SMALL QUANTUM GROUPS AND THE
CLASSIFICATION OF POINTED HOPF ALGEBRAS

NICOLAS ANDRUSKIEWITSCH AND HANS-JURGEN SCHNEIDER

INTRODUCTION

In this paper we apply the theory of the quantum groups U,(g), and
of the small quantum groups u,(g) for ¢ a root of unity, g a semisimple
complex Lie algebra, to obtain a classification result for an abstractly
defined class of Hopf algebras. Since these Hopf algebras turn out to be
deformations of a natural class of generalized small quantum groups,
our result can be read as an axiomatic description of generalized small
quantum groups.

Let k£ be an algebraically closed ground-field of characteristic 0. A
Hopf algebra A is called pointed, if any simple subcoalgebra of A, or
equivalently, any simple A-comodule is one-dimensional. If A is co-
commutative, or if A is generated as an algebra by group-like and
skew-primitive elements, then A is pointed. In particular, the quan-
tum groups U,(g) and u,(g) are pointed.

Let G(A) ={g€ A| A(g9) = g®g,c(g9) = 1} be the group of group-
like elements of A. We want to classify finite-dimensional pointed Hopf
algebras A with abelian group G(A).

We first describe the data D, A, 1 we need to define the Hopf algebras
of the class we are considering. We fix a finite abelian group T'.

The datum D. A datum D of finite Cartan type for " |
D = D(T, (gi)1<i<o, (Xi)1<i<o, (@ij)1<ij<o),

consists of elements g; € ', x; € f‘, 1 <1 <0, and a Cartan matrix
(aij)lgi’jgg of finite type satisfying

(0.1)  @ijgs = 45’ qui # 1, with ¢;; = x;(g;) for all 1 <4, j <86.
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The Cartan condition (0.1) implies in particular,
(0.2) g = ¢ forall 1 < 4,5 <.

The explicit classification of all data of finite Cartan type for a given
finite abelian group I' is a computational problem. But at least it is
a finite problem since the size 6 of the Cartan matrix is bounded by
2(ord(T"))? by [AS2, 8.1], if T is an abelian group of odd order. For
groups of prime order, all possibilities for D are listed in [AS2].

Let @ be the root system of the Cartan matrix (a;;)1<i <o, @1, - - -,
a system of simple roots, and X the set of connected components
of the Dynkin diagram of ®. Let ®;,J € X, be the root system of
the component J. We write ¢ ~ j, if o and «a; are in the same con-
nected component of the Dynkin diagram of ®. For a positive root
o= Zle nia;,n; € N=1{0,1,2,...}, for all i, we define

0 6
Ga = ngmaXOc = HX?Z
=1 =1

We assume that the order of ¢;; is odd for all 7, and that the order of
¢:i is prime to 3 for all 7 in a connected component of type GG,. Then it
follows from (0.2) that the order N; of ¢;; is constant in each connected
component J, and we define N; = N, for all © € J.

The parameter \. Let A = (\;;)1<icj<o,ix; be a family of elements
in k satisfying the following condition for all 1 <i < j < 6,7 % j: If
gig; = 1 or x;x; # €, then \;; = 0.

The parameter p. Let g = (pio)aco+ be a family of elements in k
such that for all « € ®F,J € X, if g2V =1 or )7 # ¢, then p, = 0.

Thus A and p are finite families of free parameters in k. We can
normalize A and assume that \;; = 1, if A;; # 0.

The Hopf algebra u(D, A, i1). The definition of u(D, A, 1) in Section
4.2 can be summarized as follows. In Definition 2.13 we associate to
any p and o € ®T an element wu, (1) in the group algebra k[I']. By
construction, u,(p) lies in the augmentation ideal of k[g," | 1 < i < 6].
The braided adjoint action ad.(x;) of z; is defined in (1.12), and the
root vectors x, are explained in Section 2.1.

The Hopf algebra u(D, A, u) is generated as an algebra by the group
I', that is, by generators of I' satisfying the relations of the group, and
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r1,...,Te, with the relations:
(Action of the group)  gxig~' = xi(g)z;, for all i, and all g € T,
(Serre relations) ad.(z;)' " (z;) = 0, for all i # j,i ~ j,
(Linking relations) ad.(z;)(z;) = \ij(1 — gi9;), for all i < j,i~ j,
(Root vector relations) xN7 = u,(p), for all « € ®F, J € X.
The coalgebra structure is given by
Alx)=¢:; ;i +1;®1, Alg)=g®g, forall1 <i<0,gel.
Now we can formulate our main result.

Classification Theorem 0.1. (1) Let D, A and p as above. Assume
that q;; has odd order for all i, j, and that the order of q;; is prime to
3 for all i in a connected component of type Go. Then uw(D, A\, 1) is a

pointed Hopf algebra of dimension [] ., N‘Jq)}r| IT|, and G(u(D, A\, p)) =
I.

(2) Let A be a finite-dimensional pointed Hopf algebra with abelian
group T' = G(A). Assume that all prime divisors of the order of T are
> 7. Then A= u(D, \, ) for some D, \, p.

Part (1) of Theorem 0.1 is shown in Theorem 4.4, and part (2) is a
special case of Theorem 6.2.

In [AS4] we proved the Classification Theorem for groups of the
form (Z/(p))®, s > 1, where p is a prime number > 17. In this special
case, all the elements p and u,(u) are zero. In [AS1] we proved part
(1) of Theorem 0.1 for Dynkin diagrams whose connected components
are of type Ay, and in [AS5] for Dynkin diagrams of type A,; in [D2]
our construction was extended to Dynkin diagrams whose connected
components are of type A, for various n. In [BDR] the Hopf algebra
u(D, A\, n) was introduced for type Bs.

Our proof of Theorem 0.1 is based on [AS1, AS2, AS3, AS4, AS5],
and on previous work on quantum groups in [dCK, dCP, L1, L2, L3,
M1, Ro], in particular on Lusztig’s theory of the small quantum groups.
Another essential ingredient of our proof are the recent results of Heck-
enberger on Nichols algebras of diagonal type in [H1, H2, H3] which
use Kharchenko’s theory [K| of PBW-bases in braided Hopf algebras
of diagonal type.

In [AS2, 1.4] we conjectured that any finite-dimensional pointed Hopf
algebra (over an algebraically closed field of characteristic 0) is gener-
ated by group-like and skew-primitive elements. Our Classification
Theorem and Theorem 6.2 confirm this conjecture for a large class of
Hopf algebras.
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Finally we note that the following analog of Cauchy’s Theorem from
group theory holds for the Hopf algebras A = u(D, A, p): If p is a prime
divisor of the dimension of A, then A contains a group-like element of
order p. We conjecture that Cauchy’s Theorem holds for all finite-
dimensional pointed Hopf algebras.

1. BRAIDED HOPF ALGEBRAS

1.1. Yetter-Drinfeld modules over abelian groups and the ten-
sor algebra. Let I' be an abelian group, and T the character group
of all group homomorphisms from I' to the multiplicative group k* of
the field k. The braided category YD of (left) Yetter-Drinfeld mod-
ules over T" is the category of left k[[']-modules which are I'-graded
vector spaces V = P ger Vg such that each homogeneous component
V, is stable under the action of I Morphisms are I'-linear maps
[ @yer Vo = DB yer Wy with f(V,) C W, forall g € T'. The I'-grading
is equivalent to a left k[I']-comodule structure § : V' — k[I']® V, where
d(v) = g ® v is equivalent to v € V. We use a Sweedler notation
(5(1}) = V(-1) @ V(o) for all v e V.

IV =@,V and W = @, W, are in YD, the monoidal
structure is given by the usual tensor product V ® W with I'-action
gv@w) =gv®gw, v € Vw e W, and I'-grading (V @ W), =
D,.— g Va @ W, for all g € I'. The braiding in LYD is the isomorphism

c=cyw: VW -WeV

defined by c(v@w) =g-w®wv for all g € I',v € V,, and w € W. Thus
each Yetter-Drinfeld module V' defines a braided vector space (V, cyy ).
If x is a character of I' and V' a left I'-module, we define

VX:={veV|g-v=x(g)v forall g eT}.

Let # > 1 be a natural number, g1,...,g9 € I', and x1,...,xg € T. Let
V be a vector space with basis x1,...,79. V is an object in LYD by
defining z; € V¥ for all 7. Thus each z; has degree g;, and the group
[' acts on z; via the character y;. We define

¢i; = Xx;(g;) forall 1 <4,5 <86.
The braiding on V' is determined by the matrix (g;;) since
c(z; ® xj) = gijr; @ x; for all 1 < 4,5 < 6.

We will identify the tensor algebra T'(V') with the free associative al-
gebra k(xy,...,xq). It is an algebra in LYD, where a monomial

szxilxil"'l'in,lSZI,...,ZnSQ,
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has I'-degree ¢;,9;, ---¢;, and the action of g € I' on x is given by
G- T = Xi,Xi, " Xa, (9)x. T(V) is a braided Hopf algebra in LYD with
comultiplication
Here we write T'(V)®T'(V) to indicate the braided algebra structure
on the vector space T'(V) @ T'(V), that is

(z@y)(@' ©y) =x(g-2) ©yy,
forall z,2",y,y € T(V) and y € T(V),,g € I'.

Let I ={1,2,...,60}, and Z[I] the free abelian group of rank 6 with
basis oy, . .., ag. Given the matrix (g;;), we define the bilinear map
(1L1)  Z{I] X Z[I] — k*, (a,3) = a8, BY Gasa; = s 1 < 4,5 < 0.
We consider V' as a Yetter-Drinfeld module over Z[I] by defining z; €
V4 for all 1 < i <6, where 1 is the character of Z[I] with

@ZJj(Oéi) = {ij for all 1 S Z,] < 0.

Thus T(V) = k(xy,...,x9) is also a braided Hopf algebra in %ﬂ)ﬂ).
The Z[I]-degree of a monomial x = z; x;, -+ 2,1 < i1,...,0, < 0,
is Zle n;oy, where for all 4, n; is the number of occurences of ¢ in
the sequence (i1, g, . .. ,1,). The braiding on T'(V') as a Yetter-Drinfeld
module over I" or Z[I] is in both cases given by

(1.2) c(z®Y) = qapy @z, where x € T'(V ),y € T(V)p, 0, § € Z[1].
The comultiplication of T(V') as a braided Hopf algebra in LYD only
depends on the matrix (g;;), hence it coincides with the comultiplication
of T(V) as a coalgebra in %yp. In particular, the comultiplication

of T(V) is Z[I]-graded.

1.2. Bosonization and twisting. Let R be a braided Hopf algebra
in LYD. We will use a Sweedler notation for the comultiplication

Ar:R— R®R, Ag(r)=rY @ r®.

For Hopf algebras A in the usual sense, we always use the Sweedler
notation

A:A— AR A, Ala) = ap) ® ag).
Then the smash product A = R#k[['] is a Hopf algebra in the usual

sense (the bosonization of R). As vector spaces, R#k[['| = R ® k['].
Multiplication and comultiplication are defined by

(1.3) (r#q)(s#h) = r(g-s)#gh, A(r#g) = rD#r® _g@r® g #g.
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Then the maps
2 k[l'] — R#K[L], and m : R#k[I'] — k[
with ¢(g) = 1#g and 7(r#g) = r for all r € R, g € I are Hopf algebra
maps with 7 = id.
Conversely, if A is a Hopf algebra in the usual sense with Hopf algebra
maps ¢ : k[I'] = A and 7 : A — E[['] such that 7. = id, then
R={acA|(ld®m)A(a) =a®1}

is a braided Hopf algebra in LYD in the following way. As an algebra, R
is a subalgebra of A. The k[I']-coaction, I-action and comultiplication
of R are defined by

(1.4) 5(r) =r(rM)@r®, g-r=1(g)ru(g™)
and

(1.5) Ag(r) =9(rq) @ re).

Here, Au(r) = r@1) @ r(2), and ¥ is the map

(1.6) VA= R, 0(r) =rauS(r(re))),
where S is the antipode of A. Then

(1.7) R#E[I'] — A, r#tg—11(g9), r € R,g €T,

is an isomorphism of Hopf algebras.

We recall the notion of twisting the algebra structure of an arbitrary
Hopf algebra A, see for example [KS, 10.2.3]. Let 0 : A® A — k be a
convolution invertible linear map, and a normalized 2-cocycle, that is,
for all z,y,z € A,

(1.8) oz ym)o(r@ye,2) = o(ya): 2m)o (2, Y2 22);
and o(x,1) = e(z) = o(1,z). The Hopf algebra A, with twisted algebra
structure is equal to A as a coalgebra, and has multiplication -, with
(1.9) T 0y = 0(z0), Y1) Ty (2@),y@s) for all 2,y € A.
In the situation A = R#k[I'] above, let o : I' xI" — k™ be a normalized
2-cocycle of the group I'. Then ¢ extends to a 2-cocycle of the group
algebra k[I'] and it defines a normalized and invertible 2-cocycle o, =
o(m ® ) of the Hopf algebra A. Since k[I'] is cocommutative, ¢ and 7
are Hopf algebra maps

Lkl — A,, and 7 : A, — k[T
Hence the coinvariant elements

Ry, ={a€ A, | (i[d®m)Ala) =a®1}



CLASSIFICATION OF POINTED HOPF ALGEBRAS 7

form a braided Hopf algebra in LYD. As a vector space, R, coincides
with R, but R, and R have different multiplication and comultiplica-
tion.

To simplify the formulas, we will treat ¢ as an inclusion map.

In any braided Hopf algebra R with multiplication m and braiding
c: R® R — R® R we define the braided commutator of elements
x,y € R by

(1.10) (2, 9] = 2y — me(z @ y).
If x € R is a primitive element, then

(1.11) (adex)(y) = [, Yle

denotes the braided adjoint action of x on R. For example, in the
situation of the free algebra in Section 1.1 with braiding (1.2), we have
for all z; and y = x;, - - - ;,,

(1.12) (adewi)(Y) = Ty — Qijy *+* Qi Y-
In the formulation of the next lemma we need one more notation. If
V is a left C-comodule over a coalgebra C', then V is a right module
over the dual algebra C* by v <= p = p(v(_1))v() for all v € V,p € C*.
In particular, if R is a braided Hopf algebra in 1YD, then the k[[]-
coaction defines a left k[I'| ® k[I']-comodule structure on R ® R, hence
a right (k[['] ® k[I'])*-module structure on R ® R denoted by «— .
Lemma 1.1. Let T" be an abelian group, o : I' Xx I' = k> a normalized
2-cocycle, R a braided Hopf algebra in L YD, g,h €T, and x € Ry, y €
R,,r € R.
(1) z-gy=0(g,h)zy.
(2) Ag,(r) = Agr(r) — oL R
(3) Ify € R] for some charactern € ', and R as an algebra is gen-
erated by primitive elements, then g-,y = (g, h)o~ (h, g)n(g)y,
and hence [z,y]., = (g, h)[z,y]s-

Proof. (1) and (3) are [AS5, (2-11), (2-14)]. To prove (2), using the
cocommutativity of the group algebra we compute
Ap,(r) = 1) 0 S(n(re)) @re)
= o(n(rw), S(r(re))V(re)e " (7(re), S(r(rw)) @ e
On the other hand, Ag(r) = ru)S7(r@)) ® r(3), hence

1
rCy@r® ) @r® g e@r® g = 7(rq)S(re) @m(ru) @9(re) @
T(5), and
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Ag(r) «— o7t = o Y m(rayS(re))), m(r)))d(r@)) ® r). Hence the
claim follows from the equality

a(a, S(b))o " (bay, S(b)) = 0~ (aS(bw)) bez))
for all a,b € k[I']. It is enough to check this equation for elements a, b €
I'. Then the equality follows from the group cocycle condition. O

We now apply the twisting procedure to the braided Hopf algebra
T(V) € ZyD.
Lemma 1.2. Let 6§ > 1, and (qw)l<m<0>(ng)l<m<9 matrices with
coefficients in k. Let V € Z yD with basis x1,...,xry and x; €

V;ﬁl,wj(ai) = q;; for all i,j as in Section 1.1, and V' € EJ}D with

basis x'y, ..., xp and T € Vaf’{ﬂﬁ;(ai) = qj; for alli,j. Then T(V) and
T(V') are braided Hopf algebras in %EJJD as in Section 1.1. Assume

(1.13) GijQji = GG and i = q;; for all 1 <, 5 < 6.
Then there is a 2-cocycle o : Z[I| x Z[I] — k* with
(1.14) ola, B)o 1 (B,a) = qagq:;gl for all o, B € Z[I],

and a k-linear isomorphism ¢ : T(V') — T (V') with p(z;) = x} for alli
and such that for all o, 3 € Z[I],x € T(V)o,y € T(V)g and z € T(V)

(1) p(zy) = o(a, B)p(z)p(y).
(2) Arpn(e(2) = (¢ @ ©)(Arp(2)) — 0.
3) ¢([z,y].) = o(a, B)[p(w), ( )]

Proof. Define ¢ as the bilinear map with o(«a;, ;) = ql-qul if 1 < g,
and o(o, ;) = 1if i > j (see [AS5, Prop. 3.9]).

Let ¢ : T(V) — T(V'), be the algebra map with ¢(z;) = z} for
all i. Then ¢ is bijective since it follows from Lemma 1.1 (1) and the
blhneamty of o that for all monomials x = z;,x;, - - - z;, of lengthn > 1

with o' =z} 2}, - -2 |
/

= Ha(air, o).

r<s

In particular, ¢ is Z[I]-graded. To see that ¢ is Z[I]-linear, let o, 8 €
Z[I] and x € T(V)s. Then by Lemma 1.1 (3),

a7 = qupz, and a -, o(z) = o(a, B)o (B, a)q;[;@(:c),

and p(a-x) = a -, @(x) follows by (1.14). Since the elements z; and
are primitive we now see that ¢ : T(V) — T'(V’), is an isomorphism of
braided Hopf algebras. Then the claim follows from Lemma 1.1. U
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2. SERRE RELATIONS AND ROOT VECTORS

2.1. Datum of finite Cartan type and root vectors.
Definition 2.1. A datum of Cartan type

D = D(T', (gi)1<i<o, (Xi)1<i<o; (@ij)1<ij<o)

consists of an abelian group I', elements ¢g; € T, x; € f, 1 <4<, and
a Cartan matrix (a;;) of size 0 satisfying

(2.1)  @ijgi = 45, qu # 1, with ¢;; = x;(g;) for all 1 <4, j <86.

A datum D of Cartan type will be called of finite Cartan type if (a;;)
is of finite type.

Example 2.2. A Cartan datum (7, -) in the sense of Lusztig [L.3, 1.1.1]
defines a datum of Cartan type for the free abelian group ZI with
gi =y, xi = ¥, 1 <@ <0, as in Section 1.1, where
Qij = Udiaij,di = %,azj = QQ for all 1 < Z,] < 0.
i1

In Example 2.2, d;a;; =i - j is the symmetrized Cartan matrix, and
¢ij = q;; for all 1 <i,j < #. In general, the matrix (g;;) of a datum of
Cartan type is not symmetric, but by Lemma 1.2 we can reduce to the
symmetric case by twisting.

We fix a finite abelian group I'" and a datum

D =D(T, (g:)1<i<o, (Xi)1<i<o, (aij)1<i,i<0)

of finite Cartan type. The Weyl group W C Aut(Z[I]) of (a;;) is
generated by the reflections s; : Z[I] — Z[I] with s;(a;) = a; — a;;0;
for all 4, j. The root system is ® = U%_, W (qy), and

0

qﬁ:{aecb|a:Zniai,niZOforangige}

i=1
denotes the set of positive roots with respect to the basis of simple
roots o, ..., ag. Let p be the number of positive roots.

For a = Y0 ne; € Z[I],n; € Z for all i we define

ni, n2

(2.2) 9o =91"95° -+ g° and Xa = XT'X5 - xg”
In this section, we assume that the Dynkin diagram of (a;;) is con-
nected. In this case we say that D is connected.

We fix a reduced decomposition of the longest element
Wo = iy Siy ** * Siy

of W in terms of the simple reflections. Then

ﬁl = 8y - "Sizq(aiz)?l <Il<p,
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is a convex ordering of the positive roots.
Let dy,...,dy € {1,2,3} such that d;a;; = d;a;; for all i, j. We
assume for all 1 <1,5 <6,

(2.3) ¢;; has odd order, and
(2.4) the order of g;; is prime to 3, if (a;;) is of type Gs.

Then it follows from (2.1) ([AS2, 4.3]) that the elements ¢; have the
same order in £*. We define

(2.5) N = order of ¢;;,1 <1 < 6.

Definition 2.3. Let V = V(D) be a vector space with basis 1, ..., =g,
and let V € LYD by x; € VXiforall 1 <i < 6. Then T(V) is a braided
Hopf algebra in LYD as in Section 1.1. Let

R(D) =T(V)/((adew;)' =" (5) | 1 < 4,5 < 0)
be the quotient Hopf algebra in LYD.

It is well-known that the elements (ad.a;)' ™% (z;),1 < i,j < 6 are
primitive in the free algebra T'(V') (see for example [AS2, A.1]), hence
they generate a Hopf ideal. By abuse of language, we denote the images
of the elements x; in R(D) again by x;.

In the situation of Example 2.2, Lusztig [L.2] defined root vectors x,
in R(D) = U™ for each positive root « using the convex ordering of the
positive roots. As noted in [AS4], these root vectors can be seen to be
iterated braided commutators of the elements x1,...,zy with respect
to the braiding given by the matrix (v%%4). This follows for example
from the inductive definition of the root vectors in [Ri].

In the case of our general braiding given by (¢;;) we define root
vectors z, € R(D) for each a € & by the same iterated braided
commutator of the elements xy,...,xy as in Lusztig’s case but with
respect to the general braiding.

Definition 2.4. Let K (D) be the subalgebra of R(D) generated by
the elements Y, o € ®.

Theorem 2.5. Let D be a connected datum of finite Cartan type, and
assume (2.3), (2.4).
(1) The elements

ai ,.a2 ap
T3 Tg, Tg, 01,02, ..., 0p >0,

form a basis of R(D).

(2) K(D) is a braided Hopf subalgebra of R(D).
(3) For all a, B € ®F,x00f = X5 (9a)Tf Ta, that is, [za, 23] = 0.
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Proof. (a) In the situation of 2.2, the elements in (1) form Lusztig’s
PBW-basis of U™ over Z[v,v™!]| by [L2, 5.7].

(b) Now we assume that the braiding has the form (g;; = ¢%®9),
where (d;a;;) is the symmetrized Cartan matrix, and ¢ is a non-zero
element in k of odd order, and not divisible by 3 if the Dynkin diagram
of (a;;) is G. Then (1) follows from Lusztig’s result by extension of
scalars, and (2) is shown in [dCP, 19.1] (for another proof see [M2,
3.1]). The algebra K (D) is commutative since it is a subalgebra of the
commutative algebra Zy of [dCP, 19.1]. This proves (3) since ¢~ = 1,
hence x5 (ga) = 1

(c) In the situation of a general braiding matrix (¢;;)1<; j<¢ assumed
in the theorem, we define a matrix (q;;)1<i,j<o by ¢j; = @i for all i, and
for all 7 # j we define ¢j; = ¢j; to be a square root of g;;q;;. By [AS2,
4.3], qi; = q%%i for all 4, j, and for some q € k. Thus by part (b) of the
proof, (1),(2) and (3) hold for the braiding (g;;), and hence by Lemma
1.2 for (gi;). O

2.2. The Hopf algebra K(D)#k[']. We assume the situation of Sec-
tion 2.1. By Theorem 2.5 (2), K (D) is a braided Hopf algebra in 1. VD,
and the smash product K (D)#k[I'] is a Hopf algebra in the usual sense.
We want to describe all Hopf algebra maps

K(D)#k[I] — k[T
which are the identity on the group algebra k[I'].

Definition 2.6. For any 1 <[ < p and a = (a1, as,...,a,) € NP we
define

N
hy = 93,
N
= Xg,
Rzl = ZEg,

2% =2z 2 € K(D),
h* = hithy? - hyr €T,

ai, a2 ap

nt=mnin?--onr €1
a = alﬁl + CLQﬂQ + -+ Clpﬁp € Z[I]
For a = Zle n;a; € Z[I,n; € Z for all i, we call ht(a) = Zle n; the
height of av. Let e; = (01)1<k<p € NP, where dyy = 1if k =1 and 05y = 0
if k #1.
Note that for all a,b,c € NP,
(2.6) B = BPRE, = P, ifa = b+,
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(2.7) ht(b) < ht(a), if a =b+ ¢ and ¢ # 0.

As explained in Section 1.1, we view T(V) as a braided Hopf al-
gebra in %}yu Then the quotient Hopf algebra R(D) and its Hopf

subalgebra K(D) are braided Hopf algebras in %5}321). In particular,
the comultiplication Agpy : K(D) — K(D) ® K(D) is Z[I]-graded.
By construction, for any o € ®*, the root vector x, in R(D) is Z[I]-
homogeneous of Z[I]-degree a. Thus z, € R(D)X*, and for all a € N?,
2% has Z[I]-degree Na, and

(2.8) 2% e K(D)T.

For z € K(D),g € T', we will denote z#g € K(D)#k[I'] by zg. By
Theorem 2.5 the elements z%g with a € NP, g € I', form a basis of
K (D)#k[T'], and it follows that for all a,b = (b;),c = (¢;) € NP,

(2.9) 2P2° = 4,2"T¢, where . = H m(hg) P,
k>l
(2.10) hez? = n’(h*)2°h in R#k[T).

Lemma 2.7. For any 0 # a € NP there are uniquely determined scalars
ty. € k,0# b,c € NP, such that

(2.11) Axpy(z") =2"@1+1@2°+ > t5.2"®2"
b,c#0,b+c=a

Proof. Since Agpy is Z[I]-graded, Agpy(2*) is a linear combination

of elements 2’ ® z¢ where b + ¢ = a. Hence

Agpy(z*) =2 @1+ 1Ry + Z tz}czb@)zc,
b,c#0,b+c=a
where x,y are elements in K (D). By applying the augmentation ¢ it
follows that x = y = 2%, O

We now define recursively a family of elements u® in k[I'] depending
on parameters p, which behave like the elements 2® with respect to
comultiplication.

Lemma 2.8. Let n > 2. For all 0 # b € NP ht(b) < n, let u, € k and
u® € k[T such that

(2.12) w = (L=h+ Yty paut,
d,e#0,d+e=b
(2.13) A )y=h"@u+u" @1+ > thou'h@u

d,e£0,d+e=b
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Let a € NP with ht(a) = n, and u* € k[L'|. Then the following state-
ments are equivalent:

2.14 u® = pg(1 — h%) + ty . ppu’ for some g € k.
2 b,cu
b,c#0,b+c=a

(2.15) Aw*) =hr'@u'+u" @1+ Z b u’ht @ ul,
b,c#0,b+c=a

Proof. Let

a a C
Vg = U — E Up,c HpU"
b,c#0,b+c=a

Then u® can be written as in (2.14) if and only if A(v,) = h*®@va+v,&1.
Hence it is enough to prove that

A(vg)—h*@u,—1v,81 = A(u*) —h*@u*—u®@1— Z b uPhe@uc.
b,c#0,b+c=a
We compute
Avg) —h* ®@v, —v, ®1 =
= A(u®) — Z th e pA(US) — h" @ vy — v, ® 1

b,c#0,b+c=a
= A(ua) —hut—ut®1+ Z tg’c Mb(ha Qut — h¢® UC)
b,c#0,b+c=a
- Z tyothy pput h? @ uf,
b,c.f,g#0
btc=a,f+g=c

using the definition of v, in the first equation, and the formula for
A(u®) from (2.13) in the second equation. Note that the term

> temut @l
b,c#0,b+c=a
cancels. Hence we have to show that

b,c.f,970
btc=a,f+g=c

= Z ty (Hph® @ u® — pph® @ u’ + u’h® @ u°).
b,c#£0,b+c=a

Since for all b,c # 0,b + ¢ = a, we have h® = h°h¢, it follows that
tph® @ uf — pph® @ u¢ + uPh® @ u® = (up(h® — 1) + u’)h¢ @ u.
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Using the formula for u® from (2.12), we finally have to prove

b
E ety pul hd @ uf = E thetae Hauh® @ u’.
b,C,f,g;éO b7c7d7€3é0
btc=a,f+g=c bt+c=a,d+e=b

This last equality follows from the coassociativity of K (D). Indeed,
from

(id ® Ax)) Aoy (2*) = (Ax(p) @ id) Agp)(2*)
we obtain with (2.11) after cancelling several terms

a 4 b f g __ a 4b d e c
E bhelpg? @27 ®2% = g thelae? ®2°® 2"
b»cvfuq?éo b,c,d,e;é()
btc=a,f+g=c btc=a,d+e=b

Thus mapping 2" ® 2z° ® 2%, 7, s,t # 0,ht(r),ht(s),ht(t) < n, onto
wutht @ ul proves the claim. Here we are using that the elements
2% are linearly independent by Theorem 2.5. O

Let K(D)#k['| be the Hopf algebra corresponding to the braided
Hopf algebra K (D) by (1.3). Thus by definition and Lemma 2.7, for
all 0 #£ a € NP,

(216) AK(D)#k[F](Za) = ha X Za + Za X 1 + Z t;c thc X ZC.
b,c#0,b+c=a

For all n > 0, let K(D),, be the vector subspace spanned by all 2, a €
NP ht(a) < n. Then K(D),#k[l'| C K(D)#k[I'] is a subcoalgebra.

In the next Lemma we describe all coalgebra maps
¢ : K(D),#k[['| — k[I'] with ¢|I" = id.
Note that such a coalgebra map is given by a family of elements
0(z%) = u*,0 # a € NP ht(a) < n, such that (2.15) holds for all

0 # a,ht(a) < n. It follows by induction on ht(a) from Lemma 2.8
with (2.14) that e(u®) = 0 for all a.

Lemma 2.9. Letn > 1.

(1) Let (tha)ozacnr nt(a)<n be a family of elements in k such that for
all a, if h* = 1, then p, = 0. Define the family (u®)ozacne ht(a)<n bY
induction on ht(a) by (2.14). Then

¢ K(D)n#k[I] — kI, p(2"g) = ug,a € N’ ht(a) <n,g €T,
1 a coalgebra map.

(2) The map defined in (1) from the set of all (ta)ozacne ht(a)<n SUCh
that for all a, if h* = 1, then pu, = 0, to the set of all coalgebra maps
© with p|I' = id is bijective.
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Proof. This follows from Lemma 2.8 by induction on ht(a). Note that
the coefficient p, in (2.14) is uniquely determined if we define u, = 0
if h* =1. ]

Definition 2.10. Let n > 1. A coalgebra map ¢ : K(D),#k[I'] — k[T
with o|I" = id is called a partial Hopf algebra map, if for all x,y €
K(D)n#k[l'] with zy € K(D)n#k[L], we have o(zy) = ¢(z)¢(y)-
Lemma 2.11. Let n > 1, and ¢ : K(D),#k[['| — E[['] a coalge-
bra map, (fta)otacr ht(a)<n the family of scalars corresponding to ¢ by
Lemma 2.9, and u® = p(a) for all a € NP with ht(a) < n. Then the
following are equivalent:
(1) ¢ is a partial Hopf algebra map.
(2) For all0 # a = (ay,...,a,) € N? with ht(a) <n
(a) u® =[1,,50w"s where for all 1 <1 < p,u; = u, if a; >0,
(b) zfn # ¢, then pu, =0, and u® = 0.
(3) (a) As (2) (a).
(b) For all 1 <1 < p with ht(e;) < n, if g # €, then u® = 0.
Proof. (1) = (2): If ¢ is a partial Hopf algebra map, then (a) follows
immediately, and to prove (b), let 0 # a € NP ht(a) < n, and g € T,
with n* # . Then

p(92") = n*(g)u’g = u'y,
since gz* = n*(g)z%g by (2.10). Thus u® = 0, and it follows by induc-
tion on ht(a) from (2.14) that p, = 0, since for all 0 # b, ¢ € NP with
ht(b) + ht(c) = ht(a), n® # €, or n° # €.

(2) = (3) is trivial. (3) = (1): The coalgebra map ¢ is a partial
Hopf algebra map if and only if for all b, ¢ € NP with ht(b) +ht(c) <n
and g, h €I,

©(2°92°h) = uPgu’h.
By (2.9) and (2.10), 2°92¢h = 7°(g)Vp..2*"¢gh. Thus (1) is equivalent to
(2.17) 7(9) Y.t = uu® for all b, c € NP ht(b) + ht(c) < n,g € T.
Let b,c € NP ht(b) + ht(c) < n,g € T. By (a),

ulte = uluc = H T
bi+¢;>0

To prove (2.17) assume that u’u® # 0. Then u; # 0 for all [ with ¢; > 0.
Hence by (b), n, = ¢ for all [ with ¢, > 0, and n°(¢9) = 1, =1. O

To formulate the main result of this section, we define M (D) as the
set of all families (1)1<i<, of elements in k satisfying the following
condition for all 1 <1 <p:If hy =1 or n # ¢, then yu; = 0.
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Theorem 2.12. (1) Let pn = (w)1<i<p € M (D). Then there is exactly
one Hopf algebra map

ou : K(D)#kE[I] — E[I, o[l =1id
such that the family (11a)ozaene associated to o, by Lemma 2.9 satisfies
fre, = pu for all 1 <1 <p.

(2) The map pn — ¢, defined in (1) from M(D) to the set of all
Hopf algebra homomorphisms ¢ : K(D)#k[['| — k[['| with ¢|I' =id is
bijective.

Proof. (1) We proceed by induction on n to construct partial Hopf
algebra maps on K (D), #k[['], the case n = 0 being trivial. We assume
that we are given a partial Hopf algebra map

¢ : K(D)p1#k[l] — k[T], n > 1,

such that p,, = jy for all 1 < I < p with ht(e;) < n — 1. Here
(M4a)oacnp ht(a)<n—1 is the family of scalars associated to ¢ by Lemma
2.9. We define u® = ¢(z°) for all 0 # b, ht(b) < n — 1. It is enough to
show that there is exactly one partial Hopf algebra map

W K(D),#k[I'] — k[T

extending ¢, and such that ., =y for all I with ht(e;) < n.

Let a € NP with ht(a) = n. To define ¢(2*) =: u* we distinguish two
cases.

If a = ¢; for some 1 <[ < p, we define

(2.18) u® = (1 —h*) + Z t cHpU°.
b,c#0,b+c=a

Then (2.15) holds by Lemma 2.8.

Ifa =(ar,...,a,0,...,0),aqp > 1,1 <1 < p, and a # ¢, then
a =r+ s, where 0 # r, s = ¢;. We define u* = u"u®. To see that u®
satisfies (2.15), using (2.16) we write

A(Z)=h"® 24+ 2°® 1+ T(c), for all 0 # c € NP.

Since 2"2° = 2z because of (2.9) (note that v, , = 1 in this case) we see
that A(2")A(2°) =h* ® 2+ 2°® 1 + T(r, s), where

T(r,s) =h"2°@2"+2"h'@2°+(h"'@2"+2"@1)T(s)+T(r)(h*®2°+2°®1),
and T'(r,s) = T'(a). Since ¢ on K (D), _1#k[['] is a coalgebra map,
Aw) =r*@u’+u* @1+ (¢ ®@)(T(c)),
for all 0 # ¢ € N? with ht(c) < n — 1. In particular,
AWNAW) =h*@u* +u* @1+ (¢ ® ¢)(T(r,s)).
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Thus A(u®) = h* @u* +u* @1+ (¢ ® ¢)(T(a)), that is, u® satisfies
(2.15).

Thus the extension of ¢ defined by ¥ (2%g) = u®g for all g € I',a €
NP ht(a) = n is a coalgebra map.

To prove that the extension v is a partial Hopf algebra map, we
check condition (3) in Lemma 2.11. Since the restriction of ¢ to
K (D),,—1#k[l'] is a partial Hopf algebra map, (3) (a) is satisfied. To
prove (3)(b), let 1 < < p with ht(e;) = n, a = ¢;, and assume 7 # .
Then for all 0 # b,c € NP with b+ ¢ = a, we have n° # € or n° # «.
Since ¢ is a Hopf algebra map, it follows from Lemma 2.11 that p, = 0
or u¢ = 0. By assumption, y; = 0. Hence by (2.18), u* = 0.

This proves (1) since the uniqueness of the extension follows from
Lemma 2.8 and Lemma 2.9.

(2) By Lemma 2.9, the map p +— ¢, is injective. To prove surjectiv-
ity, let ¢ : K(D)#k[['] — Ek[I'] be a Hopf algebra map with ¢|I" = id.
By Lemma 2.9, ¢ is defined by a family (p,)ozaene of scalars. By (1),
¢ is determined by the values ., 1 <1 <p. OJ

Definition 2.13. For any p € M(D) and 1 < [ < p, let ¢, be the
Hopf algebra map defined in Theorem 2.12, and

w(p) = u(z) € k[T
If « is a positive root in @ with a = 3}, we define u, (p) = w; ().

Note that by (2.14), each wu,(p) lies in the augmentation ideal of
kg |1 <i<0].

3. LINKING

3.1. Notations. In this Section we fix a finite abelian group I', and a
datum D = D(F, (gi)lgig% (Xi)1§i§07 (aij)1§i,jgg) of finite Cartan type
We follow the notations of the previous Section, in particular, ¢;; =
X;(g;) for all 4, 5.

Forall 1 <1i,5 < 6 we write i ~ j if i and j are in the same connected
component of the Dynkin diagram of (a;;). Let X = {I1,...,I;} be the
set of connected components of [ = {1,2,...,0}. We assume

(3.1)  ¢;; has odd order for all 4, j, and
(3.2)  the order of ¢; is prime to 3, if 7 lies in a component Gl.
For all J € X, let N; be the common order of g;;,7 € J.

As in Section 2.2, for all J € X', we choose a reduced decomposition
of the longest element wy ; of the Weyl group W of the root system
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®; of (ai;)ijes. Then for all J, K € X, wy ; and wy x commute in the
Weyl group W of the root system @ of (a;;)1<i <o, and

Wy = Wo,1, Wo,1, * * - Wo, 1,

gives a reduced representation of the longest element of W. For all
J € X, let p; be the number of positive roots in ®F, and

CD}_ = {ﬁ],lv s >BJ,pJ}

the corresponding convex ordering. Then

(I)+ = {ﬁ]hla s 7ﬁ]17p11a s 76],5,17 ce 751t,p[t}

is the convex ordering corresponding to the reduced representation of
Wy = Wo,1,Wo. 1, * - - Wo,r,- We also write

ot ={B,....8} p=> ps,

Jekx

for this ordering.
In Section 2.1 we have defined root vectors z, in the free algebra
k(x1,...,xq) for each positive root in @ C ®,.J € X.

We recall a notion from [AS4].

Definition 3.1. A family A = (\;;)1<i<j<o,izj Of elements in k is called
a family of linking parameters for D if the following condition is satis-
fied for all 1 <¢ < j < 0,44 j: If gigj =1 or xux; # €, then \;; = 0.
Vertices 1 < 4,5 < 0 are called linkable if i # 7, g;g; # 1 and x;x; = €.

Any vertex i is linkable to at most one vertex j, and if 7, j are linkable,
then ¢; = ¢;;' [AS4, Section 5.1].

The free algebra k(zy,...,zy) is a braided Hopf algebra in LYD as
explained in Section 1.1. Then k(zq,...,x9)#k[['] is a Hopf algebra
as in 1.2. For simplicity we write zg instead of z#g for elements
x € k{xq,...,x9) and g € I

3.2. The Hopf algebra U(D, \). We assume the situation of Section
3.1.

Definition 3.2. Let A = (\;j)1<i<j<s,iz; be a family of linking parame-
ters for D. Let U(D, A) be the quotient Hopf algebra of k(z1, ..., zg)#k[]
modulo the ideal generated by

(3.3)  ad.(x;)' "% (x;), forall 1 <i,j < 0,i~ j,i# ],

(34) TiTj — Q35T — )\”(1 — gin): forall1<i<j <@, 1 ’/‘ 7.
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We denote the images of x; and g € T" in U(D, \) again by z; and g.
The elements in (3.3) and (3.4) are skew-primitive. Hence U (D, \) is
a Hopf algebra with

Theorem 3.3. Let I' be a finite abelian group, and D a datum of finite
Cartan type satisfying (3.1) and (3.2). Let X be a family of linking
parameters for D. Then

(1) The elements

ai a2

AT .xaﬁ’;g, ap,as,...,a, >0,g €7,

form a basis of the vector space U(D, \).
(2) Let J € X, and o € ®F, 3 € ®F. Then [xa,x‘ﬁ le =0, that is,

TaTg Ny = qa’é.rﬁ TL,.

Proof. We adapt the method of proof of [AS4, Section 5.3] and proceed
by induction on the number ¢ of connected components.
If I is connected, (1) and (2) follow from Theorem 2.5.

If + > 1, we assume that ; = {1,2,....0}, 1 < 6 < 6. For all
1<i < 9 let [; be the least common multlple of the orders of g; and
Yi,1<i<0.LetT = (B g | hiby —hh“M-—1mrauj>am1
define for all 1 < i < @ the character n; of T by nj(hi) = x;(g:), 1 <
1,7 < 0. Then we define

D, =D(T, (hi)lgigév (ni)lgigév (aij)lgi,jgé)-
Let Dy = D(T', (9:)jicpr (Xi)gicos (@ij)go; j<p) be the restriction of D
to LU - UL, and Ay = (ANij)geicjcping We define U = U(Dy) (with
empty family of linking parameters) with generators w1, ..., x5 and
h €T, and A = U(Dy, \z) with generators yz, ,...,9p, and g € I'.
It is shown in [AS4, Lemma 5.19] that there are algebra maps 7;,
(¢,v)—derivations ¢; and a Hopf algebra map ¢,

Vit A—k 8 A=k p:U— (AP, 1<i<,
such that for all 1 <i < 6 < j <6,

%ill = xi, 7i(y;) =0,
6|1 =0, 0i(y;) = —xi(g;) A,
o(hi) = v, p(z:) = 6;.
Then o : U®ARU ® A — U ® A, defined for all u,v € U,a,b € A by
o(u® a0 b) = e(u)7(v, a)e(b), (v, 0) = (v)(a),
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is a 2-cocycle on the tensor product Hopf algebra of U and A, and
(U ® A), is the Hopf algebra with twisted multiplication defined in
(1.9). Multiplication in (U ® A), is given for all u,v € U,a,b € A by
(35)  (u®a) o (v®b) =ur(ve),an)ve @ a7 (VE), a)b,
with 771 (u, a) = @(u)(S~(a)).

The group-like elements h; ® g, 1 1<i <0, are central in (U® A),,
and as in the last part of the proof of [AS4, Theorem 5.17] it can be
seen that the map
(U®A)y = U(D,N), 2;@1 = 24, hi®1 — g;, ,1Qy; = 15, 1®g g

forall 1 <i<6 < j <6, g €T, induces an isomorphism of Hopf
algebras

36) (URA),/(hi®g'-121|1<i<0)=2U(D,)N).

By induction and Theorem 2.5, the elements

apy+1

TG h @y g a4y 2 0,h T g ET,
are a basis of U ® A. It follows from (3.5) that for all p; <! < p and
1<i<é,
(1®yg) o (hi ®1) = xi(g5)hi © ys,.
Hence

Ap1+1

(l‘gi'-.l'gi ®y/8p1+1 ”ng) o (h®g), al;"'apz()’her’ger’

is a basis of (U ® A),.
Let P={h@ge (U®A),|hel,gel}, andlet P C P be the
subgroup generated by h; ® g;*, 1 <4 < 6. Then

I - P/P, g1y,

is a group isomorphism. By (3.6), (U ® A), ®k(p) k[P/P] = U(D).
Hence
xgixgixaﬁig, ay,az,...,a, >0,9g€l,

is a basis of U(D, \).

To prove (2), we first show that for all §<i<f and B e ®; , with
N = N,
(3.7) 1®y) o (z5 @ 1) = x5 (9:) (25 ®1) - (1@ y;)
in (U®A),. We use the notations of Section 2.2 with N = Ny, z3 = x}.
By (2.16)

Ay(zp) = gév ®z3+ 23901+ Z ZCzbhc ® 2°.
b,c#0,b+c=0
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Since A(y;) = ¢: @y + y; ® 1, and
Ay)=gi®guPY+gRyu1l+y 1o,
we have for all u € U by (3.5)
L@ y:) o (u® 1) = p(uw)(g:)ue @ giolue) (S~ (1)

(
+ p(u))(gi)u@ @ yip(ue)(1)
+ o(uay) (yi)ue) @ Lo(us)(1).

It follows from the definition of ¢ that
p(z5)(g) =0 for all 3 € ®f,geT.

Hence to compute (1 ®y;) -» (u ® 1) with u = z3, we only need to take
into account the term g3’ ® z3 ® 1 of A*(z3), and we obtain

1@y:) o (u@1) = (g5) (W) 28 @ Y2 P (1) (S (¥i3))
2(95) (i) 28 @ Yi2)

0(95)(9:)28 @ yi + (g5 ) (yi) 25 ® 1
X5 (g0)(@) 1) 0 (L@ ),

since @(gh) = x4 and ¢(g4)(y;) = 0 by the definition of ¢.
JFrom (3.6) and (3.7) we see that for all simple roots a € &%, K €
X,K # I, and all roots 3 € ®F with J =1,

(3.8) xaxg‘] = Xﬁ (ga):vnga

in U(D, \). Since the root vectors z,, are homogeneous, (3.8) holds for
all @ € ., K # I, and §§ € @} . Since U(D, \) and the root vectors
To,a € @, do not depend on the order of the connected components,
we can reorder the connected components and obtain (3.8) for all pos-
itive roots «a, 3 lying in different connected components. For roots in
the same connected component, (3.8) follows from Theorem 2.5. [

4. FINITE-DIMENSIONAL QUOTIENTS

4.1. A general criterion. We need a generalization of Theorem [AS5,
6.24].

In this section, let I' be an abelian group, A an algebra containing
the group algebra k[I'] as a subalgebra and p > 1. We assume

yl,...7yp€A,h1,...,hp€F7¢1,...,¢p€f, anle,...,NpZL
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such that

(4.1) gy =vi(g)ug, forall 1 <1 <p,g €T,
(42)  wy" =0 (g yes forall 1 < k1< p,
(4.3) Yt yprgs ar, e ,a, > 0,9 €T, form a basis of A.

P

For all a = (ay,...,a,) € NP, we define y* = y* - - - yp” and

L={l=(,...,l,) e N°|0<[; <N, forall 1 <i<p}.
Hence any element of y € A can be written as

Yy = Z Yy N wi e, wie € k[T for all 1 € L,a € N,
l€LL,aeNP
where the coeflicients w; , € k[I'| are uniquely determined. In [AS5] we
assumed that A = R#kE[['], and the subalgebra R of A generated by
Y1,---,Yp had the basis y*--- 47, ay,...,a, > 0. Hence for y € R we
could assume that the w;, were scalars.

Theorem 4.1. Assume the situation above, and let u; € k[['],1 <1 <
p. Then the following are equivalent:
(1) The residue classes of yi* -+~ yp’g, a1, ,a, > 0,9 € T, form
a basis of the quotient algebra AJ(y;" —w; | 1 <1< p).
(2) For all 1 <1 < p, w is central in A, and if ¢INZ #+ ¢, then
u; = 0.
Proof. As in [AS5] this follows from Lemma [AS5, 6.23]. To extend

the proof of this Lemma to the more general case considered here, we
use the following rule. Assume (2), and let u® = uf'---u,”, for all

a=(a,...,ay) € NP. Forall 1 <[ < p, let Uy ¢ k[T — K[ be the
algebra isomorphism with ¢;(g) = ¥;(g)g for all g € I'. Then

(4.4) u N (w) = uw, for all w € k[[],a € N?,
where ¢ = Nt el O

4.2. The Hopf algebra u(D, A, ). Let I' be a finite abelian group,
and D = D(T', (gi)1<i<o, (Xi)1<i<6, (aij)1<i j<o) & datum of finite Cartan
type. We assume the situation of Section 3.1.
Definition 4.2. A family p = (fa)aco+ of elements in k is called
a family of root vector parameters for D if the following condition is
satisfied for all « € ®¥,J € X: If gY7 =1 or x27 # ¢, then p, = 0.
Let i be a family of root vector parameters for D. For all J € X,
and o € @7, we define

(4'5) 7TJ(IU) = (Mﬂ)ﬁetb? and ua(lu> = ua(ﬂJ(:u))’
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where u,(m;(p)) is introduced in Definition 2.13. Let A be a family of
linking parameters for D. Then we define

(4.6) w(D, A\, 1) = U(D,N)/(x)7 —un(p) | o € @F,J € X).

By abuse of language we still write x; and ¢ for the images of z;
and g € T'"in u(D,\, p). For all 1 < [ < p, we define N; = Ny, if
B € (I)j, JeX.

Lemma 4.3. Let D, X and p as above, and o € ®F. Then u,(p) is
central in U(D, A).

Proof. Let a € ®F, where J € X, and N = N;. To simplify the

notation, we assume J = I} = {1,2,... ,5}, and @7 = {01, Ba, ..., 05}
We apply the results and notations of Section 2.2 to the connected

component [. For all a = (ay,...,a5) € NP and 1 < i < 6, we will
show that
(4.7) foh®x; = pex;h®.

We can assume that g, # 0. Let 1 < [ < 5, and [ = Zf.:l
where n; € Nforall 1 <j < §. Then by definition, g = ngjgb;g;”,

and g, = ngjggxyj. Hence

a;; Nn;
xighxh(g) = J[ ¢ =1,

1<j<6

n;ag,

since ¢ =1, if i € I, and a;; = 0, if i ¢ I;. By Lemma 2.11, Xg =c
for all 1 < [ < 6 with a; > 0. Hence Xi(gg) = 1 for all [ with a; > 0.
This implies (4.7) since h®x; = x;(h*)z;h.

Finally we prove by induction on ht(a) using (4.7) and (2.14) that
u® is central in U(D, \) (and in k(z1, ..., zo)#k[I]). O

Theorem 4.4. Let D be a datum of finite Cartan type satisfying (3.1)
and (3.2). Let A and p be families of linking and root vector parameters
for D. Then u(D,\, ) is a quotient Hopf algebra of U(D, \) with
group-like elements G(u(D, A\, n)) = T, and the elements

Tl T - -a:aﬁig, 0<a <N, 1<1<p,gel
form a basis of uw(D, \, p). In particular,
+
dimu(D, A, ) = [T N0,

Jex
Proof. By Theorem 3.3, the elements
T T - -x%ﬁg, 0<a, 1<I<p, gel
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are a basis of U(D, \). We want to apply Theorem 4.1 with

Y=g, Y1 =Xp, w=ug(p), 1 <I<p.

For each connected component J € X we apply the results of Section
2.2 with

nl:Xgla 1§l§pa ﬁleq)}_

If ng # ¢ for some 1 <1 < p,; € ®F, then by assumption, ug = 0,
and by Lemma 2.11, ug (1) = 0. By Lemma 4.7, ug, (1) is central in
U(D, X). Hence the claim concerning the basis of u(D, A, p) follows from
Theorem 3.3 and Theorem 4.1.

We now show that u(D, A\, u) is a Hopf algebra. Let J € X. We
denote the restriction of D to the connected component J by D;. By
Theorem 2.12, the map ¢, : K(D;)#k[I'] — k[['] is a Hopf algebra
homomorphism. The kernel of ¢, is generated by all 27 — u,(u), o €

7. Hence the elements 207 — u, (1), @ € @7, generate a Hopf ideal in
K(D,)#k[T] and in U(D, \).

The Hopf algebra u(D, A, i) is generated by the skew-primitive el-
ements z1,...,xs and the image of I'. In particular, G(u(D, A\, u)) =
I. [

For explicit examples of the Hopf algebras u(D, A, 1) see [AS5, Sec-
tion 6] for type A,,n > 1, and [BDR] for type Bs. In these papers, and
for these types, the elements u,(u) are precisely written down. An in-
teresting problem is to find an explicit algorithm describing the u, (1)
for any connected Dynkin diagram.

5. THE ASSOCIATED GRADED HOPF ALGEBRA

5.1. Nichols algebras. To determine the structure of a given pointed
Hopf algebra, we proceed as in [AS1] and study the associated graded
Hopf algebra.

Let A be a pointed Hopf algebra with group of group-like elements
G(A) =T. Let

Aozk[F]CA1CCA, A:UnzoAn

be the coradical filtration of A. We define the associated graded Hopf
algebra [M, 5.2.8] by

gT(A) = @nZOAn/An—la A—l = 0.

Then gr(A) is a pointed Hopf algebra with the same dimension and
coradical as A. The projection map 7 : gr(A) — k[I'] and the inclusion
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v k[I'l — gr(A) are Hopf algebra maps with ¢7 = idyr. Let
(5.1) R={zregr(d) | (domn)A(zr) =2 ® 1}

be the algebra of k[I']-coinvariant elements. Then R = @&,,>0R(n) is a
graded Hopf algebra in 1YD, and by (1.7)

(5.2) gr(A) = R#E(T).

Let V = P(R) € YD be the Yetter-Drinfeld module of primitive
elements in R. We call its braiding

c:VeV-VeV

the infinitesimal braiding of A.
Let B(V') be the subalgebra of R generated by V. Thus B = B(V)
is the Nichols algebra of V' [AS2], that is,

(5.3) B = ®,>0B(n) is a graded Hopf algebra in 1. )D,
(5.4) B(0)=k1, B(1) =V,

(55 B(1)=P(B),

(5.6) B is generated as an algebra by B(1).

B(V) only depends on the vector space V with its Yetter-Drinfeld
structure (see the discussion in [AS5, Section 2]). As an algebra and
coalgebra, B (V') only depends on the braided vector space (Vc).

We assume in addition that A is finite-dimensional and T' is abelian.
Then there are g1,...,99 € I', x1,...,x9 € ' and a basis x1,...,xy of
V such that z; € Vgx forall 1 <7< 6. We call

(@15 = x;j(9i))1<ij<o

the infinitesimal braiding matriz of A.

The first step to classify pointed Hopf algebras is the computation
of the Nichols algebra.

Using results of Lusztig [L1],[L2], Rosso [Ro] and Miiller [M1] and
twisting we proved in [AS4, Theorem 4.5] the following description of
the Nichols algebra of Yetter-Drinfeld modules of finite Cartan type.

Theorem 5.1. Let D = D(F7 (gi)lgz‘gg, (Xi)1§i§07 (aij)lgiﬂ‘gg) be a da-
tum of finite Cartan type with finite abelian group I'. Assume (3.1)
and (3.2). Let V € YYD be a vector space with basis x1,...,xe and
x; € V) for all 1 <i < 0. Then B(V) is the quotient algebra of T(V)
modulo the ideal generated by the elements

(5.7) ad. ()% (z;) for all 1 <i,5 < 0,i # j,

(5.8) a7 for alla € ®F,J € X,
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Corollary 5.2. Assume the situation of Theorem 5.1, and let A\ and p
be linking and root vector parameters for D. Then

gr(u(D, A, p)) = u(D,0,0) = B(V)#k[L].
Proof. Let A = u(D, A, ). There is a well-defined Hopf algebra map
u(D,0,0) — gr(u(D, A, p)),

mapping x;, 1 <i < 6, onto the residue class of z; in A;/Ag, and g € T
onto g. Since dim(u(D,0,0)) = dim(u(D, A\, u)) = dim(gr(u(D, A, 1))
by Theorem 4.4, it follows that u(D,0,0) = gr(u(D, A, u)). By Theo-
rem 5.1, u(D,0,0) = B(V)#k[I]. O

As an application of Corollary 5.2 we derive some information about
isomorphisms between Hopf algebras of the form u(D, A, u).
Remark 5.3. Let I and I be finite abelian groups, and

D = D(I', (9:)1<i<0, (Xi)1<i<o; (@ij)1<i <o),
D' =D(I", (g))1<i<or, (Xi)1<i<ors (@) 1<i <o)

data of finite Cartan type satisfying (3.1) and (3.2). Moreover we
assume

Let A and X\ be linking parameters, and p and p’ root vector parameters
for D and D’. We assume there is a Hopf algebra isomorphism

F:A=uD,\p) — A =uD N u).

Then F preserves the coradical filtration and induces an isomorphism
Ay = kIl =2 A = k[I"], given by a group isomorphism ¢ : I' — T7,
and by Corollary 5.2 an isomorphism

A =kl & @ kxig =2 A| & @ kxig'.
g€er, g'er’,
1<i<6 1<i<¢’

Hence (see [AS2, 6.3]) 6 = ', and there are a permutation p € Sy and
elements 0 # s; € k,1 <7 < @ such that for all 1 <¢ <6,

(5.10) ©(91) = Gy
(5.11) Xi = X;(i)%
(5.12) F(z;) = 8.

Note that the Nichols algebras u(D, 0,0) and u(D’,0,0) are isomorphic
if and only if 6 = ', and there are ¢, p, (s;) with (5.10),(5.11).
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Let ¢ij = x;(9i), and q;; = xj(g;), for all 1 <4, j < 6. Then it follows
from (5.10), (5.11) and (5.9) that for all 1 <i,5 <4,

(5.13) Gij = Doiyp(s)»
(5.14) Qij = (),
since ¢’ = qZ’J(””(”, and a;; — @), € {0, £1,£2, £3}. We see from
(5.13) that for all 1 <4,j <4,
(5.15) (w5, w5]e) = 885200y, Ty
hence by the linking relations for all 1 < < j < 6,7 o 7,
! . . .

(5.16) My = SiSjAp(i)p(j)y ?f p(l) < p(2)7

—SiSiX; (gi))\lp(j)p(i)7 if p(i) > p(4)-

To obtain more precise results we now assume as in [AS5, 6.26] that
forall 1 <4,5 <6,i+# 7,

(5.17) ord(g;) = ord(g;) # ord(g;) = ord(g)).

This forces p to be the identity, and we can identify the root systems
of D and D’. Then

(5.18) F(z4) = sa2), for all a € &7,

: 0
where we define s, = si'---s5,%, if a = >, nja; € ®*. The root
vector relations imply

(5.19) shul (1) = F(ua(p)) = ul,(u), for all o € %, J € X.

It follows from the inductive definition of the u,(u), that (5.18) is
equivalent to

(5.20) sVl = pia, for all a € ®F,J € X.

Conversely these data allow to define a Hopf algebra isomorphism.
Assuming (5.17) and 6 = ¢, we conclude that u(D, A, i) is isomorphic
to u(D', N, i) if and only if a;; = aj; for all 1 <, j < 6, and there are
scalars 0 # s; € k,1 < i < 0, and a group isomorphism ¢ : I' — I”
satisfying

(5.21) o(g)) =g, forall 1 <i<¥

(5.22) Xi = Xip, forall 1 <i<¥6

(5.23) Nij = sisjAyy, forall 1 <i<j <0,
(5.24) sNT ! = lig, for all a € T, J € X.
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In [AS2] and [AS4] we determined the structure of finite-dimensional
Nichols algebras assuming that V' is of Cartan type and satisfies some
more assumptions in the case of small orders (< 17) of the diagonal
elements ¢;;. Recent results of Heckenberger [H1], [H2], [H3] together
with Theorem 5.1 allow to prove the following very general structure
theorem on Nichols algebras.

Theorem 5.4. Let ' be a finite abelian group, and V € LYD a Yetter-
Drinfeld module such that B(V') is finite-dimensional. Choose a basis
wi € Vo with z; € VXi,g; € T,y; € T, foralll < i < 6. For all
1 <i,j <80, define ¢;; = x;(gi), and assume

(5.25) ord(g;;) is odd, and ord(g;) is not 3,
(5.26) ord(g;;) is prime to 3 if quqi € {q;;>, q;>} for some l.

Then there is a datum D = D(F, (gi>1gi§9, (Xi)1§i§6'7 (aij)lgi’jgf)) Of ﬁ—
nite Cartan type such that

B(V)#k[T] 2 u(D,0,0).

Proof. For all 1 < 4,5 < 60,1 # j, let Vi; be the vector subspace of V
spanned by z;, z;. Then B(Vj;) is isomorphic to a subalgebra of B(V),
hence it is finite-dimensional. Heckenberger [H1], [H2| classified finite-
dimensional Nichols algebras of rank 2. By (5.25) it follows from the
list in [H1, Theorem 4] that V;; is of finite Cartan type, that is, there
are a;;, a;; € {0,—1, —2, —3} with a;;a;; € {0,1,2,3}, and

Qji

445 = QZ'” =4;; -
Since B(V)#k[I'] is finite-dimensional, ¢; # 1 for all 1 < i < 6 by
[AS1, Lemma 3.1]. Thus (¢;;)1<ij<¢ is of Cartan type in the sense of
[AS2, page 4] with (generalized) Cartan matrix (a;;). In [H3, Theorem
4] Heckenberger extended part (ii) of [AS2, Theorem 1.1] (where we had
to exclude some small primes) and showed that a diagonal braiding (g¢;,)
of a braided vector space V' is of finite Cartan type if it is of Cartan
type and B (V) is finite-dimensional. Hence (a;;) is a Cartan matrix of
finite type, and the claim follows from Theorem 5.1. U

5.2. Generation in degree one. We generalize our results in [AS4,
Section 7]. Let A be a finite-dimensional pointed Hopf algebra with
[V, and R as in Section 5.1. To prove that B(V) = R, we dualize.
Let S = R* the dual Hopf algebra in 1VD as in [AS2, Lemma 5.5].
Then S = @®,>05(n) is a graded Hopf algebra in LYD, and by [AS2,
Lemma 5.5], R is generated in degree one, that is, B(V) = R, if and
only P(S) = S(1). The dual vector space S(1) of V' = R(1) has the
same braiding (¢;;) (with respect to the dual basis) as V. Our strategy
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to show P(S) = S(1) is to identify S as a Nichols algebra. In the next
Lemma we use [H1, H2| to prove a very general version of [AS4, Lemma
7.2].

Lemma 55 Let D = D(F, (gi)lgigg, (Xi)1§i§07 (aij)lgidgg) be a datum
of finite Cartan type with finite abelian group I'. Let S = @®,>05, be a
finite-dimensional graded Hopf algebra in .YD with S(0) = k1, and let
T1,..., 9 be a basis of S(1) with x; € S(1)Xi for all 1 <i < 0. Assume
for all 1 < i < 0 that the order of qi; = x:(g:) is odd and > 7. Then

(5.27) ad.(z;)' "% (z;) =0 for all 1 <i,5 <0, i # j.

Proof. We first note that the Nichols algebra of the primitive elements
P(S) € LYD is finite-dimensional. This can be seen by looking at

gr(S#k[IT).
Assume that there are 1 < i,j < 6,7 # j, with ad.(z;)' "% (z;) # 0.
We define
y1 = 21, Yo = ade(w;)' " ().
By [AS2, A.1], y, is a primitive element. Since y;,ys are non-zero
elements of different degree, they are linearly independent. We know

that the Nichols algebra of W = ky; + ky, is finite-dimensional, since
B(P(S)) is finite-dimensional. We denote

h1 = 0i, hg = gil_aij - F, and m =X N2 = Xil_ainj - f
Thus y; € Szz,l < i < 2. Let (Qi;; = nj(hi))1<ij<2 be the braiding
matrix of yi,y,. We compute
I—CL,L" 2—(Li'
Qu = i, Q2 = q; " qjj, Q2@ = ¢q; -
By assumption, the order of Q)17 = ¢ is odd and > 3. Since B(W) is
finite-dimensional, Q20 # 1 by [AS1, Lemma 3.1]. Thus @, has odd
order, since the orders of ¢;;, q;; are odd. By checking Heckenberger’s

list in [H1, Theorem 4], and thanks to [H2], we see that the braiding
(Qi;) is of finite Cartan type or that we are in case (T3) with

Q12Q21 = Q1.
Hence there exists Ao € {0, —1, —2, -3} with
Q12Q21 = Q712

Since Q12Q21 = qi._a“, and Q11 = ¢, it follows that the order of ¢y
divides 2 — a;; — A1z € {2,3,4,5,6,7,8}. This is a contradiction since
the order of ¢; is odd and > 7. ]

The next theorem is one of the main results of this paper.
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Theorem 5.6. Let A be a finite-dimensional pointed Hopf algebra with
abelian group G(A) = I' and infinitesimal braiding matriz (¢;;)1<i j<o-
Assume for all 1 <, <0, that the order of q;; is odd, the order of g
is > 7, and that (5.26) holds. Then A is generated by group-like and
skew-primitive elements, that is,

R=B(V),
where R is defined by (5.1), and V = R(1).

Proof. We argue as in the proof of [AS4, Theorem 7.6]. Let S = R* be
the dual Hopf algebra in LYD. Then S(1) = R(1)* has the same braid-
ing (g;;) as R(1) with respect to the dual basis (z;) of the corresponding
basis of R(1). By Theorem 5.4 (g;;) is of finite Cartan type. By Lemma
5.5 the Serre relations (5.7) hold for the elements z;. Then the root vec-
tor relations (5.8) follow by [AS4, Lemma 7.5]. Hence S = B(S(1)) by
Theorem 5.1, and S(1) = P(95). By duality, R is a Nichols algebra. [

6. LIFTING

. From Section 5 we know a presentation of gr(A) by generators and
relations under the assumptions of Theorems 5.4 and 5.6. To lift this
presentation to A we need the following formulation of [AS1, Lemma
5.4] which is a consequence of the theorem of Taft and Wilson [M,
Theorem 5.4.1]. Here it is crucial that the group is abelian.

Lemma 6.1. Let A be a finite-dimensional pointed Hopf algebra with
abelian group G(A) = T'. Write gr(A) = R#k[I] as in (5.2), and let
V = R(1) with basis z; € VXi,g; € T, x; € [,1 < i < 0. Let Ay C A
be the first two terms of the coradical filtration of A. Then

(61)  ®yperepper ByulA) = Ar/Ag = VKT,

(6.2) Forallgel',Pj1(A) =k(l—g), and ife # x € T, then

(6.3) Py1(A)X#0 <= g=gi, X = X4, for some 1 <i<4.
We can now prove our main structure theorem.

Theorem 6.2. Let A be a finite-dimensional pointed Hopf algebra with
abelian group G(A) = I' and infinitesimal braiding matriz (¢;;)1<i j<o-
Assume for all 1 < 1,5 < 0, that the order of q;; is odd, the order of g;;
is > 7, and that (5.26) holds. Then

A g U(D7 )\7 M)?

where D = D(F,(gi)lgigg,(Xi)1§i§97(aij)1§i7j§9) 18 a datum Of ﬁmte
Cartan type, and X and p are families of linking and root vector pa-
rameters for D.
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Proof. By Theorems 5.4 and 5.6, there is a datum D of finite Cartan
type such that gr(A) = u(D,0,0). By Lemma 6.1, for all 1 <i <6 we
can choose

a; € P(A),, corresponding to z; in (6.1).
We have shown in Theorem [AS4, 6.8] that
ad.(a;)' "% (a;) = 0, for all 1 < 4,5 < 0,i ~ j,i # j,
a;a; — qia;a; — Nij(1 — gig5) =0, forall 1 <i < j <46,iy,

for some family A of linking parameters. Thus there is a homomorphism
of Hopf algebras

0 :UD,\) — A, o' =1idr, p(z;) =a;, forall 1 <i<86.
By Theorem 5.6, ¢ is surjective.

We now use the notation of Section 2.2 and show that

(6.4) o(xN7) € k[T] for all a € ®F,J € X.
We fix J € X with p = |®7F|, and show by induction on ht(a) that
(6.5) ©(z%) € k[I'] for all a € NP.

Let 0 # a € NP. Since ¢ is a Hopf algebra map, we see from (2.16) that
Ap(z")) = h* ® o(z%) + ¢(") @ 1 + w,

where by induction

w= Yt (2" ©p(=) € kL] © k[T,

b,c#£o,b+c=a

In particular, ¢(z*) € A; by definition of the coradical filtration. We
multiply this equation with ¢ ® g,¢g € T, from the left and ¢! ® ¢!
from the right. Since gz%g~! = n%(g)z%, we obtain w = n®(g)w for all
gel.

Suppose n* # e. Then w = 0, and p(2%) € P,:’:J. Then p(2*) = 0 by
Lemma 6.1 (6.3), since x;(g;) # 1 for all 1 <[ < @, but n*(h*) =1 by
the Cartan condition (see the proof of [AS2, Lemma 7.5] for a similar
computation).

If n* =€, then p(z*) € A = k[I'] by Lemma 6.1 (6.2).

This proves (6.5) and (6.4). Then we conclude for each J € X' from
Theorem 2.12 that the map

K(Dj)#k[I] - UMD,\) 3 A

has the form ¢, for some family of scalars p/ as in Theorem 2.12
for the connected component J. Define u = (jiq)acos by fa = i
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for all @ € ®F. Then p is a family of root vector parameters for D,
and the elements u, () € Ek[['] are defined in (4.5) for each J € X
and o € ®F. It follows that p(z)7) = wus(p) = @(ua(p)) for all
J € X,a € ®F. Thus ¢ factorizes over u(D,\, ). Since dim(A) =
dim(gr(A)) = dim(u(D, A,0,0)) = dim(u(D, A, 1)) by Theorem 4.4, ¢
induces an isomorphism u(D, A, 1) = A. O

Corollary 6.3. Let A be a finite-dimensional pointed Hopf algebra
with abelian group G(A) = T satisfying the assumptions of Theorem
6.2. Then for each prime divisor p of the dimension of A there is a
group-like element of order p in A.

Proof. This follows from Theorems 6.2 and 4.4. U

We note that the analog of Cauchy’s theorem in group theory is false
for arbitrary, non-pointed Hopf algebras. Let A be a finite-dimensional
Hopf algebra with only trivial group-like elements, such as the dual of
the group algebra of a finite group G with G = [G,G]. Then A does
not contain any Hopf subalgebra of prime dimension, since any Hopf
algebra of prime dimension is a group algebra by Zhu’s theorem [Z].
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