ADVANCED ANALYSIS – WiSe 2019/20

Exercise sheet 3

12.11.2019

Emanuela Giacomelli - emanuela.giacomelli@math.lmu.de

Exercise 1. [15 points]

Let $f : \mathbb{R}^n \to \mathbb{C}$ be a Borel measurable function vanishing at infinity, we denote by f^* the symmetric-decreasing rearrangement of a f. Prove that

1. $f^*(x)$ is radially symmetric and nonincreasing, i.e.,

$$f^*(x) = f^*(y)$$
 if $|x| = |y|$,

and

$$f^*(x) \ge f^*(y)$$
 if $|x| \le |y|$,

- 2. $f^*(x)$ is a lower semicontinuous function since the sets $\{x \mid f^*(x) > t\}$ are open for all t > 0.
- 3. The level sets of f^* are simply the rearrangements of the level sets of |f|, i.e.,

$$\{x \mid f^*(x) > t\} = \{x \mid |f(x)| > t\}^{*}$$

Exercise 2. [15 points]

Let \mathcal{H} be an Hilbert space and let $M \subset \mathcal{H}$ be a subspace.

- 1. Show that the orthogonal complement of M, M^{\perp} , is closed.
- 2. If $M \subset \mathcal{H}$ is closed, prove that every $x \in \mathcal{H}$ can be uniquely written as x = z + w, where $z \in M$ and $w \in M^{\perp}$.
- 3. Prove that $\overline{M}^{\perp} = M^{\perp}$.

Exercise 3. [10 points]

Let \mathcal{H} be an Hilbert space and let \mathcal{H}^* be the dual space of \mathcal{H} . Prove that for each $T \in \mathcal{H}^*$ there is a unique $y_T \in \mathcal{H}$ such that $T(x) = (y_T, x)$ for all $x \in \mathcal{H}$. In addition $||y_T||_{\mathcal{H}} = ||T||_{\mathcal{H}^*}$.