Übungsblatt 6 zu Funktionentheorie

Aufgabe 1: Ziel der folgenden Aufgabe sind zwei alternative Beweise des Satzes von Liouville. Sei $f: \mathbb{C} \to \mathbb{C}$ eine beschränkte und auf ganz \mathbb{C} holomorphe Funktion.

(i) Berechnen Sie für $w, y \in \mathbb{C}$ und für hinreichend grosse R > 0 das Integral

$$\frac{1}{2\pi i} \int_{|z|=R} \frac{f(z)}{(z-w)(z-y)} \,\mathrm{d}z.$$

Beweisen Sie nun den Satz von Liouville indem Sie den Limes $R \to \infty$ betrachten.

(ii) Beweisen Sie die folgende Mittelwerteigenschaft: Für $z_0 \in \mathbb{C}$ und r > 0 gilt

$$f(z_0) = \frac{1}{\pi r^2} \int_{D_r(z_0)} f(w) dw.$$

Verwenden Sie diese dann um zu zeigen dass $f(z_0) = f(w_0)$ für beliebige $z_0, w_0 \in \mathbb{C}$ gilt. Tipp: Verwenden Sie zum Beweis der Mittelwertformel Aufgabe 1 vom Tutorienblatt 3. Zeigen und verwenden Sie die Konvergenz $(\pi r^2)^{-1}|B(z_0,r)\cap B(w_0,r)| \to 1$ für $r \to \infty$.

Aufgabe 2: Sei $S := \{z \in \mathbb{C} : \operatorname{Re}(z) \in (0,1)\}$ und $f : \overline{S} \to \mathbb{C}$ stetig und beschränkt sowie auf S holomorph. Wir definieren

$$M_t := M_t(f) := \sup_{y \in \mathbb{R}} |f(t+iy)|, \qquad t \in [0,1].$$

Zeigen Sie dann, dass das folgende Interpolationsresultat gilt:

$$M_t \le M_0^{1-t} M_1^t, \qquad t \in [0, 1].$$

Hinweis: Ohne Beweis können Sie verwenden, dass für die Menge S das Maximumsprinzip gilt: Für stetige beschränkte Funktionen $h: \overline{S} \to \mathbb{C}$ die auf S holomorph sind gilt $\sup_{z \in S} |h(z)| = \sup_{z \in \partial S} |h(z)|$ (obwohl die Menge S unbeschränkt ist).

Tipp: Betrachten Sie für $A \in \mathbb{R}$ die Funktion $g_A(z) := f(z)e^{Az}$ wenden Sie das Maximumsprinzip an.

Aufgabe 3: Sei $f : \overline{B(0,1)} \to \mathbb{C}$ eine stetige Funktion die auf B(0,1) holomorph ist mit $f(z) \neq 0$ für alle $z \in \overline{B(0,1)}$. Zeigen Sie dann, dass f bereits konstant ist falls |f(z)| = 1 für alle $z \in \partial B(0,1)$ gilt.

Tipp: Setzen Sie f geeignet zu einer holomorphen Funktion $\tilde{f}: \mathbb{C} \to \mathbb{C}$ fort.

Aufgabe 4: Ziel der Aufgabe ist ein Resultat vergleichbar mit Aufgabe 1 auf Übungsblatt 5 (eine Version des Satzes von Liouville) für schnell wachsende Funktionen.

(i) Für R>0 sei f analytisch in einer Umgebung von $\overline{B(0,R)}$. Zeigen Sie dann, dass für $k\geq 1$ die folgende Abschätzung gilt:

$$|f^{(k)}(0)| \le \frac{k!}{R^k} \left(4 \max_{0 \le \theta \le 2\pi} \operatorname{Re} f(Re^{i\theta}) + 4|f(0)| \right).$$

(ii) Sei $f: \mathbb{C} \to \mathbb{C}$ eine auf ganz \mathbb{C} holomorphe Funktion mit $f(z) \neq 0$ für alle $z \in \mathbb{C}$. Falls es Konstanten A, B und $\alpha > 0$ gibt mit

$$|f(z)| \le Ae^{B|z|^{\alpha}}$$
 für alle $z \in \mathbb{C}$,

dann existiert ein Polynom P mit Grad $\deg(P) \leq \alpha$ sodass $f(z) = e^{P(z)}$ für alle $z \in \mathbb{C}$ gilt.

Abgabe je Zweiergruppe eine Lösung bis Mittwoch, den 25.05.2016.