

MAXIMILIANS-UNIVERSITÄT MÜNCHEN MA

MATHEMATISCHES INSTITUT

Prof. T. Ø. SØRENSEN PhD S. Gottwald

Functional Analysis II Assignment 14

Problem 53. Let A be a symmetric operator on a Hilbert space \mathcal{H} such that its domain $\mathcal{D}(A)$ contains an orthonormal basis of \mathcal{H} consisting of eigenvectors of A. Prove:

- (i) A is essentially self-adjoint.
- (*ii*) $\sigma(\overline{A})$ is the closure of the set of the eigenvalues of A.

Problem 54 (Dirichlet and Neumann Laplacian in one dimension). On the Hilbert space $L^2([0,1])$ consider the densely defined operators A_D and A_N given by

$$\mathcal{D}(A_D) = \{ \psi \in C^2([0,1]) \, | \, \psi(0) = 0 = \psi(1) \}, \quad \mathcal{D}(A_N) = \{ \psi \in C^2([0,1]) \, | \, \psi'(0) = 0 = \psi'(1) \}$$
$$A_D \psi = -\psi'', \qquad \qquad A_N \psi = -\psi''.$$

- (i) Prove that A_D and A_N are symmetric.
- (*ii*) Prove that A_D is essentially self-adjoint and find $\sigma(\overline{A_D})$.
- (*iii*) Prove that A_N is essentially self-adjoint and find $\sigma(\overline{A_N})$.
- (iv) Let $A_{D,N}$ be given by $\mathcal{D}(A_{D,N}) = \mathcal{D}(A_D) \cap \mathcal{D}(A_N)$ and $A_{D,N}\psi = -\psi''$. Prove that $A_{D,N}$ has at least two distinct self-adjoint extensions.

Problem 55. Show that if A is a densely defined self-adjoint operator on a Hilbert space \mathcal{H} then $U(t) := e^{itA}$ defines a strongly continuous unitary group $\{U(t)\}_{t\in\mathbb{R}}$ and U'(t) = iAU(t) holds in the strong operator topology.

Problem 56 (Stone's theorem). Let $\{U(t)\}_{t\in\mathbb{R}}$ be a strongly continuous unitary group on a Hilbert space \mathcal{H} .

- (i) Let \mathcal{D} be the set of $\varphi_f \in \mathcal{H}$ of the form $\varphi_f = \int_{-\infty}^{\infty} f(t) U(t) \varphi dt$ for some $\varphi \in \mathcal{H}$ and $f \in C_0^{\infty}(\mathbb{R})$, where the integral is a Hilbert space valued Riemann integral. Prove that \mathcal{D} is dense in \mathcal{H} .
- (*ii*) Prove that the operator A given by $\mathcal{D}(A) = \mathcal{D}$ and $A\varphi_f := -i\varphi_{(-f')}$ is symmetric.
- (*iii*) Prove that both A and U(t) leave \mathcal{D} invariant and commute on \mathcal{D} .
- (iv) Prove that A is essentially self-adjoint.

(v) Prove that
$$U(t) = e^{it\overline{A}}$$
.
[*Hint:* Set $w(t) := U(t)\varphi - e^{it\overline{A}}\varphi$ for $\varphi \in \mathcal{D}$ and compute $\frac{d}{dt} ||w(t)||^2$.]

For more details please visit http://www.math.lmu.de/~gottwald/14FA2/

Winter term 2014/15 Jan 22, 2014