

LUDWIG-MAXIMILIANS UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Prof. T. Ø. SØRENSEN PhD S. Gottwald Winter term 2014/15 Jan 15, 2014

FUNCTIONAL ANALYSIS II ASSIGNMENT 13

Problem 49. Let T be the linear operator in $L^2(\mathbb{R})$ with domain $\mathcal{D}(T) = C_0^{\infty}(\mathbb{R})$ and

$$Tf(x) = e^{-x^2} \int_{\mathbb{R}} \frac{f(t)}{\sqrt{1+|t|}} dt.$$

Determine T^* .

Problem 50. Prove that a densely defined operator T on a Hilbert space \mathcal{H} satisfying $\sigma(T) \subsetneq \mathbb{C}$ is necessarily closed.

Problem 50. Let P, Q be densely defined linear operators on a Hilbert space \mathcal{H} such that $\mathcal{D}(PQ) \cap \mathcal{D}(QP)$ is dense in \mathcal{H} , and

$$[P,Q] := PQ - QP = i\mathbb{I}.$$

Show that at least one of the operators P and Q has to be unbounded.

Problem 51 (Momentum operator on $[0, 2\pi]$). Consider the operators A_0 and A in $L^2([0, 2\pi])$ given by

$$A_0 f = -if',$$
 $\mathcal{D}(A_0) = \{ f \in C^1([0, 2\pi]) \mid f(0) = f(2\pi) = 0 \},$
 $A f = -if',$ $\mathcal{D}(A) = \{ f \in C^1([0, 2\pi]) \mid f(0) = f(2\pi) \}.$

- (i) Prove that A_0 and A are symmetric, and that $A_0 \subset A$.
- (ii) Find A_0^* .
- (iii) Find $\overline{A_0}$.
- (iv) Find A^* and prove that A is essentially self-adjoint.
- (v) Prove that A_0 has no eigenvalues.
- (vi) Prove that A admits an orthonormal basis of eigenvectors.
- (vii) Find all self-adjoint extensions of A_0 .

For more details please visit http://www.math.lmu.de/~gottwald/14FA2/