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Abstract. We consider the time-inhomogeneous Markovian jump process in-
troduced by John S. Bell [4] for a lattice quantum field theory, which runs on
the associated configuration space. Its jump rates, tailored to give the process
the quantum distribution |Ψt|2 at all times t, typically exhibit singularities. We
establish the existence of a unique such process for all times, under suitable
assumptions on the Hamiltonian or the initial state vector Ψ0. The proof of
non-explosion takes advantage of the special role of the |Ψt|2 distribution.
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1. Introduction

This paper deals with the existence of Markov jump processes on countable
sets having time-inhomogeneous transition rates of a particular form proposed
by John S. Bell [4] in his observer-independent formulation of lattice quantum
field theories. Bell’s setting is as follows.

Bell’s model. Let E be the configuration space for a variable but finite
number of particles on a countable lattice Λ ⊆ R3. A configuration x ∈ E is
mathematically represented by a function x : Λ → Z+ := {0, 1, 2, . . .} indicating
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the number of particles x(r) at a site r ∈ Λ. Thus

E =
{
x ∈ ZΛ

+ :
∑

r∈Λ

x(r) < ∞
}

.

Hence E is countably infinite. (In Bell’s proposal, x(r) is the number of fermions
at site r, but this is of no relevance here.)

Next, Bell considers the Hilbert space H and the Hamiltonian H of a lattice
quantum field theory. This means that H is a self-adjoint operator on H
determining the quantum state at time t via

Ψt = e−iHt/� Ψ0 (1.1)

for some initial state vector Ψ0. These quantities are related to the config-
uration space by a projection-valued measure (PVM) P on E acting on H .
That is, for every x ∈ E there exists an associated projection P (x) such that∑

x∈E P (x) = I, where I is the identity operator, and P (x)P (y) = 0 when
x �= y. Specifically, P (x) is the projection to the joint eigenspace of the (com-
muting) fermion number operators N(r) associated with the eigenvalues x(r).
In particular, 〈Ψt|P (x)Ψt〉 is the quantum probability of a configuration x at
time t. Bell then introduces the transition rate

σt(y |x) =
[(2/�) Im 〈Ψt|P (y)HP (x)Ψt〉]+

〈Ψt|P (x)Ψt〉 (1.2)

for a jump from x to y ∈ E, where a+ = max(a, 0) denotes the positive part of
a. Note that σt(x |x) = 0 because 〈Ψt|P (x)HP (x)Ψt〉 = 〈P (x)Ψt|HP (x)Ψt〉 is
real. A formal calculation yields that this choice of the jump rates is compatible
with the process having distribution 〈Ψt|P ( · )Ψt〉 at each time t. See [17] for
an extensive discussion of this jump rate formula. In this paper we will choose
the time unit such that � = 2.

Probabilistic questions. One of the main features of the transition rates (1.2)
is that they become singular at times t when x becomes a “node” of Ψt , i.e.,
when the denominator 〈Ψt|P (x)Ψt〉 in (1.2) vanishes. So, at such times the
process would not know how to proceed. Fortunately, it turns out that the
increase of the rates close to such singularities has the positive effect of forcing
the process to jump away before the singularity time is reached.

A more serious problem is the possibility of explosion in finite time; that is,
the jump times Tn could accumulate so that ζ = supn Tn < ∞ with positive
probability. The standard criteria for non-explosion of pure jump processes are
confined to transition rates that are homogeneous in time, relying heavily on the
fact that the holding times are then exponentially distributed and independent;
see, e.g., Section 2.7 of [21] or Proposition 10.21 of [19]. This independence,
however, fails to hold in the case of time-dependent jump rates, and the sin-
gularities of Bell’s transition rates do not allow any simple bounds excluding
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explosion. The only thing one knows is that the process is designed to have the
prescribed quantum distribution at fixed (deterministic) times, and it is this
fact we will exploit.

Our proof will not make any use of the particular construction or meaning
of E and P . We will merely assume that E is a countable set and P a PVM
on E acting on H . Actually we only need that P is a positive-operator-valued
measure; see Section 2 below. Steps towards an existence proof for Bell’s process
have already been made by Bacciagaluppi [1, 2]; his approach is, however, very
different from ours.

Physical perspective. Bell’s observer-independent formulation of lattice qua-
ntum field theories has attracted increasing attention recently [11,13–17]. Apart
from its relevance to the foundations of quantum theory, it has proven useful
for numerical simulations [13], and has been found distinguished among all |Ψ|2
distributed processes as the minimal one [17, 24], involving the least amount of
stochasticity.

There are close connections between Bell’s model and two well-known |Ψ|2
distributed processes associated with nonrelativistic quantum mechanics in R3:
E. Nelson’s stochastic mechanics [8, 9, 18, 20] and Bohmian mechanics [3, 5–7].
These processes are similar in spirit to Bell’s process, and can be combined
with Bell’s stochastic jumps to include particle creation and annihilation [15–
17]. Bell’s process has also been utilized for modal interpretations of quantum
theory [2]. Bohmian mechanics arises as the continuum limit of Bell’s process
for a suitable choice of H and E [26, 27], and in general the continuum limit
presumably resembles the combined Bell – Bohm model of [16]. A generalization
of Bell’s jump rate (1.2) to continuum spaces E is given in [17]. The global
existence problem of stochastic mechanics has been solved in [8] (see also [9,20])
and the one of Bohmian mechanics in [6], whereas for combined models with
jumps, such as the ones considered in [16, 17], it is still open. The existence
problems of stochastic mechanics and Bohmian mechanics have two aspects in
common with that of Bell’s process: First, since the law of motion (as defined
by the drift in stochastic mechanics, the velocity in Bohmian mechanics, and
the jump rate in Bell’s model) is ill-defined at the nodes of the wave function,
one needs to show that the process never reaches a node. Second, while in
stochastic mechanics and Bohmian mechanics there are no jumps that could
accumulate, one needs to exclude (and has excluded) the analogous possibility
that the process could escape to infinity in finite time.

2. The result

The basic ingredients of the model are:

– a complex Hilbert space H with inner product 〈 · | · 〉, the space of quan-
tum states,



4 H.-O. Georgii and R. Tumulka

– a self-adjoint operator H acting on H , the Hamiltonian,

– an initial state vector Ψ0 ∈ H with ‖Ψ0‖ = 1,

– a countable set E, physically thought of as configuration space and serving
as state space of the jump process to be constructed, and

– a positive-operator-valued measure (POVM) P ( · ) on E acting on H .

Here, a POVM is a family (P (x))x∈E of positive bounded self-adjoint operators
on H such that, for each F ⊆ E, the sum P (F ) :=

∑
x∈F P (x) exists in the

sense of the weak operator topology, and P (E) = I. In fact, the countable
additivity then also holds in the strong topology [12]. In particular,

∀Φ ∈ H :
∑
x∈E

P (x)Φ converges in the L2 sense to Φ. (2.1)

Every PVM is a POVM but not vice versa. As has already been pointed out
in [17], the jump rate formula (1.2) still makes sense if P ( · ) is a POVM rather
than a PVM.

In quantum field theory, the “configuration observable” P ( · ) is often a
POVM; a typical situation is that H is a subspace (e.g., the positive spectral
subspace of the free Hamiltonian) of a larger Hilbert space H0 containing also
unphysical states, and P ( · ) = P ′P0( · )I ′ where P ′ is the projection H0 → H ,
I ′ is the embedding H ↪→ H0, and P0( · ) is a PVM (the configuration observ-
able) acting on H0.

To establish the existence of a Markovian jump process with rates (1.2) we
need the following joint assumption on H , P , and the initial state vector Ψ0.

Assumption A. The Hamiltonian H , the POVM P and the state vector
Ψ0 ∈ H satisfy the conditions

(A1) For all t ∈ R and x ∈ E, Ψt and P (x)Ψt belong to the domain of H .

(A2) For all t0, t1 ∈ R with t0 < t1,

t1∫
t0

dt
∑

x,y∈E

∣∣〈Ψt|P (y)HP (x)Ψt〉
∣∣ < ∞ .

For given H and P , Assumption A can also be understood as an assumption
on Ψ0, thus defining a set D ≡ DH,P ⊆ H of “good” state vectors for which
the process is well-defined. This D is invariant under the time evolution but
not necessarily a subspace of H because Assumption (A2) is not linear in Ψt.
The following proposition provides conditions on H under which Assumption A
holds for all Ψ0 ∈ H , so that D = H . (For general H we do not know how
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large D is, and whether it is dense, as would be physically desirable. We will not
presuppose this but instead construct the process solely for initial state vectors
Ψ0 ∈ D .)

Proposition 2.1. Assumption A holds for all Ψ0 ∈ H when either

(a) H is bounded and E is finite, or

(b) H is a Hilbert – Schmidt operator, i.e., trH2 < ∞.

The proof is postponed until Section 5. Assumption (A1) implies that P (y)×
HP (x)Ψt exists, and thus that σt(y |x) is well defined whenever 〈Ψt|P (x)Ψt〉 �=
0. When 〈Ψt|P (x)Ψt〉 = 0, we set σt(y |x) := ∞ for all y; thus, σt(y |x) is
always defined as a [0,∞]-valued function. (When suitably reinterpreted, the
numerator of (1.2) still exists if P (x)Ψt and P (y)Ψt merely lie in the form
domain, rather than the domain, of H . We will not pursue here this kind of
greater generality.)

As was pointed out in the introduction, the rates σt(y |x) are constructed in
such a way that the corresponding Markov process Xt should have the quantum
distribution

πt(x) := 〈Ψt|P (x)Ψt〉 , x ∈ E, (2.2)

at any time t ∈ R. In other words, the family (πt)t∈R should be equivariant,
or an entrance law, for the process. Here is our main result stating that such a
process does exist.

Theorem 2.1. Suppose Assumption A holds. Then there exists a right-conti-
nuous (time-inhomogeneous) Markovian pure jump process (Xt)t∈R in E with
transition rates (1.2) and such that, for each t, Xt has distribution πt. The
process is unique in distribution.

3. The construction

We fix some starting time t0 ∈ R and construct the process first on the time
interval [t0,∞[. We also introduce an auxiliary “cemetery” configuration � in
order to deal with the possibility that the process explodes or runs into a node.
In the next section we will show that this does in fact not occur. We write

N := {(t, x) ∈ R × E : πt(x) = 0} (3.1)

for the node-set of all exceptional times and positions for which the transition
rates (1.2) are infinite. Likewise,

Et := {x ∈ E : πt(x) > 0} (3.2)



6 H.-O. Georgii and R. Tumulka

is the set of all admissible positions at time t ∈ R. Finally, for (t, x) /∈ N we let

θt,x := inf{s > t : (s, x) ∈ N} (3.3)

be the first time instant after t at which x becomes a node; here we set
inf ∅ := ∞. Let us start with a technical lemma; its proof follows later in
this section. Formula (3.4) relies on our convention � = 2.

Lemma 3.1. For every x ∈ E, the mapping t �→ πt(x) is differentiable with
locally integrable derivative

π̇t(x) = Im 〈Ψt|P (x)HΨt〉. (3.4)

In particular, the function π·(x) is locally absolutely continuous. Also, the jump
rates σt(y |x) depend measurably on t with values in [0,∞], and the total jump
rate

γx(t) :=
∑
y∈E

σt(y |x) (3.5)

is finite whenever (t, x) /∈ N .

The process (Xt)t≥t0 will be constructed on the enlarged position space
E ∪ {�} by means of a suitable sequence of random jump times Tn and jump
destinations Zn. To achieve this we need two key quantities: the distribution
µt,x of the holding time in x ∈ E (i.e., the random waiting time before the next
jump) after a given time t, and the distribution pt,x of the jump destination
at the jump time. Our assumption that the process (Xt)t≥t0 should have the
transition rates (1.2) simply means that µt,x should be the distribution with
“failure rate function” (or “hazard rate function”) γx; cf. e.g. [23, pp. 276 ff.,
577]. That is, for any (t, x) /∈ N we let µt,x be the unique probability measure
on ]t,∞] with “survival probabilities”

µt,x([u,∞]) = exp{−Γt,x(u)} for all u > t, (3.6)

where

Γt,x(u) =

u∫
t

γx(s) ds ; (3.7)

in (3.6) and below we set exp{−∞} = 0. (Note that Γt,x is left-continuous by
the monotone convergence theorem, so that there exists indeed a unique proba-
bility measure µt,x having exp{−Γt,x} as right-sided distribution function.) In
particular, µt,x({∞}) > 0 if and only if Γt,x(∞) < ∞; thus, in this case there is
a non-zero probability for the process to be frozen in x. If t = ∞ or x =� we
let µt,x = δ∞ be the Dirac measure at +∞. The following lemma collects the
essential properties of µt,x.
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Lemma 3.2. Suppose (t, x) /∈ N . Then the following statements hold:

(a) On ]t, θt,x[ , µt,x has the density function γx exp{−Γt,x}.
(b) If θt,x < ∞, then µt,x([θt,x,∞]) = 0.

(c) µt,x(0 < γx < ∞) = 1.

(d) For any u ∈ ]t, θt,x[ , µt,x( ]u,∞]) > 0 and µu,x = µt,x( · | ]u,∞]).

The proof will be given later in this section. It follows readily from (a) that
if we take µt,x as the distribution of the holding time at x then the jump rate
is indeed γx, as intended. Assertion (b) states that the process cannot run into
a node by sitting on an x until it becomes a node: right before x becomes a
node, the rate γx grows so fast that the process has probability 1 to jump away.
In particular, the unboundedness of the jump rates (even for bounded H , even
for Hilbert – Schmidt H) favours the global existence rather than preventing it.
Statement (d) expresses a loss-of-memory property which is responsible for the
Markov property of the process.

As for the distribution of the jump destinations, we obviously have to define

pt,x(y) = σt(y |x)/γx(t) if 0 < γx(t) < ∞ . (3.8)

Otherwise we set pt,x = δ�, the Dirac measure at �. The next lemma states
that pt,x is supported on the set Et of non-nodes defined in (3.2).

Lemma 3.3. pt,x(Et) = 1 whenever 0 < γx(t) < ∞.

With these ingredients we are now ready to construct the process (Xt)t≥t0

on E ∪ {�}. Let (Tn, Zn)n≥0 be a sequence of random variables with the fol-
lowing properties. Let T0 := t0 and Z0 ∈ Et0 be a random variable with
distribution πt0 . Then, for any n ≥ 0, let (Tn+1, Zn+1) have the conditional
distribution

P
(
Tn+1 ∈ dt, Zn+1 = y |T0, Z0, . . . , Tn, Zn

)
= µTn,Zn(dt) pt,Zn(y) . (3.9)

The existence of such a sequence (Tn, Zn)n≥0 on a suitable probability space
(Ωt0 ,Ft0 , Pt0) follows from the Ionescu –Tulcea theorem [19, Theorem 5.17].
Moreover, Lemmas 3.2 and 3.3 imply that Tn+1 < θTn,Zn and Zn ∈ ETn almost
surely for all n. We also have Tn < Tn+1 as long as Tn < ∞. So we define

Xt = Zn when Tn ≤ t < Tn+1, and Xt =� for t ≥ ζ = sup
n

Tn . (3.10)

It is then clear that (Xt)t≥t0 is right-continuous, and (t, Xt) /∈ N for all t ∈
[t0, ζ[ with probability 1. In the next section we will show that in fact ζ = ∞
almost surely.

We now turn to the proofs of the lemmas above. Recall our convention that
� = 2.
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Proof of Lemma 3.1. Since Ψt belongs to the domain of H by Assumption (A1),
the H -valued mapping t �→ Ψt is differentiable with derivative dΨt/dt =
−(i/2)HΨt [22, p. 265]. Hence
(
πt+s(x) − πt(x)

)
/s = 〈Ψt+s|P (x)(Ψt+s − Ψt)/s〉 + 〈(Ψt+s − Ψt)/s|P (x)Ψt〉

converges, as s → 0, to

π̇t(x) := − i
2
〈Ψt|P (x)HΨt〉 +

i
2
〈HΨt|P (x)Ψt〉 = Im 〈Ψt|P (x)HΨt〉 .

As a limit of the continuous difference ratios, t �→ π̇t(x) is measurable. Moreover,
using (2.1) we can write

∣∣π̇t(x)
∣∣ ≤ ∣∣〈Ψt|P (x)HΨt〉

∣∣ =
∣∣〈HP (x)Ψt|Ψt〉

∣∣
=

∣∣∣ ∑
y∈E

〈HP (x)Ψt|P (y)Ψt〉
∣∣∣ ≤ ∑

y∈E

∣∣〈Ψt|P (x)HP (y)Ψt〉
∣∣ .

Together with Assumption (A2), it follows that π̇t(x) is locally integrable. In
particular, t �→ πt(x) is locally absolutely continuous and an integral function
of t �→ π̇t(x); see [10, Theorem 6.3.10] or [25, Theorems 8.21 and 8.17].

Concerning the measurability of the jump rates σt(y |x), it is sufficient to
show that 〈Ψt|P (y)HP (x)Ψt〉 depends measurably on t. (This is because π·(x)
is continuous and the ratio of nonnegative measurable functions is measurable.)
To this end, we introduce the cutoff function fn(a) := (a∧n)∨(−n) and observe
that, for every t,

〈Ψt|P (y)fn(H)P (x)Ψt〉 → 〈Ψt|P (y)HP (x)Ψt〉
as n → ∞. Hence t �→ 〈Ψt|P (y)HP (x)Ψt〉 is a pointwise limit of continuous
functions and thereby measurable. In particular, the total jump rate γx is
measurable. For (t, x) /∈ N we have

γx(t) ≤
∑
y∈E

∣∣〈Ψt|P (y)HP (x)Ψt〉
∣∣/πt(x) .

The last sum is finite because, due to (2.1), the series
∑

y〈Ψt|P (y)HP (x)Ψt〉
converges to 〈Ψt|HP (x)Ψt〉 in every ordering, and is therefore absolutely con-
vergent. �

Before proving Lemma 3.2 we establish the following result, a key fact for
showing that the process never runs into a node. Recall the definitions (3.3)
and (3.7).

Lemma 3.4. Suppose (t, x) /∈ N . Then Γt,x(u) < ∞ if t < u < θt,x, while
Γt,x(θt,x) = ∞ if θt,x < ∞.
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Proof. Consider first the case t < u < θt,x. Since π·(x) is continuous and po-
sitive on [t, u], it stays bounded away from zero on this interval. On the other
hand, we have

u∫
t

ds
∑
y∈E

[
Im 〈Ψs|P (y)HP (x)Ψs〉

]+ ≤
u∫

t

ds
∑
y∈E

∣∣〈Ψs|P (y)HP (x)Ψs〉
∣∣ ,

and the last integral is finite due to Assumption (A2). This proves the first
assertion.

Consider now the case θt,x < ∞. Since
∑

i a+
i ≥ [ ∑

i ai

]+ in general, we
have for all t < s < θt,x

γx(s) ≥
[
Im

∑
y

〈Ψs|P (y)HP (x)Ψs〉
]+/

πs(x) .

In view of (2.1) and Lemma 3.1, the last expression is equal to

[
Im 〈Ψs|HP (x)Ψs〉

]+/
πs(x) =

[ − π̇s(x)
]+/

πs(x) .

Since always a+ ≥ a, we arrive at the key inequality

γx(s) ≥ − d

ds
log πs(x) .

The last derivative is integrable over any interval [t, u] with t < u < θt,x be-
cause πs(x) is bounded away from zero on such an interval and π̇s(x) is locally
integrable by Lemma 3.1. By the general fundamental theorem of calculus as
in [10, Theorem 6.3.10] or [25, Theorem 8.21], it follows that

u∫
t

γx(s) ds ≥ −
u∫

t

d

ds
log πs(x) ds = log πt(x) − log πu(x).

Letting u ↑ θt,x and using the continuity of πu(x) we arrive at the second
statement of the lemma. �

We are now ready for the proof of Lemma 3.2.

Proof of Lemma 3.2.
(a) Let t < u < θt,x. Instead of using the fundamental theorem of calculus

(which would be possible), we prefer to give here a direct argument which is
based on Fubini’s theorem. In view of Lemma 3.4, Γt,x is finite on [t, u]. Thus
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we can write, omitting the indices t, x,

u∫
t

γ(s) e−Γ(s)ds =

u∫
t

ds γ(s)

∞∫
0

dr e−r 1{Γ(s) ≤ r}

=

∞∫
0

dr e−r

u∫
t

ds γ(s)1{Γ(s) ≤ r} =

∞∫
0

dr e−r (r ∧ Γ(u)) .

The last equality uses the fact that Γ is continuous and increasing. Since r ∧
Γ(u) = r − [r − Γ(u)]+, the last integral coincides with 1 − exp{−Γ(u)} =
µt,x( ]t, u] ), thus proving assertion (a).

(b) This is immediate from (3.6) and Lemma 3.4.
(c) This comes from statements (a) and (b) together with Lemma 3.1.
(d) Let t < u < θt,x. Since Γt,x(u) < ∞ by Lemma 3.4, equation (3.6) shows

that µt,x( ]u,∞]) > 0. Moreover, for v > u we have

µt,x

(
]v,∞]

∣∣ ]u,∞]
)

= exp{−Γt,x(v) + Γt,x(u)} = exp{−Γu,x(v)} = µu,x

(
]v,∞]

)
by equation (3.7). This proves the final statement. �

We conclude this section with the proof of Lemma 3.3.

Proof of Lemma 3.3. We only have to show that σt(y |x) = 0 whenever πt(y) =
0. But since ‖P (y)1/2Ψt‖2 = πt(y), we then have P (y)1/2Ψt = 0. Hence
P (y)Ψt = 0 and therefore 〈Ψt|P (y)HP (x)Ψt〉 = 〈P (y)Ψt|HP (x)Ψt〉 = 0, which
gives the result. �

4. Non-explosion

In the last section we have constructed a process (Xt)t≥t0 that stays in the
configuration space E until some possibly finite explosion time ζ = supn Tn, at
which it jumps into the cemetery �. We will now show that ζ is in fact almost
surely infinite. To this end we consider the random number

S(t) := #{n ≥ 1 : t0 < Tn ≤ t} ∈ Z+ ∪ {∞} (4.1)

of jumps during the time interval ]t0, t] for any t > t0. We want to show that
S(t) has finite expectation. To this end we start from the following formula.

Lemma 4.1. For all t > t0,

E t0 S(t) =

t∫
t0

ds
∑

x,y∈E

Pt0(Xs = x)σs(y |x) .
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To estimate the last expression we will show:

Lemma 4.2. Pt0(Xt = x) ≤ πt(x) for all x ∈ E and t > t0.

In other words, though the rates are constructed in such a way that the
process should follow the equivariant distribution πt, we cannot exclude a priori
that some mass is lost at the cemetery �. Combining these two lemmas we
obtain

E t0 S(t) ≤
t∫

t0

ds
∑

x,y∈E

πs(x)σs(y |x) =

t∫
t0

ds
∑

x,y∈E

[
Im 〈Ψs|P (y)HP (x)Ψs〉

]+

≤
t∫

t0

ds
∑

x,y∈E

∣∣〈Ψs|P (y)HP (x)Ψs〉
∣∣ ,

and the last expression is finite by Assumption (A2). Hence S(t) < ∞ almost
surely, and thereby ζ > t almost surely. As t was arbitrary, we conclude that
ζ = ∞ almost surely, as we wanted to show. We now turn to the proofs of the
two lemmas above.

Proof of Lemma 4.1. Using equation (3.9) and Lemma 3.2 we can write

E t0 S(t) =
∑
n≥0

Pt0(t0 ≤ Tn+1 ≤ t)

=
∑
n≥0

E
(
Pt0(t0 ≤ Tn+1 ≤ t |Tk, Zk : k ≤ n)

)

=
∑
n≥0

E

t∫
t0

ds1{Tn < s < θTn,Zn} γZn(s) exp
{ − ΓTn,Zn(s)

}

=
∑
n≥0

t∫
t0

ds E
(
1{Tn < s} γZn(s) Pt0(Tn+1 > s |Tk, Zk : k ≤ n)

)

=

t∫
t0

ds
∑
x∈E

γx(s)E
( ∑

n≥0

1{Tn < t < Tn+1, Zn = x}
)

=

t∫
t0

ds
∑
x∈E

γx(s) Pt0(Xs = x) .

Together with (3.5) the lemma follows. �
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For the proof of Lemma 4.2 we consider the integral equation

ρt(x) = πt0(x) exp
{−Γt0,x(t)

}
+

∑
y∈E

t∫
t0

ds ρs(y)σs(x | y) exp{−Γs,x(t)} , (4.2)

t ≥ t0, x ∈ E, for a time-dependent subprobability measure ρt on E. Lemma 4.2
follows directly from the next two results.

Lemma 4.3. The mapping (t, x) �→ Pt0(Xt = x) is the minimal solution
of (4.2).

Lemma 4.4. The mapping (t, x) �→ πt(x) is a solution of (4.2) for arbitrary t0.

Proof of Lemma 4.3. For any x ∈ E and t > t0 we can write

Pt0(Xt = x) =
∑
n≥0

An(t, x) with An(t, x) := Pt0

(
Tn ≤ t < Tn+1, Zn = x

)
.

It follows from (3.6) that

A0(t, x) = πt0(x) exp
{ − Γt0,x(t)

}
(4.3)

and, for n ≥ 1,

An(t, x) =
∑

x0,...,xn−1∈E

∫
· · ·

∫
t0<t1<···<tn≤t

× Pt0

(
T1 ∈ dt1, . . . , Tn ∈ dtn, Tn+1 > t, Z0 = x0, . . . , Zn = xn

)
=

∑
x0,...,xn−1∈E

∫
· · ·

∫
t0<t1<···<tn≤t

dt1 · · · dtn πt0(x0)

×
( n∏

i=1

exp
{ − Γti−1,xi−1(ti)

}
σti(xi |xi−1)

)
exp{−Γtn,x(t)} ,

where xn := x. In particular, separating the summation over xn−1 and the
integration over tn we find that

An(t, x) =
∑
y∈E

t∫
t0

ds An−1(s, y)σs(x | y) exp{−Γs,x(t)} . (4.4)

This shows that Pt0(Xt = x) satisfies (4.2).
Now let ρt(x) be an arbitrary (nonnegative) solution of (4.2). An (N−1)-fold

iteration of (4.2) then leads to the equation

ρt(x) =
N−1∑
n=0

An(t, x) + RN (t, x),
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with An(t, x) defined by (4.3) and (4.4), and the remainder term

RN (t, x) =
∑

x0,...,xN−1∈E

∫
· · ·

∫
t0<t1<···<tN≤t

dt1 · · · dtN

× ρt1(x0)
( N−1∏

i=1

σti(xi |xi−1) exp{−Γti,xi(ti+1)}
)

× σtN (x |xN−1) exp{−ΓtN ,x(t)} .

(Compared with AN (t, x), RN (t, x) involves ρt1 rather than ρt0 = πt0 , and the
σ’s and exp{−Γ}’s run in a different order.) Since RN (t, x) ≥ 0, we see that
ρt(x) exceeds each partial sum of the infinite series constituting Pt0(Xt = x).
This proves Lemma 4.3. �

Proof of Lemma 4.4. We start from the observation that, by (3.4), (2.1), (1.2)
and the self-adjointness of H and P (x),

π̇t(x) = Im 〈HP (x)Ψt|Ψt〉 =
∑
y∈E

Im 〈HP (x)Ψt|P (y)Ψt〉

=
∑
y∈E

(
πt(y)σt(x | y) − πt(x)σt(y |x)

)
=

∑
y∈E

πt(y)σt(x | y) − πt(x) γx(t) .

This means that the integral equation (4.2) for πt(x) takes the form

πt(x) − πt0(x) exp{−Γt0,x(t)} =

t∫
t0

ds
(
π̇s(x) + πs(x) γx(s)

)
exp{−Γs,x(t)}.

(4.5)
To establish this equation we write for brevity f(s) = πs(x) and g(s) =
exp{−Γs,x(t)} and distinguish two cases.

Case 1: f > 0 on [t0, t]; that is, x is never a node on this interval. Then,
by Lemma 3.4, γx is integrable over [t0, t], whence s �→ Γs,x(t) is absolutely
continuous with derivative −γx. Since the exponential function is Lipschitz
on ]−∞, 0], it follows that g is absolutely continuous with derivative ġ = γx g
Lebesgue-almost-everywhere; see [10, Corollary 6.3.7] or [25, Theorem 8.17].
Equation (4.5) is thus equivalent to the partial integration formula

f(t)g(t) − f(t0)g(t0) =

t∫
t0

(
ḟ(s)g(s) + f(s)ġ(s)

)
ds

which holds according to Corollary 6.3.8 of [10].
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Case 2: f(s) = 0 for some s ∈ [t0, t]; that is, x is a node at some time s. By
the continuity of f , there exists then a largest such s in [t0, t], say θ. Suppose
first that θ = t0. We can then apply Case 1 to each subinterval [t∗, t] of [t0, t],
which yields (4.5) with t∗ in place of t0. Let I(t∗) be the corresponding integral
on the right-hand side. Since the integrand is nonnegative, we can use the
monotone convergence theorem to conclude that I(t∗) ↑ I(t0) as t∗ ↓ t0. On the
other hand, f(t∗)g(t∗) → 0 = f(t0)g(t0) as t∗ ↓ t0 because f is continuous and
0 ≤ g ≤ 1. This proves (4.5) in the case θ = t0.

If θ > t0, we observe that Γs,x(t) = ∞ for all s < θ. Indeed, we even have
Γs,x(θ) = ∞. This is evident when ]s, θ[ consists only of node-times because then
γx is infinite on this interval; otherwise it follows from the second statement of
Lemma 3.4 applied to the segment from a non-node-time between t and θ to the
next node-time. Consequently, the left-hand side of (4.5) is equal to f(t), while
the integrand on the right-hand side vanishes on [t0, θ[. This means that we have
to establish (4.5) with t0 replaced by θ. But this is trivial when θ = t because
then both sides vanish, and otherwise follows from the previous paragraph. �

It is now easy to complete the proof of the theorem.

Proof of Theorem 2.1. As we have shown above, for any t0 ∈ R there exists
a right-continuous pure jump process (Xt)t≥t0 on a suitable probability space
(Ωt0 ,Ft0 , Pt0). Since ζ = ∞ almost surely, this process avoids the cemetery �
and thus takes values in E. Hence

∑
x∈E

Pt0(Xt = x) = 1

for all t ≥ t0. Lemma 4.2 therefore implies that Pt0(Xt = x) = πt(x) for all
x ∈ E and t > t0. In particular, if Et is given by (3.2) then Xt ∈ Et for all
t ≥ t0 with probability 1.

We also note that (Xt)t≥t0 is Markovian; its transition matrix from time s
to time t given by

Ps,t(x, ·) = Ps(Xt = · | Xs = x)

when x ∈ Es, and arbitrary otherwise. This follows directly from the con-
struction together with Lemma 3.2 (d). In particular, the distribution Pt0 of
(Xt)t≥t0 on the Skorohod space D([t0,∞[, E) of all càdlàg1 paths from [t0,∞[ to
E is uniquely determined, and the family (Pt0)t0∈R is consistent. Kolmogorov’s
extension theorem [19, Theorem 5.16] therefore provides us with a probability
measure P on ER which extends all distributions Pt0 and is therefore concen-
trated on D(R, E), the space of all càdlàg paths on R. Under P, the canonical
coordinate process constitutes the global Markov jump process with the desired
properties. �

1continues à droite avec des limites à gauche = right-continuous with left limits.
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5. Proof of Proposition 2.1

First we consider case (a). Since H is bounded, Assumption (A1) holds triv-
ially. The boundedness of H also implies that the expression 〈Ψt|P (x)HP (y)Ψt〉
is (well defined and) a continuous function of t for every x and y. As E is finite,
the integrand in Assumption (A2) is continuous and therefore locally integrable.

Turning to case (b), we observe first that assumption (A1) is again trivially
satisfied because Hilbert – Schmidt operators are bounded. Assumption (A2)
will follow from the inequality

∑
x,y∈E

∣∣〈Ψ|P (x)HP (y)Ψ〉∣∣ ≤ ‖Ψ‖2
√

tr H2 ∀Ψ ∈ H (5.1)

which we prove now.
We start with a general remark. Let I be a countable index set and Ai

and Bi, i ∈ I , any Hilbert – Schmidt operators with (possibly different) adjoints
A∗

i resp. B∗
i ; i.e., we have tr A∗

i Ai < ∞ and similarly for Bi. The Cauchy –
Schwarz inequality then asserts that

∑
i∈I

| tr A∗
i Bi| ≤

( ∑
i∈I

trA∗
i Ai

)1/2 ( ∑
i∈I

tr B∗
i Bi

)1/2

(5.2)

whenever both terms on the right-hand side are finite. (Note that we can put
the modulus sign inside of the sum because we can replace Ai by ziAi with
zi = (tr A∗

i Bi)/|tr A∗
i Bi| whenever tr A∗

i Bi �= 0.)
To obtain (5.1) from (5.2), we set I = E × E, Ax,y = P (x)1/2PΨP (y)1/2

with PΨ = |Ψ〉〈Ψ| the projection to CΨ, and Bx,y = P (x)1/2HP (y)1/2. Then

tr A∗
x,yBx,y = 〈Ψ|P (x)HP (y)Ψ〉.

To see that Ax,y is a Hilbert – Schmidt operator, we note that

tr A∗
x,yAx,y = tr

(
P (y)1/2PΨP (x)PΨP (y)1/2

)
= 〈Ψ|P (x)Ψ〉〈Ψ|P (y)Ψ〉 < ∞.

It follows further from (2.1) that
∑
x,y

tr A∗
x,yAx,y =

∑
x,y

〈Ψ|P (x)Ψ〉〈Ψ|P (y)Ψ〉 = ‖Ψ‖4.

Next we show that Bx,y is a Hilbert – Schmidt operator. Note that 0 ≤
P (x) ≤ I since I − P (x) = P (E \ {x}) ≥ 0. This implies that

0 ≤ 〈Φ|P (x)Φ〉 ≤ 〈Φ|Φ〉
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for all Φ ∈ H . Setting Φ := Cϕn for any Hilbert – Schmidt operator C and an
orthonormal basis {ϕn : n ∈ N} of H we find

∑
n∈N

〈ϕn|C∗P (x)Cϕn〉 ≤
∑
n∈N

〈ϕn|C∗Cϕn〉

and thus
trC∗P (x)C ≤ tr C∗C. (5.3)

That is, if C is a Hilbert – Schmidt operator then so is P (x)1/2C; and so is
CP (x)1/2 = (P (x)1/2C∗)∗. As a consequence, Bx,y is a Hilbert – Schmidt oper-
ator.

Finally, we need to show that
∑

x,y∈E

tr B∗
x,yBx,y ≤ tr H2.

For every finite subset F ⊆ E we have, using the linearity of the trace and its
invariance under cyclic permutations,

∑
x,y∈F

tr B∗
x,yBx,y =

∑
x,y∈F

trHP (x)HP (y) = tr HP (F )HP (F )

= tr
(
P (F )1/2HP (F )1/2

)∗(
P (F )1/2HP (F )1/2

) ≤ tr H2 .

The last inequality comes from the fact that, according to (5.3), the Hilbert –
Schmidt norm ‖C‖HS =

√
tr C∗C of an operator C can only decrease when C

is multiplied, from the left or from the right, by P 1/2 where 0 ≤ P ≤ I. Taking
the supremum over all finite subsets F and combining all inequalities above we
arrive at (5.1).
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