REALIZATION OF EQUIVARIANT CHAIN COMPLEXES

BERNHARD HANKE

ABSTRACT. We discuss a question appearing in a recent article by A. Sikora [4] concerning the vanishing of certain differentials in the Leray-Serre spectral sequence for a Poincaré duality space equipped with a \(\mathbb{Z}/p \)-action.

Let \(p \) be an odd prime and let \(X \) be a finite dimensional connected \(\mathbb{Z}/p \)-CW complex which fulfills Poincaré duality over \(\mathbb{F}_p \), the field with \(p \) elements. By definition, this means that \(H^*(X; \mathbb{F}_p) \) is finitely generated over \(\mathbb{F}_p \), there is a natural number \(n \geq 0 \) and an element \(\nu \in H_n(X; \mathbb{F}_p) \) such that the map

\[
H^i(X; \mathbb{F}_p) \rightarrow H_{n-i}(X; \mathbb{F}_p), \ c \mapsto c \cap \nu,
\]

is an isomorphism for all \(i \in \mathbb{Z} \). Let \(g \in \mathbb{Z}/p \) be a fixed generator. With the induced \(\mathbb{Z}/p \)-operation, \(H^*(X; \mathbb{F}_p) \) is a graded \(\mathbb{F}_p[\mathbb{Z}/p] \)-module and as such it has a direct sum decomposition

\[
H^*(X; \mathbb{F}_p) \cong V_1^* \oplus V_2^* \oplus \ldots \oplus V_p^*,
\]

where each \(V_i^* \) is a free graded module over \(\mathbb{F}_p[\xi]/(1 - \xi)^i \) and multiplication by \(\xi \) corresponds to multiplication by \(g \). In his recent article [4], A. Sikora discusses the following question:

Question (cf. [4], remarks following Theorem 1.4.) Let \(V_2^* = V_3^* = \ldots = V_{p-1}^* = 0 \) and let \(\mathbb{Z}/p \) act on \(X \) with nonempty fixed point set. Consider the cohomological Leray-Serre spectral sequence with coefficients \(\mathbb{F}_p \) for the Borel fibration

\[
X \hookrightarrow E\mathbb{Z}/p \times_{\mathbb{Z}/p} X \rightarrow B\mathbb{Z}/p.
\]

Do all the differentials \(d_r : E_r^{i,j} \rightarrow E_r^{i+r,j-r+1} \) in this spectral sequence vanish, if \(i \geq n \) and if \(r \) is odd and greater than 1?

We will show by an explicit example that this is false in general. In a first step, we construct our example on an algebraic level as a certain equivariant chain complex. In a second step, we realize this chain complex \(p \)-locally as...
the cellular chain complex of a \mathbb{Z}/p-CW complex which is thickened up and doubled in order to get a smooth \mathbb{Z}/p-manifold. The idea of this approach might be of independent interest for the construction of other equivariant spaces with prescribed homological properties.

Theorem 3 shows that a modified version of the above question can be answered affirmatively. Related to this observation are the results in [1].

Consider the following chain complex C_\ast of $\mathbb{Z}[\mathbb{Z}/p]$-modules:

\[
\mathbb{Z}[\mathbb{Z}/p] \xrightarrow{\nu} \mathbb{Z}[\mathbb{Z}/p] \xrightarrow{\tau} \mathbb{Z}[\mathbb{Z}/p] \xrightarrow{\tau \circ \nu} \mathbb{Z}[\mathbb{Z}/p] \xrightarrow{\tau} \mathbb{Z}[\mathbb{Z}/p] \to 0 \to 0 \to 0 \to \mathbb{Z}.
\]

The map ν is multiplication by $1 + g + \ldots + g^{p-1}$ and τ is multiplication by $1 - g$. We regard this chain complex as being graded over the natural numbers, the modules occuring above sitting in degrees $10, 9, \ldots, 0$, with differentials of degree -1 (and C_\ast being completed by zero modules in degrees larger than 10). Because $\tau \circ \nu = \nu \circ \tau = 0$, we see that C_\ast is indeed a chain complex. In a first step, we realize this complex as the cellular chain complex of a \mathbb{Z}/p-CW complex. As we are going to work with \mathbb{F}_p-coefficients later on, we consider the problem p-locally. We denote by $\mathbb{Z}_{(p)}$ the integers localized at p.

Proposition 1. There is a 10-dimensional \mathbb{Z}/p-CW complex Y whose equivariant cellular chain complex with coefficients $\mathbb{Z}_{(p)}$ is $\mathbb{Z}_{(p)}[\mathbb{Z}/p]$-isomorphic to $C_\ast \otimes \mathbb{Z}_{(p)}$.

Proof. The space Y is constructed inductively, starting with the one point union of p spheres of dimension 5 permuted cyclically by the action of \mathbb{Z}/p (and with fixed common basepoint). Suppose that $5 \leq k \leq 9$ and that the k-skeleton $Y^{(k)}$ of Y has been constructed. We have to show that given an element $c \in H_k(Y^{(k)}; \mathbb{Z}_{(p)})$, there is a map $S^k \to Y^{(k)}$ which, in homology, maps the fundamental class of S^k to $\lambda \cdot c$, where λ is an integer not divisible by p. Then a bunch of free \mathbb{Z}/p-cells of dimension $k + 1$ can be attached equivariantly to $Y^{(k)}$ according to the respective differential

\[
C_{k+1} \otimes \mathbb{Z}_{(p)} \to C_k \otimes \mathbb{Z}_{(p)}
\]

(up to a $\mathbb{Z}_{(p)}[\mathbb{Z}/p]$-linear automorphism of $C_{k+1} \otimes \mathbb{Z}_{(p)})$.

In order to achieve this aim, it is enough to show that the p-local Hurewicz map

\[
\pi_k(Y^{(k)}) \otimes \mathbb{Z}_{(p)} \to H_k(Y^{(k)}; \mathbb{Z}_{(p)})
\]

is surjective. For $k \leq 8$, we use the fact that in the Atiyah-Hirzebruch spectral sequence

\[
E_{i,j}^2 = \widetilde{H}_i(Y^{(k)}; \pi_j^p \otimes \mathbb{Z}_{(p)})) \implies \pi_{i+j}^p(Y^{(k)}) \otimes \mathbb{Z}_{(p)}
\]

converging to the p-local stable homotopy of $Y^{(k)}$, the terms $E^2_{i,j}$ vanish for $j = 1, 2$ as p is odd. Hence, all elements in $E^2_{i,0}$ with $i \leq 8$ are permanent cocycles (recall that $Y^{(k)}$ is 4-connected). Freudenthal’s suspension theorem shows that the canonical map

$$\pi_k(Y^{(k)}) \rightarrow \pi_k^s(Y^{(k)})$$

is surjective. This map remains surjective after tensoring with \mathbb{Z}/p and the desired surjectivity of the p-local Hurewicz map above is established.

If $p > 3$ and $k = 9$, the same argument completes the construction of Y, because $E^2_{i,j} = 0$ for $j = 3$ in this case (and Freudenthal’s suspension theorem still gives a surjection from the unstable to the stable homotopy of $Y^{(9)}$ in degree 9). However, because $\pi_3 \cong \mathbb{Z}/24$, in the case that $p = 3$, we must show that $Y^{(9)}$ can be constructed in such a way that the fourth differential d^4 vanishes on $E^4_{9,5}(Y^{(9)})$.

The equivariant map $\sigma : Y^{(3)} = S^5 \vee S^5 \vee S^5 \rightarrow S^5$ which is the identity on each copy of S^5 (and with the trivial action on the target S^5) extends to an equivariant map

$$Y^{(6)} = (S^5 \vee S^5 \vee S^5) \cup_{\phi} (D^6 \cup D^6 \cup D^6) \rightarrow S^5$$

because $\sigma \circ \phi : S^5 \cup S^5 \cup S^5 \rightarrow S^5$ is homotopic to a constant map. We call this extended map σ, as well. The composition of σ with the inclusion $S^5 \rightarrow S^5 \vee S^5 \vee S^5 \subseteq Y^{(6)}$ of any S^5 summand is the identity. Because 3-locally the homotopy groups $\pi_6(S^5) = \pi_7(S^5) = 0$, one sees that σ extends to a 3-local equivariant map $\sigma : Y^{(8)} \rightarrow S^5$. We have $H_8(Y^{(8)}; \mathbb{Z}/3) \cong \mathbb{Z}/3$ and the E_∞-term of the Atiyah-Hirzebruch spectral sequence converging to the stable homotopy of $Y^{(8)}$ (always localized at 3) leads to a short exact sequence

$$0 \rightarrow \mathbb{Z}/3 \rightarrow \pi_8^s(Y^{(8)}) \rightarrow \mathbb{Z}/3 \rightarrow 0.$$

Hence there is an isomorphism

$$f : \pi_8(Y^{(8)}) \cong \pi_8^s(Y^{(8)}) \cong \mathbb{Z}/3 \oplus \mathbb{Z}/3,$$

(the first isomorphism is the Freudenthal suspension theorem, again), but the choice of f is not canonical. Nevertheless, with respect to any such f, the $\mathbb{Z}/3$-summand is mapped isomorphically to $H_8(Y^{(8)}) \cong \mathbb{Z}/3$ under the Hurewicz map - this follows from the fact that the Hurewicz map is represented by an edge homomorphism in the Atiyah Hirzebruch spectral sequence.

Let $x = f^{-1}((0, 1)) \in \pi_8(Y^{(8)})$ and $i : S^5 \rightarrow Y^{(6)} \hookrightarrow Y^{(8)}$ be chosen such that $\sigma \circ i$ is the identity. The image of $i_* : \pi_8(S^5) \rightarrow \pi_8(Y^{(8)})$ is in the kernel of the Hurewicz map, because $\text{im } i \subseteq Y^{(3)}$. In particular, we find an element $c \in \pi_8(Y^{(8)})$ which is in the kernel of the Hurewicz map and such that $\sigma_*(c) = -\sigma_*(x) \in \pi_8(S^5)$. The element $x + c \in \pi_8(Y^{(8)})$
is then in the kernel of σ_* and is sent to a generator of $H_8(Y^{(8)})$ under the Hurewicz map. Thus, we can attach the first 9-cell to $Y^{(8)}$ in such a way that the composition of the attaching map with σ is null homotopic. By equivariance of σ, the composition with σ of the attaching maps of the other two 9-cells are null homotopic as well and σ extends (3-locally) to a map $Y^{(9)} \to S^5$ which factors the identity $S^5 \to S^5$. By naturality of the Atiyah-Hirzebruch spectral sequence, this shows that for this $Y^{(9)}$, we have indeed $d^i = 0$ on $E^i_{9,0}$.

Note that \mathbb{Z}/p acts on Y with exactly one fixed point. Let T be an oriented compact smooth \mathbb{Z}/p-manifold with boundary which is \mathbb{Z}/p-homotopy equivalent to Y (for the construction of such an equivariant smooth thickening, see, for example, [3] Theorem 2.4 and Remark 2.5 with $B = Y^{\mathbb{Z}/p}$ and U and E product bundles). Now define $X = T \cup_{\partial T} (-T)$ as the oriented double of T. The space X is an oriented closed smooth \mathbb{Z}/p-manifold and in particular satisfies Poincaré duality over \mathbb{F}_p. By use of Poincaré duality for T and excision, the long exact cohomology sequence of the pair (X, T) becomes

$$\ldots \to H^{i-1}(T; \mathbb{F}_p) \to H_{\dim T-i}(T; \mathbb{F}_p) \to H^i(X; \mathbb{F}_p) \to H^i(T; \mathbb{F}_p) \to \ldots$$

One sees (at least, if $\dim T \geq 22$ which we can assume) that $H^i(X; \mathbb{F}_p) \cong \mathbb{F}_p$, if $i = 0, 5, 7, 8, 10, n - 10, n - 8, n - 7, n - 5, n$, where $n = \dim X$, and $H^i(X; \mathbb{F}_p) = 0$ for all other values of i. In particular, the induced \mathbb{Z}/p-action on $H^*(X; \mathbb{F}_p)$ is trivial. Let $E^{*,*}_3$ be the spectral sequence for the Borel fibration $X \hookrightarrow E\mathbb{Z}/p \times_{\mathbb{Z}/p} X \to B\mathbb{Z}/p$ with coefficients in \mathbb{F}_p. The following theorem shows that X can be used in order to answer Sikora’s question in the negative.

Theorem 2. The third differential $d_3 : E^{i,i}_3 \to E^{i+i,2}_3$ is different from zero for all even $i \geq 2$.

Proof. Because T is an equivariant retract of X and T is \mathbb{Z}/p-homotopy equivalent to Y, we only need to show the latter statement for the spectral sequence of the Borel construction for Y, which we denote by the same symbol $E^{*,*}_r$. For $r \geq 2$, this is a bigraded module over

$$H^*(\mathbb{Z}/p; \mathbb{F}_p) \cong \mathbb{F}_p[t] \otimes \Lambda(s)$$

where s and t are considered as indeterminates of bidegree $(1, 0)$ and $(2, 0)$ respectively and where $\Lambda(s)$ is the exterior algebra on s. Furthermore, the differential on $E^{*,*}_r$ is $\mathbb{F}_p[t] \otimes \Lambda(s)$-linear. In the following, we abbreviate $E\mathbb{Z}/p \times_{\mathbb{Z}/p} Y$ by $Y_{\mathbb{Z}/p}$, and take coefficients in \mathbb{F}_p, throughout. By use of the localization theorem, we have

$$H^*(Y_{\mathbb{Z}/p})[t^{-1}] \cong H^*(Y^{\mathbb{Z}/p} \times_{\mathbb{Z}/p} E\mathbb{Z}/p)[t^{-1}] \cong \mathbb{F}_p[t, t^{-1}] \otimes \Lambda(s),$$
because we have exactly one fixed point. It is now convenient to localize the Leray-Serre spectral sequence right away: For \(r \geq 2 \), we set \(\overline{E}_r^{*,*} = E_r^{*,*}[t^{-1}] \) and denote the induced differential on this localized spectral sequence (living in the first two quadrants) by \(\overline{d}_r \).

By induction on \(r \geq 2 \), it is not difficult to show that the map
\[
E_r^{i,j} \rightarrow E_r^{i+2,j}
\]
given by multiplication with \(t \), is a surjection, if \(0 \leq i < r - 1 \), and an isomorphism, if \(i \geq r - 1 \). In particular, the canonical map
\[
E_3^{i,j} \rightarrow \overline{E}_3^{i,j}
\]
is an isomorphism, if \(i \geq 2 \). Hence, it suffices to show that \(\overline{d}_3^{k,*} \neq 0 \) for all even \(i \).

Recall that by construction of the Leray Serre spectral sequence, there is a decreasing filtration
\[
\ldots \supset \mathcal{F}_{\gamma - 1} H^*(Y_{\mathbb{Z}/p}) \supset \mathcal{F}_{\gamma} H^*(Y_{\mathbb{Z}/p}) \supset \mathcal{F}_{\gamma + 1} H^*(Y_{\mathbb{Z}/p}) \supset \ldots
\]
such that
\[
E_\infty^{i,j} \cong \mathcal{F}_i H^{i+j}(Y_{\mathbb{Z}/p}) / \mathcal{F}_{i+1} H^{i+j}(Y_{\mathbb{Z}/p}) .
\]
As in [2], we now define an induced filtration on the localized module \(H^*(Y_{\mathbb{Z}/p})[t^{-1}] \) as follows:
\[
x \in \mathcal{F}_\gamma \left(H^*(Y_{\mathbb{Z}/p})[t^{-1}] \right) \iff t^c \cdot x \in \mathcal{F}_{\gamma + 2c} H^{*-2c}(Y_{\mathbb{Z}/p}) \text{ for } c \gg 0 .
\]
This makes sense, because, using the remarks from the preceding paragraph, multiplication by \(t \) induces isomorphisms
\[
\mathcal{F}_\gamma H^*(Y_{\mathbb{Z}/p}) \cong \mathcal{F}_{\gamma + 1} H^{*-2}(Y_{\mathbb{Z}/p})
\]
if \(\gamma \geq 11 \), because \(E_\infty^{5,*} = E_\infty^{*,*} \) for dimension reasons. It follows that
\[
\overline{E}_\infty^{i,j} \cong \mathcal{F}_i \left(H^{i+j}(Y_{\mathbb{Z}/p})[t^{-1}] \right) / \mathcal{F}_{i+1} \left(H^{i+j}(Y_{\mathbb{Z}/p})[t^{-1}] \right) .
\]
Hence, because \(H^*(Y_{\mathbb{Z}/p})[t^{-1}] \) is a module of rank 2 over the graded field \(\mathbb{F}_p[t, t^{-1}] \), the same must be true for \(\overline{E}_\infty^{*,*} \). We will show that this cannot hold, if \(\overline{d}_3^{k,*} = 0 \) for some even \(i \).

In [2], Theorem 1, we constructed operators \(\Gamma_{1,r} : E_r^{*,*} \rightarrow E_r^{*,*+1} \) for \(r \geq 1 \) that, for \(r = 1 \), can be identified with the Bockstein operator \(\beta \) on \(H^*(Y; \mathbb{F}_p) \) associated to the short exact coefficient sequence
\[
0 \rightarrow \mathbb{Z}/p \rightarrow \mathbb{Z}/p^2 \rightarrow \mathbb{Z}/p \rightarrow 0 .
\]
Because these operators \(\Gamma_{1,r} \) act as derivations, they are \(\mathbb{F}_p[t] \)-linear (for \(r \geq 2 \)) and induce corresponding operators on \(\overline{E}_r^{*,*} \), \(r \geq 2 \). We also cite the fact that these operators commute with \(\overline{d}_r \) up to sign. Notice that
\[\beta(H^i(Y; \mathbb{F}_p)) = 0 \text{ for } i \neq 7 \text{ and } \beta : H^7(Y; \mathbb{F}_p) \to H^8(Y; \mathbb{F}_p) \text{ is an isomorphism (this explains our choice of the chain complex } C_\ast). \]

Using the operator \(\Gamma_{1,2} \), we get \(\overline{d}_2 = 0 \) by a simple diagram chase and therefore

\[\overline{E}^{i,j}_3 \cong H^j(Y; \mathbb{F}_p) \otimes (\mathbb{F}_p[t, t^{-1}] \otimes \Lambda(s))^i. \]

We now assume that \(\overline{d}_3^{i,*} = 0 \) for some even \(i \). We know that \(\overline{E}_3^{i,*} \) is two-periodic in the horizontal direction and so our assumption implies that \(\overline{d}_3^{i,*} \) vanishes for all even \(i \). Because \(\overline{d}_3 \) has odd horizontal degree, commutes with \(s \) up to sign and \(s \cdot s = 0 \), the preceding isomorphism shows that \(\overline{d}_3^{i,*} = 0 \) for all odd \(i \), as well. Hence we get \(\overline{d}_3 = 0 \). For \(j = 0, 5, 7 \) the differential \(\overline{d}_4^{i,j} \) vanishes for dimension reasons. But also \(\overline{d}_4^{8} \) vanishes by commutativity of the diagram

\[
\begin{array}{ccc}
\overline{E}_4^{i,7} & \xrightarrow{\overline{d}_4} & \overline{E}_4^{i,4,4} \\
\downarrow \Gamma_{1,4} & & \downarrow \Gamma_{1,4} \\
\overline{E}_4^{i,8} & \xrightarrow{\overline{d}_4} & \overline{E}_4^{i,4,5}
\end{array}
\]

where the first vertical arrow is an isomorphism. In a similar way, the differential \(\overline{d}_4^{10} \) is zero.

For dimension reasons, we have \(\overline{d}_5 = 0 \). Because the \(\mathbb{Z}/p \)-operation on \(Y \) has a fixed point, the projection map \(Y_{\mathbb{Z}/p} \to B\mathbb{Z}/p \) has a section and thus factors the identity \(B\mathbb{Z}/p \to B\mathbb{Z}/p \). By comparing the localized spectral sequences for \(Y_{\mathbb{Z}/p} \) and \(*_{\mathbb{Z}/p} = B\mathbb{Z}/p \), this implies that the differential \(\overline{d}_r : \overline{E}_r^{i,r-1} \to \overline{E}_r^{i+r,0} \) vanishes for all \(r \). Altogether, we get

\[\dim_{\mathbb{F}_p[t, t^{-1}]} \overline{E}_\infty^{i,*} \geq 6 \]

because the only possibly nonzero differential is \(\overline{d}_6 : \overline{E}_6^{i,10} \to \overline{E}_6^{i+6,5} \). However, this contradicts the above calculation of this dimension. \(\square \)

Theorem 3. Let \(X \) be a \(\mathbb{Z}/p \)-CW complex with finitely generated cohomology over \(\mathbb{F}_p \) in every degree. Assume that in the decomposition of \(H^\ast(X; \mathbb{F}_p) \) described at the beginning of this note, we have \(V_{p-1} = 0 \) and that \(H^\ast(X; \mathbb{Z}_{(p)}) \) does not contain \(\mathbb{Z}/p \) as a direct summand. Then, in the localized spectral sequence \(\overline{E}_r^{i,*} \) with \(\mathbb{F}_p \)-coefficients for the Borel construction of \(X \), the differential \(\overline{d}_r \) vanishes, if \(r \) is odd and \(r > 1 \).

Proof. The Bockstein operator \(\beta \) is zero on \(H^\ast(X; \mathbb{F}_p) \), therefore, by [2] Proposition 9 (which holds for any \(\mathbb{Z}/p \)-CW complex with vanishing Bockstein), each \(\overline{E}_r^{i,*} \) is free over \(\mathbb{F}_p[t, t^{-1}] \otimes \Lambda(s) \). The universal coefficient
sequence
\[0 \to H^*(X; \mathbb{Z}/p) \otimes \mathbb{Z}/p^2 \to H^*(X; \mathbb{Z}/p^2) \to H^{*+1}(X; \mathbb{Z}/p) \ast \mathbb{Z}/p^2 \to 0 \]
shows that \(H^*(X; \mathbb{Z}/p^2) \) is free over \(\mathbb{Z}/p^2 \). Because \(\mathbb{Z}/p \) is not a direct summand of \(H^*(X; \mathbb{Z}/p(\mathfrak{m})) \), the modules on the left and on the right are free over \(\mathbb{Z}/p^2 \). By the vanishing of the Bockstein operator, the short exact coefficient sequence
\[0 \to \mathbb{Z}/p \to \mathbb{Z}/p^2 \to \mathbb{Z}/p \to 0 \]
induces a short exact sequence
\[0 \to H^*(X; \mathbb{F}_p) \to H^*(X; \mathbb{Z}/p^2) \to H^*(X; \mathbb{F}_p) \to 0. \]
The image of the second map consists of elements that are divisible by \(p \) as \(H^*(X; \mathbb{Z}/p^2) \) is free over \(\mathbb{Z}/p^2 \). Consequently, we get an induced isomorphism \(H^*(X; \mathbb{Z}/p^2) \otimes \mathbb{F}_p \cong H^*(X; \mathbb{F}_p) \). Proposition 6 in [2] (or a little representation theory) now implies that \(V_2^* = \ldots = V_{p-2}^* = 0 \) in the decomposition of \(H^*(X; \mathbb{F}_p) \). Together with the assumption \(V_{p-1}^* = 0 \), this shows that we can take \(\overline{E}_r^{0,*} \) as an \(\mathbb{F}_p[t, t^{-1}] \otimes \Lambda(s) \)-basis of the free module \(\overline{E}_r^{*,*} \): We have
\[\overline{E}_2^{0,i} \cong H^*(\mathbb{Z}/p; H^i(X; \mathbb{F}_p))[t^{-1}] \cong V_1^{0,i} \otimes (\mathbb{F}_p[t, t^{-1}] \otimes \Lambda(s))^*, \]
so no basis element can sit on an odd column for \(r \geq 2 \). We now assume that there is an odd \(r \) so that \(\overline{d}_r \neq 0 \). The facts that \(\overline{d}_r \) is \(\Lambda(s) \)-linear, that \(\overline{E}_r \) is free over \(\Lambda(s) \) with basis elements located on even columns, that the horizontal part of the bidegree of \(\overline{d}_r \) is odd and that \(s \cdot s = 0 \) imply that still \(\overline{d}_r \neq 0 \), if \(i \) is odd. Hence, \(\overline{d}_r \neq 0 \) and not all basis elements in \(\overline{E}_r^{0,*} \) survive to \(\overline{E}_{r+1}^{0,*} \). Therefore, multiplication by \(s \) cannot be surjective as a map \(\overline{E}_{r+1}^{0,*} \to \overline{E}_{r+1}^{1,*} \) and the bigraded module \(\overline{E}_{r+1}^{*,*} \) is not free over \(\Lambda(s) \), contrary to what we said before.

REFERENCES

Mathematisches Institut, Ludwig-Maximilians-Universität München, Theresienstr. 39, 80333 München, Germany

E-mail address: Bernhard.Hanke@mathematik.uni-muenchen.de