

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Prof. M. Fraas, PhD A. Groh, S. Gottwald

Summer term 2015 June 29, 2015

Functional Analysis Exercise Sheet 11

Banach-Alaoglu, Baire Category Theorem, Uniform Boundedness

• First version deadline: July 6 (13:30). Final hand in deadline: July 15 (13:30)

We have often stressed the importance of weakly compact sets. The result of the following exercise provides a whole family of such sets.

Exercise 1 (5 points). Prove that a norm-closed convex bounded subset of a reflexive Banach space is weakly compact.

Exercise 2 (5 points). Let X := C([-1,1]) be equipped with $\|\cdot\|_1$, and for each $n \in \mathbb{N}$ let $\delta_n : C([-1,1]) \to \mathbb{C}$ be given by

$$\delta_n(f) = \frac{n}{2} \int_{-1/n}^{1/n} f(x) \, dx$$

Prove:

- (i) $\delta_n \in X^*$ for all $n \in \mathbb{N}$, and $\|\delta_n\| \to \infty$ as $n \to \infty$,
- (ii) $\delta_{\infty}(f) := \lim_{n \to \infty} \delta_n(f)$ exists for all $f \in X$, in particular $\sup_n |\delta_n(f)| < \infty$ for all $f \in X$. How is this consistent with the Uniform Boundedness Principle?
- (iii) δ_{∞} is not a bounded functional.

Exercise 3 (5 points). Prove:

- (i) Any closed proper subspace of a normed space X is nowhere dense.
- (ii) Any Hamel basis in an infinite dimensional Banach space X is uncountable.
- (iii) The space \mathcal{P} of polynomials cannot be equipped with a complete norm, i.e. with a norm $\|\cdot\|$ that makes $(\mathcal{P}, \|\cdot\|)$ complete.

The open mapping principle guarantees that a continuous linear bijection between Banach spaces has a continuous inverse. In the following exercise we give some counterexamples that show that the linearity assumption and the right topology are important. The failure of a continuous bijection to be a homeomorphism is often connected with a topological obstruction or shifting to/from infinity. **Exercise 4** (5 points). Prove that the following maps $\phi : X \to Y$ between topological spaces X, Y are continuous bijections that are not homeomorphisms:

- (i) $X = [0, 2\pi), Y = S_1 := \{x \in \mathbb{R}^2 : |x_1|^2 + |x_2|^2 = 1\}, \phi(x) := (\cos(x), \sin(x))$
- (ii) X = Y is the space of bounded sequences $(x_n)_{n \in \mathbb{Z}}$, equipped with the topology in which $U \subset X$ is open either if U = X, $U = \emptyset$, or if for all $x \in U$ we have $x_n = 0$ for n < 0, and $\phi : X \to X$ is given by $(\phi(x))_n = x_{n+1}$.

We saw in the lecture that there exist discontinuous linear maps on any infinite dimensional Banach space, although no such map can be explicitly constructed. Existence of a discontinuous linear map is rather obscure and can be ruled out by imposing further conditions. An example is a Hermitian condition that plays a very important role in physics.

Exercise 5 (5 points). Let \mathcal{H} be a Hilbert space. Prove that an everywhere defined linear map $T : \mathcal{H} \to \mathcal{H}$ is bounded if it is symmetric, i.e. if (x, Ty) = (Tx, y) for all $x, y \in \mathcal{H}$.

Exercise 6 (5 points). Let X be an infinite-dimensional Banach space. Prove

- (i) The weak topology on X is not first countable.
- (ii) The weak topology on X is not metrizable, i.e. there is no metric d on X that generates the weak topology.

For general informations please visit http://www.math.lmu.de/~gottwald/15FA/