemma 6.1, for all 1 ≤ i ≤ θ we
can choose

ai ∈ P (A)χigi,1 corresponding to xi in (6.1).

We have shown in Theorem [AS4, 6.8] that

adc(ai)
1−aij(aj) = 0, for all 1 ≤ i, j ≤ θ, i ∼ j, i 6= j,

aiaj − qijajai − λij(1− gigj) = 0, for all 1 ≤ i < j ≤ θ, i 6∼ j,

for some family λ of linking parameters. Thus there is a homomorphism
of Hopf algebras

ϕ : U(D, λ)→ A, ϕ|Γ = idΓ, ϕ(xi) = ai, for all 1 ≤ i ≤ θ.

By Theorem 5.6, ϕ is surjective.

We now use the notation of Section 2.2 and show that

ϕ(xNJα ) ∈ k[Γ] for all α ∈ Φ+
J , J ∈ X .(6.4)

We fix J ∈ X with p = |Φ+
J |, and show by induction on ht(a) that

ϕ(za) ∈ k[Γ] for all a ∈ Np.(6.5)

Let 0 6= a ∈ Np. Since ϕ is a Hopf algebra map, we see from (2.16) that

∆(ϕ(za)) = ha ⊗ ϕ(za) + ϕ(za)⊗ 1 + w,

where by induction

w =
∑

b,c6=o,b+c=a

tab,c ϕ(zb)hc ⊗ ϕ(zc) ∈ k[Γ]⊗ k[Γ].

In particular, ϕ(za) ∈ A1 by definition of the coradical filtration. We
multiply this equation with g ⊗ g, g ∈ Γ, from the left and g−1 ⊗ g−1

from the right. Since gzag−1 = ηa(g)za, we obtain w = ηa(g)w for all
g ∈ Γ.

Suppose ηa 6= ε. Then w = 0, and ϕ(za) ∈ P ηa

ha,1. Then ϕ(za) = 0 by
Lemma 6.1 (6.3), since χl(gl) 6= 1 for all 1 ≤ l ≤ θ, but ηa(ha) = 1 by
the Cartan condition (see the proof of [AS2, Lemma 7.5] for a similar
computation).

If ηa = ε, then ϕ(za) ∈ Aε1 = k[Γ] by Lemma 6.1 (6.2).

This proves (6.5) and (6.4). Then we conclude for each J ∈ X from
Theorem 2.12 that the map

K(DJ)#k[Γ]→ U(D, λ)
ϕ−→ A

has the form ϕµJ for some family of scalars µJ as in Theorem 2.12
for the connected component J. Define µ = (µα)α∈Φ+ by µα = µJα
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for all α ∈ Φ+
J . Then µ is a family of root vector parameters for D,

and the elements uα(µ) ∈ k[Γ] are defined in (4.5) for each J ∈ X
and α ∈ Φ+

J . It follows that ϕ(xNJα ) = uα(µ) = ϕ(uα(µ)) for all
J ∈ X , α ∈ Φ+

J . Thus ϕ factorizes over u(D, λ, µ). Since dim(A) =
dim(gr(A)) = dim(u(D, λ, 0, 0)) = dim(u(D, λ, µ)) by Theorem 4.4, ϕ
induces an isomorphism u(D, λ, µ) ∼= A. �

Corollary 6.3. Let A be a finite-dimensional pointed Hopf algebra
with abelian group G(A) = Γ satisfying the assumptions of Theorem
6.2. Then for each prime divisor p of the dimension of A there is a
group-like element of order p in A.

Proof. This follows from Theorems 6.2 and 4.4. �

We note that the analog of Cauchy’s theorem in group theory is false
for arbitrary, non-pointed Hopf algebras. Let A be a finite-dimensional
Hopf algebra with only trivial group-like elements, such as the dual of
the group algebra of a finite group G with G = [G,G]. Then A does
not contain any Hopf subalgebra of prime dimension, since any Hopf
algebra of prime dimension is a group algebra by Zhu’s theorem [Z].
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[dCP] C. de Concini and C. Procesi, Quantum Groups, in ”D-modules, Represen-
tation theory and Quantum Groups”, 31–140, Lecture Notes in Maths. 1565
(1993), Springer-Verlag .

[D1] D. Didt, Linkable Dynkin diagrams, J. Algebra 255 (2002), 373-391.
[D2] Linkable Dynkin diagrams and Quasi-isomorphisms for finite dimen-

sional pointed Hopf algebras, PhD thesis, Ludwig-Maximilians-Universität
München, 2002.

[H1] I. Heckenberger, Finite dimensional rank 2 Nichols algebras of diagonal type
I: Examples, Preprint math.QA/0402350v2, 2004.



CLASSIFICATION OF POINTED HOPF ALGEBRAS 33

[H2] I. Heckenberger, Finite dimensional rank 2 Nichols algebras of diagonal type
II: Classification, Preprint math.QA/0404008, 2004.

[H3] I. Heckenberger, The Weyl-Brandt groupoid of a Nichols algebra of diagonal
type, Preprint math.QA/0411477, 2004.

[K] V. Kharchenko, A quantum analog of the Poincaré-Birkhoff-Witt theorem,
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