Übungen zur Analysis 1 für Informatiker und Statistiker

Lösung zu Blatt 2

Aufgabe 2.1 [Mengen; 8 Punkte]

(a) Sei $n \in \mathbb{N}_0$ und M eine Menge. Man schreibt |M| für die Mächtigkeit von M, d.h. für die Anzahl an Elementen, die in M enthalten sind. Zeigen Sie:

$$|M| = n \Rightarrow |\mathcal{P}(M)| = 2^n$$
.

Beweis. [4 Punkte] Wir benutzen Induktion auf |M| = n. Für |M| = 0 (Hinweis: hier wird die Aussage für $n \in \mathbb{N}_0$ bewiesen, ursprünglich war nur $n \in \mathbb{N}$ gefragt) haben wir $M = \emptyset$, und somit $P(M) = \{\emptyset\}$. Also gilt $|P(M)| = 1 = 2^0$, und der Induktionsanfang ist bewiesen.

Für den Induktionsschritt sei M eine Menge, |M| = n + 1 (mit $n \ge 0$). Insbesondere gilt $M \ne \emptyset$, und somit $\exists x \in M$. Wir können nun schreiben

$$P(M) = A \cup B,$$

wobei $A = \{X \in P(M) | x \in X\}$ und $B = \{X \in P(M) | x \notin X\}$. Offenbar gilt $A \cap B = \emptyset$ und somit |P(M)| = |A| + |B|. Darüber hinaus haben wir $B = P(M \setminus \{x\})$, und die Abbildungen

$$A \to B$$
, $X \mapsto X \setminus \{x\}$
 $B \to A$, $X \mapsto X \cup \{x\}$

sind invers zueinander. Daher gilt $|A|=|B|=|P(M\backslash\{x\})|=2^n$ (letzteres nach Induktionshypothese) und somit $|P(M)|=2^n+2^n=2^{n+1}$. Das schließt den Beweis des Induktionsschrittes ab.

(b) Zeigen Sie: $\forall M \subset \mathbb{N} : (M \neq \emptyset \Rightarrow \exists m \in M \ \forall n \in \mathbb{N} : (n < m \Rightarrow n \notin M))$

Beweis. [4 Punkte] In Worten: "Jede nicht-leere Menge natürlicher Zahlen hat genau ein kleinstes Element".

Wir zeigen zunächst Existenz von kleinsten Elementen. Sei $\emptyset \neq M \subset \mathbb{N}$. Dann $\exists n \in M$. Sei $M' = [n] \cap M$ (wobei $[n] = \{1, 2, ..., n\}$, wie in Aufgabe 4). Dann ist $n \in M' \subset [n]$, und somit $1 \leq |M'| \leq n$. Wenn x ein kleinstes Element von M' ist, dann ist x offenbar auch ein kleinstes Element von M. Es ist somit hinreichend zu zeigen, dass jede endliche nicht-leere Menge natürlicher Zahlen ein kleinstes Element hat.

Sei nun P(n) die Aussage

 $M \subset \mathbb{N} \wedge |M| = n \implies M$ hat ein kleinstes Element.

Offenbar ist P(1) wahr. Nehmen wir nun an, dass $P(1), P(2), \ldots, P(n)$ alle wahr sind. Wir wollen zeigen, dass P(n+1) auch wahr ist. Sei also $M \subset \mathbb{N}$ mit |M| = n+1. Dann $\exists x \in M$. Wenn x = 1 gibt es nichts zu beweisen. Andernfalls sei $M' = M \cap [x-1]$. Dann gilt $x \notin M'$, und somit |M'| < |M|. Wenn |M'| = 0 ist x ein kleinstes Element von M, und wir sind fertig. Andernfalls hat M' ein kleinstes Element y, da P(|M'|) wahr ist. Dann ist offenbar y auch ein kleinstes Element von M. Somit ist P(n+1) in allen Fällen wahr, und der Induktionsschritt ist bewiesen.

Es bleibt noch, die Eindeutigkeit kleinster Element zu zeigen. Aber wenn $x, y \in M$ kleinste Elemente sind, dann gelten $x \leq y$ und $y \leq x$, und daher y = x.

Aufgabe 2.2 [Abbildungen; 8 Punkte]

- (a) Vervollständigen Sie den Beweis von Satz 1.25 aus der Vorlesung, d.h. zeigen Sie: Ist $f: M \to N$ eine Abbildung, dann gilt für alle $A \subset M$ und $B, C \subset N$
 - (i) $A \subset f^{-1}(f(A))$ Beweis. [1 Punkt] Aus $x \in A$ folgt $f(x) \in f(A)$, und damit $x \in f^{-1}(f(A))$ (Def. 1.24). Also $A \subset f^{-1}(f(A))$.
 - (ii) $f^{-1}(B \cup C) = f^{-1}(B) \cup f^{-1}(C)$ Beweis. [1 Punkt] Es gilt $x \in f^{-1}(B \cup C) \Leftrightarrow f(x) \in B \cup C \Leftrightarrow (f(x) \in B) \lor (f(x) \in C) \Leftrightarrow (x \in f^{-1}(B)) \lor (x \in f^{-1}(C)) \Leftrightarrow x \in f^{-1}(B) \cup f^{-1}(C).$
- (b) Vervollständigen Sie den Beweis von Satz 1.28 aus der Vorlesung: Zeigen Sie, dass es zu jeder bijektiven Abbildung $f: M \to N$ eine eindeutige Abbildung $g: N \to M$ gibt, sodass $f \circ g = id$, d.h. f(g(y)) = y für alle $y \in N$.

Beweis. [1 Punkt] Da f surjektiv ist, gibt es für jedes $y \in N$ ein $x \in M$ mit f(x) = y. Da f injektiv ist, ist dieses $x =: x_y$ eindeutig durch y bestimmt. Sei nun $g : N \to M$ definiert durch $g(y) = x_y$. Dann ist g eine Abbildung (da x_y eindeutig durch y bestimmt ist) und es gilt $f(g(y)) = f(x_y) = y$, d.h. $f \circ g = id_N$.

- (c) Zeigen Sie, dass folgende Mengen bijektiv zu N sind:
 - (i) $\mathbb{Z} := \{0\} \cup (\mathbb{N} \times \{+, -\})$, wobei + und zwei Elemente sind, die mit keiner natürlichen Zahl übereinstimmen.

Beweis. [2 Punkte] Sei $f: \mathbb{N} \to \mathbb{Z}$ gegeben durch

$$f(n) := \begin{cases} 0 & \text{falls } n = 1\\ (n/2, +) & \text{falls } n \text{ gerade} \\ ((n-1)/2, -) & \text{sonst} \end{cases}$$

f ist bijektiv mit Umkehrabbildung $f^{-1}: \mathbb{Z} \to \mathbb{N}$, gegeben durch $f^{-1}(0) = 1$, sowie für $n \in \mathbb{N}$ und $\alpha \in \{+, -\}$

$$f^{-1}(n,\alpha) = \begin{cases} 2n & \text{falls } (n,\alpha) = (n,+) \\ 2n+1 & \text{falls } (n,\alpha) = (n,-) \end{cases},$$

denn man prüft leicht nach, dass $f \circ f^{-1} = id_{\mathbb{Z}}$ und $f^{-1} \circ f = id_{\mathbb{N}}$ gelten (siehe Satz 1.28).

$(ii) \mathbb{N} \times \mathbb{N}$

Beweis. [1 Punkt] Es gibt verschiedene Möglichkeiten $\mathbb{N} \times \mathbb{N}$ abzuzählen (d.h. eine Bijektion mit den natürlichen Zahlen aufzustellen). Beispielsweise kann das folgende, nach Cantor benannte, Dreiecksschema benutzt werden, um jeder natürlichen Zahl bijektiv ein Tupel aus $\mathbb{N} \times \mathbb{N}$ zuzuordnen:

Dabei wird in Richtung der Pfeile gezählt, und man erhält eine eindeutige bijektive Abbildung $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$. Die ersten Zuordnungen sind

$$f(1) = (1,1), f(2) = (1,2), f(3) = (2,1), f(4) = (3,1), f(5) = (2,2), \dots$$

Eine andere Möglichkeit wäre 1 auf (1,1), 2 auf (1,2), 3 auf (2,1), 4 auf (2,2), 5 auf (2,3) abzubilden, usw.

(iii) $X \subset \mathbb{N}$, wobei $|X| = \infty$.

Beweis. [2 Punkte] Für eine Familie X_1, X_2, X_3, \ldots von Teilmengen $X_i \subset \mathbb{N}$ sei m_i für alle $i \in \mathbb{N}$ das nach Aufgabe 2.1 b) existierende kleinste Element von X_i . Nun definieren wir (rekursiv)

$$X_1 := X$$
, $X_{k+1} := X_k \setminus \{m_k\}$ wobei $k \in \mathbb{N}$.

Das bedeutet, wir erhalten eine Familie (man schreibt $(X_i)_{i\in\mathbb{N}}$) von Teilmengen $X_i \subset \mathbb{N}$, wobei X_i durch alle Vorgänger X_1, \ldots, X_{i-1} bestimmt wird. Die entsprechenden kleinsten Elemente m_i durchlaufen für $i \in \mathbb{N}$ per Konstruktion die gesamte Menge X, d.h. $X = \bigcup_{i \in \mathbb{N}} \{m_i\}$. Da außerdem $m_k \neq m_l$ für alle $k, l \in \mathbb{N}$ mit $k \neq l$ folgt, dass die Abbildung $f : \mathbb{N} \to X$, $f(n) := m_n$ bijektiv ist. \square

Aufgabe 2.3 [Vollständige Induktion; 8 Punkte] Beweisen Sie: Für alle $n \in \mathbb{N}$ gilt

(a)
$$1^3 + 2^3 + \dots + n^3 = (1 + 2 + \dots + n)^2$$

Beweis. [3 Punkte] In der Vorlesung wurde bereits die Gaußsche Summenformel $1 + 2 + \cdots + n = n(n+1)/2$ bewiesen. Wir zeigen also

$$1^3 + 2^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$$
, für alle $n \in \mathbb{N}$. (1)

Für n=1 ist Gleichung (1) offensichtlich wahr. Nehmen wir nun an, dass (1) für ein $n\in\mathbb{N}$ gilt. Es folgt

$$1^{3} + 2^{3} + \dots + n^{3} + (n+1)^{3} = \frac{n^{2}(n+1)^{2}}{4} + (n+1)^{3} = \frac{(n+1)^{2}}{4}(n^{2} + 4(n+1)) = \frac{(n+1)^{2}(n+2)^{2}}{4}$$

Nach vollständiger Induktion folgt Gleichung (1) für alle $n \in \mathbb{N}$.

(b) $1 + nh \leq (1 + h)^n$, für jedes $h \in [-2, \infty)$. Wie heißt diese Ungleichung?

Beweis. [5 Punkte] Die Bernoulli-Ungleichung ist für n=1 trivial erfüllt (Gleichheit). Nun gelte die Ungleichung für ein $n \in \mathbb{N}$. Wir behandeln zunächst den Fall $h \in [0, \infty)$:

$$1 + (n+1)h = 1 + nh + h \leqslant (1+h)^n + h \leqslant (1+h)^n + h(1+h)^n = (1+h)^{n+1},$$

wobei wir $1 \leq (1+h)^n$ benutzt haben. Also gilt $1+(n+1)h \leq (1+h)^{n+1}$, und die Aussage folgt per vollständiger Induktion.

Sei nun $-2 \le h \le 0$. Dann folgt $-1 \le (1+h)^n \le 1$ und damit

$$1 + (n+1)h \leq (1+h)^n + h \leq (1+h)^n + h(1+h)^n = (1+h)^{n+1}$$

denn $|h| \ge |h|(1+h)^n$, also $h \le h(1+h)^n$.

Aufgabe 2.4 [Binomialkoeffizienten, 8 Punkte] Für eine Menge M und eine natürliche Zahl k schreiben wir

$$\binom{M}{k} := \{X \subset M | |X| = k\}.$$

Für eine natürliche Zahl n seien $[n] := \{1, 2, \dots, n\}$ und

$$\binom{n}{k} := \left| \binom{[n]}{k} \right| .$$

Zeigen Sie:

(a) Für alle $k, n \in \mathbb{N}$ gilt

$$\binom{n+1}{k+1} = \binom{n}{k+1} + \binom{n}{k}$$

Beweis. [3 Punkte] Wie im Tipp schreiben wir $\binom{[n+1]}{k+1} = A \cup B$, wobei

$$A = \left\{ X \in \binom{[n+1]}{k+1} \middle| n+1 \in X \right\} , \quad B = \left\{ X \in \binom{[n+1]}{k+1} \middle| n+1 \notin X \right\}.$$

Offenbar gilt $A \cap B = \emptyset$, und somit $\binom{n+1}{k+1} = |A \cup B| = |A| + |B|$.

Außerdem gilt $B = \binom{[n]}{k+1}$, und somit bleibt nur noch $|A| = \binom{n}{k}$ zu zeigen. Aber die beiden Abbildungen

$$A \to {n \choose k}, \quad X \mapsto X \setminus \{n+1\}$$

 ${n \choose k} \to A, \quad X \mapsto X \cup \{n+1\}$

sind invers zu einander, und somit Bijektionen.

(b) Für $k, n \in \mathbb{N}$ mit $1 \leq k < n$ gilt

$$\binom{n}{k} = \frac{n!}{k!(n-k)!},$$

wobei $r! = r(r-1)(r-2)\cdots(3)(2)(1)$.

Beweis. [5 Punkte] Wir schreiben

$$f(n,k) := \frac{n!}{k!(n-k)!}.$$

Sei P(n) die folgende Aussage:

$$P(n)$$
: Für alle $1 \le k < n$ gilt $\binom{n}{k} = f(n, k)$.

Offenbar gilt P(1). Wir wollen zeigen, dass $P(n) \Longrightarrow P(n+1)$. Wir haben $\binom{n+1}{1} = n+1 = f(n+1,1)$. Die Abbildung $\binom{[n+1]}{1} \to \binom{[n+1]}{n} : X \mapsto [n+1] \setminus X$ ist eine Bijektion, und somit gilt $\binom{n+1}{n} = n+1 = f(n+1,n)$.

Für 1 < k < n haben wir

$$\binom{n+1}{k} \stackrel{(a)}{=} \binom{n}{k} + \binom{n}{k-1}$$

$$= f(n,k) + f(n,k-1)$$

$$= \frac{n!}{k!(n-k)!} + \frac{n!}{(k-1)!(n-k+1)!}$$

$$= \frac{n! \times (n+1-k) + n! \times k}{k!(n+1-k)!}$$

$$= \frac{(n+1)!}{k!(n+1-k)!}$$

$$= f(n+1,k) ,$$

wobei in der zweiten Zeile die Induktionsannahme benutzt wurde. Der Induktionsschritt ist somit bewiesen, und P(n) ist wahr für alle $n \in \mathbb{N}$.