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Exercise 1. [15 points]

Under the same hypothesis of Hardy-Littlewood-Sobolev inequality (Theorem 4.3. in Analysis by Lieb and Loss),
prove that ∫ ∞
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where, recall that

ω(b) =

∫
Rn

χ{h>b}, v(a) =

∫
Rn

χ{f>a}. (2)

Exercise 2. [10 points]

Let f be a function in L1(Rn) and denote by f̂ its Fourier transform. Prove that

1. the map f → f̂ is linear in f ,

2. τ̂hf(k) = e−2πi(k,h)f̂(k), h ∈ Rn

3. δ̂λf(k) = λnf̂(λk) λ > 0,

where τh is the translation operator, i.e., (τhf)(x) = f(x − h), and δλ is the scaling operator such that (δλf)(x) =
f(x/λ).

Exercise 3. [15 points]

Let f ∈ L1(Rn) and let f̂ be its Fourier transform. Prove that f̂(k)→ 0 as |k| → ∞.


