ADVANCED ANALYSIS – WiSe 2019/20

Exercise sheet 10

21.01.2020

Emanuela Giacomelli - emanuela.giacomelli@math.lmu.de

Exercise 1. [10 points]

Let $\vartheta : \mathbb{R} \to [0,1]$ be a smooth function on the real line with $\vartheta(t) = 1$ for $t \leq 1$ and $\vartheta(t) = 0$ for $t \geq 2$. For $d \in \mathbb{N}$, $\alpha \in (0,d)$, and $x \in \mathbb{R}^d \setminus \{0\}$, we set $f_{\alpha}(x) := \vartheta(|x|)|x|^{-\alpha}$. Decide for which $\alpha \in (0,d)$ we have $f_{\alpha} \in H^1(\mathbb{R}^d)$. **Hint**: Use the Sobolev inequalities.

Exercise 2. [15 points]

For every $\psi \in H^1(\mathbb{R}^d)$, define:

$$\mathcal{E}[\psi] := \int_{\mathbb{R}^d} dx \, |\nabla\psi(x)|^2 + \int_{\mathbb{R}^d} dx \, V(x) |\psi(x)|^2,\tag{1}$$

$$E_0 := \inf\{\mathcal{E}[\psi] \mid \psi \in H^1(\mathbb{R}^d), \|\psi\|_{L^2} = 1\}.$$
(2)

- 1. Let $d \in \mathbb{N}$, $d \geq 3$ and $V \in L^{d/2}(\mathbb{R}^d)$ is real-valued. Prove that E_0 is non-negative, $E_0 \geq 0$, provided $\|V\|_{L^{d/2}}$ is sufficiently small.
- 2. Let d = 2 and let $\varepsilon > 0$ and assume that $V \in L^{1+\epsilon}(\mathbb{R}^2) + L^{\infty}(\mathbb{R}^2)$ is non-positive, $V \leq 0$, and does not vanish almost everywhere. Prove that $E_0 < 0$. **Hint**: Pick some $\vartheta \in C^{\infty}(\mathbb{R}, [0, 1])$ such that $\vartheta = 1$ on $(-\infty, 1)$ and $\vartheta = 0$ on $[2, \infty]$ and set $\chi_R(x) := \vartheta(\frac{1}{R}ln|x|)$ for $R \geq 1$ and $x \in \mathbb{R}^2$. Use χ_R to define a trial function.
- 3. Find sufficient assumptions on V in dimension d = 1 to have $E_0 < 0$.

Exercise 3. [15 points]

Let $\mathcal{E}(\rho)$ be the Thomas-Fermi functional,

$$\mathcal{E}_{\rm TF}(\rho) := \frac{3}{5} \int_{\mathbb{R}^3} dx \,\rho(x)^{5/3} - \int_{\mathbb{R}^3} dx \,\frac{Z}{|x|} \rho(x) + D(\rho, \rho),\tag{3}$$

where Z > 0 is a fixed parameter and

$$D(\rho,\rho) := \frac{1}{2} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} dx dy \, \frac{\rho(x)\rho(y)}{|x-y|}.$$
(4)

1. Prove that $\mathcal{E}_{TF}(\rho)$ is a strictly convex functional on the domain \mathcal{C}_N defined as

$$\mathcal{C}_N := \left\{ \rho \, \big| \, \rho \ge 0, \, \int_{\mathbb{R}^3} \rho < \infty, \, \rho \in L^{5/3}(\mathbb{R}^3) \right\} \cap \left\{ \rho \, \big| \, \int_{\mathbb{R}^3} \rho = N \right\}$$
(5)

Hint: Use that $D(\rho_1, \rho_2) \leq D(\rho_1, \rho_1)^{\frac{1}{2}} D(\rho_2, \rho_2)^{\frac{1}{2}}$.

2. Let

$$E(N) := \inf_{\rho \in \mathcal{C}_N} \mathcal{E}_{\mathrm{TF}}(\rho), \tag{6}$$

prove that E(N) is a convex function of N.