ADVANCED ANALYSIS – WiSe 2019/20

Exercise sheet 9

07.01.2020

${\bf Emanuela}\ {\bf Gia comelli} - {\tt emanuela.gia comelli@math.lmu.de}$

Exercise 1. [15 points]

Let $1 . Assume that <math>\{u_j\}$ is a bounded sequence in $W^{1,p}(\Omega)$. Prove that there exists a subsequence $\{u_{i_k}\}$ and $u \in W^{1,p}(\Omega)$ such that $u_{i_k} \rightharpoonup u$ in L^p and $Du_{i_k} \rightharpoonup Du$ in $L^p(\Omega)$.

Exercise 2. [15 points]

Let $1 \leq p < \infty$. The Sobolev space with zero boundary values $W_0^{1,p}(\Omega)$ is the completion of $C_c^{\infty}(\Omega)$ with respect to the Sobolev norm $(u \in W_0^{1,p}(\Omega) \text{ iff there exists } \{u_i\} \in C_c^{\infty}(\Omega) \text{ such that } u_i \to u \text{ in } W^{1,p}(\Omega) \text{ as } i \to \infty)$. The space $W_0^{1,p}(\Omega)$ is endowed with the norm of $W^{1,p}(\Omega)$. Prove that if $u \in W^{1,p}(\Omega)$ and supput is a compact set of Ω , then $u \in W_0^{1,p}(\Omega)$.

Exercise 3. [10 points]

Let f_j be a sequence of functions, bounded in $H^1(\mathbb{R}^n)$. Prove that there exist a subsequence f_{j_k} and a function $f \in H^1(\mathbb{R}^n)$ such that $f_{j_k} \rightharpoonup f$ as $j \rightarrow \infty$. Prove the same for a sequence a functions bounded in $H^{1/2}(\mathbb{R}^n)$.