

MAXIMILIANS-UNIVERSITÄT MÜNCHEN MATHEMATISCHES INSTITUT

Prof. T. Ø. SØRENSEN PhD S. Gottwald

Functional Analysis II Assignment 12

Problem 45 (Cyclic Vectors II). Consider the self-adjoint operators A, B in $L^2([-1, 1])$ discussed in Problem 44, i.e. Af(x) = xf(x) and $Bf(x) = x^2f(x)$. Prove:

- (i) $L^2([-1,1]) \cong \mathcal{H}_1 \oplus \mathcal{H}_2$, where \mathcal{H}_1 and \mathcal{H}_2 are Hilbert spaces on which B has a cyclic vector.
- (ii) $f \in L^2([-1,1])$ is a cyclic vector for A iff $f(x) \neq 0$ almost everywhere.
- (*iii*) An $N \times N$ hermitian matrix has a cyclic vector iff its eigenvalues are all distinct.

Problem 46 (Unbounded multiplication operators). Let X be a metric space and μ a positive measure on the Borel σ -algebra of X such that $\mu(\Lambda) < \infty$ for any bounded Borel set $\Lambda \subset X$. For a (possibly unbounded) measurable function $\phi : X \to \mathbb{C}$ consider the linear map M_{ϕ} in $L^2(X, \mu)$ defined by

$$\mathcal{D}(M_{\phi}) := \left\{ f \in L^2(X, \mu) \mid \phi f \in L^2(X, \mu) \right\}$$
$$M_{\phi}f := \phi f.$$

Prove:

- (i) $\mathcal{D}(M_{\phi})$ is dense in $L^2(X, \mu)$.
- (*ii*) $M_{\phi}^* = M_{\overline{\phi}}$.
- $(iii) \ \sigma(M_{\phi}) = \operatorname{essran} \phi = \{\lambda \in \mathbb{C} \, | \, \forall \varepsilon > 0 : \mu(\{x \in X \, | \, |\lambda \phi(x)| < \varepsilon\}) > 0\} \ .$
- (iv) λ is an eigenvalue of M_{ϕ} iff $\mu(\phi^{-1}(\{\lambda\})) > 0$.
- (v) Let $X = \mathbb{R}$, let μ be the Lebesgue measure on \mathbb{R} , and let $\phi(x) := x \quad \forall x \in \mathbb{R}$. Then the position operator $q := M_{\phi}$ is self-adjoint, has no eigenvalues, and $\sigma(q) = \mathbb{R}$.

Problem 47 (Properties of the adjoint). Let A and B be densely defined operators on a Hilbert space \mathcal{H} . Prove:

- (i) $(\alpha A)^* = \overline{\alpha} A^* \quad \forall \alpha \in \mathbb{C}.$
- (*ii*) If $\mathcal{D}(A) \cap \mathcal{D}(B)$ and $\mathcal{D}(A^*) \cap \mathcal{D}(B^*)$ are dense in \mathcal{H} then $\mathcal{D}(A+B) = \mathcal{D}(A) \cap \mathcal{D}(B)$, $\mathcal{D}(A^*+B^*) = \mathcal{D}(A^*) \cap \mathcal{D}(B^*)$, and $(A+B)^* \supset A^*+B^*$.
- (*iii*) If $\mathcal{D}(AB)$ is dense, then $(AB)^* \supset B^*A^*$.
- (iv) If $A \subset B$ then $A^* \supset B^*$.

- (v) If A is self-adjoint then A has no symmetric extensions.
- $(vi) \ N(A^*) = R(A)^{\perp}.$

Prolbem 48 (von Neumann's Theorem).

- (i) Let A be a symmetric operator on a Hilbert space \mathcal{H} and assume there exists a map $C: \mathcal{H} \to \mathcal{H}$ with the following properties:
 - (a) C is anti-linear (i.e. $C(\alpha x + y) = \overline{\alpha x}C(x) + C(y)$).
 - (b) C is norm-preserving.
 - (c) $C^2 = \mathbb{I}$.
 - (d) $\mathcal{D}(A)$ is invariant under C.
 - (e) AC = CA on $\mathcal{D}(A)$.

[*Remark:* A map satisfying (a) - (c) is called *conjugation*.]

Prove that A has self-adjoint extensions.

(*ii*) Consider the operator H in $L^2(\mathbb{R}^d)$ given by

$$\mathcal{D}(H) = C_0^{\infty}(\mathbb{R}^d)$$

($H\psi$)(x) = $-\Delta\psi(x) + V(x)\psi(x)$ for a.e. $x \in \mathbb{R}^d$,

where $\Delta = \sum_{j=1}^{d} \partial_j^2$ and $V \in L^2_{loc}(\mathbb{R}^d)$ is real-valued. Show that H is symmetric and has at least one self-adjoint extension.

For more details please visit http://www.math.lmu.de/~gottwald/14FA2/