

LUDWIG-MAXIMILIANS UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Prof. T. Ø. SØRENSEN PhD S. Gottwald Winter term 2014/15 November 13, 2014

FUNCTIONAL ANALYSIS II ASSIGNMENT 6

Problem 21. Let $d \ge 1$ and $k \in L^2(\mathbb{R}^d \times \mathbb{R}^d)$. For $f \in L^2(\mathbb{R}^d)$ let

$$Tf(x) := \int_{\mathbb{R}^d} k(x, y) f(y) dy$$
 for a.e. $x \in \mathbb{R}^d$.

- (i) Prove that this defines $T \in \mathcal{B}(L^2(\mathbb{R}^d))$ and find an upper bound for ||T||.
- (ii) Prove that T is compact.
- (iii) Prove for any orthonormal basis $\{\varphi_n\}_{n=1}^{\infty}$ of $L^2(\mathbb{R}^d)$ that $\sum_{n=1}^{\infty} \|T\varphi_n\|_2^2 = \|k\|_2^2$.
- (iv) Prove that dim $N(T-I) \leq ||k||_2^2$.

Problem 22.

(i) Find an example of a bounded operator T on a Hilbert space \mathcal{H} such that

$$r(T) := \sup_{\lambda \in \sigma(T)} |\lambda| < ||T||.$$

(ii) Let R > 0. Find an example of a 2×2 matrix A with $\sigma(A) = \{0\}$ and $||A|| \ge R$.

Problem 23.

- (i) Show that $|A+B| \leq |A| + |B|$ is not true for arbitrary compact operators A and B.
- (ii) Prove for compact operators A, B on a Hilbert space \mathcal{H} that $\frac{1}{2}|A+B|^2 \leq |A|^2 + |B|^2$.

Problem 24. Let \mathcal{H} be a Hilbert space and $U \in \mathcal{B}(\mathcal{H})$. Recall that U is called an *isometry* if ||Ux|| = ||x|| for all $x \in \mathcal{H}$, and U is called *unitary* if U is a surjective isometry. Moreover, U is called a *partial isometry* if ||Ux|| = ||x|| for all $x \in N(U)^{\perp}$. Prove:

- (i) U is unitary iff $U^*U = UU^* = I$.
- (ii) U is an isometry iff $U^*U = I$.
- (iii) If $U \neq 0$ is a partial isometry then R(U) is closed and ||U|| = 1.
- (iv) The adjoint of a partial isometry is again a partial isometry.
- (v) U is a partial isometry iff U^*U is an orthogonal projection.
- (vi) U is a partial isometry iff $U = UU^*U$.

For more details please visit http://www.math.lmu.de/~gottwald/14FA2/