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Abstract

We consider a gas of classical particles in R having ¢ distinct colours,
interacting via a mean-field Potts potential and subject to an external field; a
colour-independent molecular interaction of a mean-field type is also admitted.
In contrast to the usual lattice Potts model, the Potts gas exhibits the specific
volume v as a parameter, in addition to colour-ordering. The v-dependence of
the Potts gas is studied in detail, and the complete phase diagram is derived.
It turns out that, for ¢ > 3, the transition to colour-ordering implies a jump of
density. For g = 2, this transition is continuous but may become discontinuous
under the influence of a suitable molecular interaction.

PACS numbers: 05.20.Jj, 05.70.Fh

1. Introduction

Since its introduction in [1] in 1952, the Potts model on various lattices has intensively been
studied, and a lot of rigorous results are available. In particular, the phase diagram of the Potts
model on a complete graph, the so-called Curie—Weiss—Potts model, is completely understood
[2, 3]. For regular d-dimensional lattices, the Potts model has been shown to exhibit a
temperature-driven first-order phase transition, provided the dimension d is at least two and
the number ¢ of states is large enough; see [4—10], the review paper [11] and the references
therein. By way of contrast, much less is known for its continuous counterpart, the Potts gas
of coloured point particles living in continuous space R?. The first model of this type was
introduced by Widom and Rowlinson [12], having ¢ = 2 colours and hard-core intercolour
repulsion. A colour-ordering transition for large activity has been established for this model
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by Ruelle [13], and for its soft-core counterpart by Lebowitz and Lieb [14]; see also the later
studies by Bricmont, Kuroda and Lebowitz [5], Chayes, Chayes and Kotecky [15] and Georgii
and Hiaggstrom [16]. No rigorous results, however, are available on the system’s behaviour
at the activity threshold to colour-ordering—in fact, even the existence of such a threshold is
unknown—and only numerical results are available [17—19]. On the other hand, for a number
of lattice models it has recently been shown that an understanding of the mean-field theory may
be helpful for proving first-order phase transitions for real systems [20, 21]. So, it might also
be worthwhile to clarify the mean-field theory of the Potts gas as a first step in understanding
the behaviour of the real Potts gas at the activity threshold. This is the object of the present
study.

We now describe the Potts gas in more detail. Consider a system of point particles sitting
randomly inside a box A, of volume |A|[, in the space R?. Each particle may have one of
q > 2 different types, or colours. Just as in the lattice Potts model, we assume that particles of
different colours repel each other. The position of particle i is denoted by &; € A, its colour by
o; = 1,..., g, and the total number of particles by N. The true Potts gas is then characterized
by its potential energy

1 1
H=5 ), JE=8)(1=80)=h 3 oty D ¢GE—§).

Here, J(-) is a positive function describing the strength of intercolour-repulsion, and dg, 5;,
the Kronecker symbol, is equal to 1 when o; = o, and O otherwise. The first term thus
represents a Potts interaction of colours. The second term describes the effect of a uniform
external field acting on particles of colour 1, and the third corresponds to a colour-independent
two-body interaction between the particles. Here, however, we shall study only the mean-field
counterpart of the true Potts gas, which is obtained by replacing H with

-’ —Sy.) — 1]
Hyn = 2IA] Z (1=85.0,) hing‘sl,m +Nu < N ) ; (D

ij=1,..N

where J > 0 is a position-independent interaction between all pairs of particles and u is
a function of the specific volume v = |A|/N describing a molecular interaction that is
independent of colour and position. For example, the case u(v) = 1/v corresponds to a
molecular pair repulsion of order 1/|A|. For ¢ = 2, a Hamiltonian of type (1) has been used
in [22] to describe ferrofiuid models. Note that the particle number N or, equivalently, the
specific volume v, is considered as a free variable of our model, and the Hamiltonian per
volume H, n/|A|has order 1/v. This v-dependence is an essential ingredient of the Potts gas
which is not present in the lattice case, and it is our main object of study.

In section 2 we derive a variational formula for the Helmholtz free energy per particle.
Then, in section 3, we solve this formula and compute the pressure in the case of a pure colour
interaction and no external field, i.e., when A = 0 and u = 0. In section 4 we deal with the
case of a non-vanishing external field %, and in section 5 we discuss the effect of a molecular
background interaction u.

2. Some thermodynamics

The canonical partition function for the Hamiltonian (1) in a box A at inverse temperature
B =1/kpT reads

1
ann(Aa N, ﬂ) = Wﬁdél /AdEN Z eiﬂHA‘N’ (2)
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the quantity A = (2h?/m)'/? takes care of the kinetic energy of particles. The Helmholtz
free energy per particle is then

.. 1
f@.f) == lim 510 Zan(A. N, ) ©

where the limit is taken in such a way that |A|/N tends to the specific volume v > O.
According to standard thermodynamic formalism, the corresponding canonical pressure as a
function of v and B is given by the derivative

a
p, p) = —a—f(v,ﬁ), “4)
v

provided this derivative exists. The above function f (v, 8), however, is in general not convex
in v, and p(-, B) is not decreasing. The true thermodynamic free energy is therefore given
by the convex envelope of the f(-, 8), and the true thermodynamic pressure by the negative
derivative of this convex envelope, which amounts to applying Maxwell’s construction to
pC, B).

We also introduce a microcanonical partition function, in which the sum in (2) is restricted

to the configurations (o7, ..., oy) such that, foreacha = 1, ..., g, the number N, of particles
of colour a is fixed. This partition function reads
AN N!

. — —BHA N ({Na})
Zmlcr(Av{Na}s ﬂ)_ N!)\,Nd Nl'Nq' € AN ’ (5)

where Hj y({N,}) is the energy (1) for such configurations. In fact, setting / = 1 and
replacing Bh by h and Bu by u we have

BHAN(INo)) = 2|’f\| <N2 ZN2>—hN1+Nu<|A|/N>

The corresponding free energy per particle is
| |
e, {x.}, B) = —Engnooﬁln Zmicr (A, {Ng}, B, (6)

where {x,}?_, are positive numbers satisfying x; + --- + x, = 1, and the limit is taken in
such a way that N,/N — x, fora = 1, ..., g. The usual argument proving equivalence of
ensembles then tells us that

f(. B) =r[1)1€il}’l(0(v, {xa}, B). (N

To compute ¢ we use Stirling’s formula, showing that

IAIN/N! ~expN(Inv + 1)

——— ~exp| —N X, Inx,
Nyl Ny! =

at the leading order in N. It thus follows from equation (6) that

a=1 a=1

B, {x.}, B) = —In(v/2%) — 1 +u(v) +Zxa Inx, + +— ( Zx ) — hxy. (8)

Note that the next to last term, the Potts interaction term, combines the variables v and {x,}.
But to compute the minimum (7), for given B and v, we only need to minimize the function

F({xa})_Zxa lnxa+—( Zx ) — hxy )
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over the parameters {x,}, and this minimization problem is well known from the analysis of
the usual mean-field Potts model on the lattice: the case & = 0 was discussed by Wu in [2],
and the case & # 0 has recently been studied by Biskup et al [20, 21] (see also [10]). In the
next sections we collect their results and discuss the consequences for the v-dependence of

f(v, B) and p(v, B).

3. The case of no external field

Let us first consider the case 2 = 0. In this case the minima of the function F' in equation (9)
can be parametrized by a real number 5,0 < s < 1, such that the minimizing vectors
(x1, ..., x4) have the components

l+(@—1Ds 1—3s 1—s

, ey (10)
q q q
in arbitrary order. Moreover, there exists a threshold value ,B(()q), given by
) and @) — 2;]—:;1n(q —1) for ¢ >3, (11
such that the following holds:
(1) For /v < ﬂéq), the function F({x,}) has the unique minimizer x; = --- = x, = 1/g,

i.e., the minimum is attained at s = 0.
(2) In the case /v > ﬂéq), the function F ({x,}) has g distinct minimizers, corresponding to
q permutations of the components (10). The minimum is attained at s = 59 > 0, where
o is the largest solution of the equation
1. 1+(@—1s B

-In——— = —. (12)
) 1—ys v

Note that, for the vectors of the form (10), the function F' takes the form

1+(q—1)sln1+(q—1)s+(q_1)1—s1n1—s+£q—1
q g 2v g
In case 1 we have F(0) < F(s) forall 0 < s < 1. In case 2 one gets F(0) > F(sp), where
so is the local minimizer of F in the unit interval; equation (12) corresponds to the condition
dF/ds|s=s, = 0.
Collecting the preceding observations and taking equations (7) and (8) into account we
find that, for 7 = 0 and u = 0, the free energy in (3) can be expressed as

f, By ==p"' (1 +In(v/x") +min F(s5)),

F(s) = (1 —s2).

that is,
—B7 A+ (/A + F(0) ifv> B/B",
—B7 (1 +In(v/ah) + F(s0)) ifv < B/B".

Here, in the first case, F(0) = —Ing + (¢ — 1)/(2qv), whereas in the second case the
argument so = so(8/v) is a function of 8/v defined by equation (12). Since by (12) one has
dso/dv = 0, differentiating of (13) with respect to the specific volume v gives for the pressure

1/(Bv) + (g — 1)/(2qv?) ifv> B/,
1/(Bv) + (g — /g (1 —s3) ifv<p/B.

f, B) = { (13)

p(v. p) = { (14)
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Figure 1. The free energy f and the pressure p as functions of the specific volume v in the Ising
caseq=2withf=A=1,h=0andu =0.

These considerations are valid for any g > 2. However, the behaviour at the critical value
vo=p / ﬁéq) is different for ¢ = 2 (case of Ising spins) and ¢ > 3. Note that, for v = v, the
solution of equation (12) is s9 = (¢ — 2)/(g — 1), which is zero for ¢ = 2 and non-zero for
g > 3. Consequently,

(1) if g = 2 and v = vy := B/2, the minimum is attained at s = 0 and there is only one
minimizer of F;

2)ifg>23andv =vy:=p / ,B(()q), the minimum is attained at the two distinct values s = 0
and s = 5o := (g — 2)/(q — 1). There are thus ¢ + 1 minimizers of F.

Since F(0) = F(so(B8/vo)) is the minimal value of F, the free energy function f (v, 8) in (13)
is always continuous in v. For ¢ = 2, its derivative p(v, 8) defined by (14) is also continuous
in v because so(8/vp) = 0. In fact, p(-, B) is decreasing and f (-, B) is convex (see figure 1).

For g > 3, however, the above observations yield that p(v, 8) exhibits a positive jump at
the point vy = / ﬁé"), for any S. Specifically,

p(uo+0,B) — p(vg — 0, B) = (g —2)*/(2q(qg — DHv3) > 0.

Since p(v, B) tends to +oo when v — 0 and to 0 when v — o0, this implies that the
monotonicity of p(v, §) in v is broken. Equivalently, the free energy function f (v, g) is
not a convex function of v. The situation is thus analogous to that of the isotherms at low
temperature of the classical van der Waals theory. This means that a phase transition exists,
at a certain value of the pressure, between a dense and a dilute phase. This transition can be
determined by the standard Maxwell’s construction (see figure 2).

We also notice that in order to draw the different isotherms for given values of 8, i.e., the
curves associated with the pressure p(v, ) as a function of v, we can use a simple parametric
representation for the branches v < / ,3(()’7) . This representation is defined by the following
mapping:

s = (v(s), p(s)), for (¢ —-2)/(g -1 <s<1,

where the functions v(s) and p(s) are given, respectively, by equations (12) and (14). The
analogous parametric representation for the free energy f (v, B) is given by equations (12)
and (13).
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Figure 2. The free energy f (thin) with its convex envelope (bold) and the pressure p (thin) with
the corresponding Maxwell’s construction (bold) as functions of the specific volume v for the
parameters g =5, =A=1,h=0andu =0.

4. Including an external field

Next we discuss the case i # 0, but still with # = 0. For given 8, v and 4, any minimizer
(x1, ..., x4) of the function F'({x,}) in (9) then has the following properties (see [21]):

(1) Forh > 0,
¥ = = . (15)

(2) For h < 0, all minimizers are permutations in the last ¢ — 1 variables of vectors
satisfying

x1<x2=-~-=xq_1<xq. (16)

Considering (9) for # # 0 one finds in analogy to (11) that for ¢ > 3 there exists a
continuous, strictly positive, strictly decreasing function ﬁéq) (h) on an interval (0, h.), where
he := Inq — 2(qg — 2)/q 1is a critical field. For ¢ > 4, this function is also defined for

all i < 0, and is strictly increasing there. The function ﬁéq)(h) therefore determines the

phase diagram of the system. It takes the value ,Béq) 0 =20g—1/(q@—2)In(g — 1) at

h = 0, and has the limiting values ﬂé"_l) when h — —oo and 4(q — 1)/g when h — h,. (see
figure 3). The case 1 above (¢ > 3, h > 0) thus splits into the following subcases:

(1.1) For all (v, h) such that either & > h or v # vo(h) := /B (h),h > 0, there is a
unique minimizer of the function F. This minimizer satisfies condition (15).
(1.2) If 0 < h < h, and v = vy(h), there exist two minimizers both satisfying (15).

On the other hand, for 4 < 0 and ¢ > 4 we obtain the subcases

QD Ifh < 0 and v > wvy(h), there exists a unique minimizer of F, and is such that
X| <Xp=:-=X4.

22)If h < 0 and v < vg(h), there are g — 1 distinct minimizers, corresponding to
permutations of the last ¢ — 1 components of a vector satisfying condition (16).

(2.3) For h < 0 and v = vy(h) there exist ¢ minimizers, one of them as in case 2.1, and the
other ¢ — 1 as in case 2.2.
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> h

Figure 3. The phase diagram for ¢ > 4, defined by the graph of ﬂé‘ﬂ (h).

Consider now the cases 1.1 and 1.2 in more detail. Just as in the case of zero field,
the minimizers of F can be parametrized by 0 < s < 1 (see (10)). According to (15), the
component x; in the representation (10) is always the largest one, and permutations play no
role. By virtue of (9) and (10) the value of the parameter s = so(h, 8/v) corresponding to a
minimizer is defined by the equation

! (m I+ —Ds —h) _B (17)

s 1—=s v

In case 1.1, this equation has a unique solution s¢ in the interval (0, 1). In case 1.2 one gets
two minimizers; the corresponding values of sy are given by the smaller and the larger solution
of equation (17). It follows that the analysis of case 1.2 (0 < h < h.) is very similar to
the one we carried out for 2 = 0 in section 3. For given 8 and / in the interval (0, &.), the
parameter so(k, B/v) has, as a function of v, a discontinuity at the point v = vo(h). This
implies that p(v, B, h), as a function of v, has also a discontinuity at this point. Therefore,
the same arguments as in section 3 allow us to conclude that in the presence of a non-zero
field 0 < h < h, the system still exhibits a phase transition of first order from a dense to a
dilute phase. For i > h. , however, p(v, B, h) is continuous in v. On the other hand, if one
fixes B and v such that4(q — 1)/q < B/v < ﬁéq) and varies £, then the parameter so(h, 8/v),

and hence also p(8, v, h), shows a discontinuity at the point 4 = h solving v/ = ﬂéq)(ho).
That is, for such 8 and v, the system also undergoes a discontinuous transition from a dense
to a dilute phase when the external field /4 is varied. Finally, just as at the end of section 3
we observe that using equation (17) to represent v or 4 in terms of s one obtains a convenient
parametric representation of the functions f (v, 8, h) and p(v, 8, k) in dependence of v or A.

In the alternate cases 2.1-2.3 when & < 0, the discussion is more complicated and no
explicit formulae are available. For given A, the system then behaves, in some sense, as a
Potts model with g — 1 colours. Since under the conditions of case 2.3 there exist ¢ distinct
minimizers of F, the pressure p(v, B, k) then takes rwo different values (because permutations
of the {x,} do not affect the value of p). Hence p has a discontinuity at the point vy (/). Arguing
as above, we conclude that, for fixed § and 7 < 0 and varying v, the system undergoes a
discontinuous transition from a dense to a dilute phase, and similarly for fixed /v in the

interval ( D éq)) and varying A; see figure 3.

5. Adding a molecular interaction

Finally we turn to the case when the system is also subject to a background potential describing
a colour-independent intermolecular interaction of particles; such an interaction leads to the
third term of H, y in equation (1). As noticed above, such Hamiltonians have been used for
g = 2 and h = 0 in [22] to describe ferrofluid models. To make contact with that paper we
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Figure 4. Free energy f and pressure p forqg =2, 8 = A = 1, h = 0, and the molecular potential
u(v) = —1/(4v) + 1/(80v?), the mean-field counterpart of a two-body attraction and a three-body
repulsion; the convex hull of f and Maxwell’s construction for p are omitted.

note that, in the Ising case when ¢ = 2 and o; = %1, one has 1 — 6(,(..(,/ = (1 —0;05)/2.
The Hamiltonian of equation (1) thus coincides with that of ([22] equation (2)) as soon as one
setsin(1)g=2,h=0,8=1,

1 J
u(v) = vg (;) - E

and replaces J by J/2, where g is as in [22]. In this reference, it was assumed that g is
smooth on R, lim, 0 g”(p) exists and lim, o, §”(p) = co. The last condition was imposed
to ensure the thermodynamic stability for all choices of J. In the present setting of
equation (1), this can simply be achieved by requiring that u > 0.

According to [22], for different choices of g one gets various different scenarios of phase
transition that manifest a positive feedback of the magnetization to the particle density. In
particular, one finds phase diagrams showing both second-order transitions as well as first-
order transitions with jumps of density and magnetization. As we have seen in sections 3
and 4, for g > 3, such jumps do exist even without any molecular interaction.

To deal with the model equation (1) with non-zero u it is sufficient to note that the term
u(v) in (8) does not depend on the densities {x,}. The previous analysis of the minimizers
of the free energy can thus be applied. We find that, for # = 0, the term u(v) simply has to
be added to the expressions on the right-hand side of (13), and —u’(v) has to be added to the
right-hand side of (14). Consequently, the discontinuity of p(-, 8, h) at vp = B / ,B(()q)(h) for
q = 3, found in sections 3 and 4, still persists when any continuous molecular contribution
u > 0 is added. On the other hand, the continuous transition for ¢ = 2 and u = 0 can be
turned into a discontinuous transition by adding a molecular contribution # with a sufficiently
strong non-convexity that beats the convexity of the right-hand side of (13); see figure 4 and
the discussion in [22].
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