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1 Introduction

Equilibrium statistical mechanics intends to describe and explain the macroscopic be-
havior of systems in thermal equilibrium in terms of the microscopic interaction between
their great many constituents. As a typical example, let us take some ferromagnetic ma-
terial like iron; the constituents are then the spins of elementary magnets at the sites of
some crystal lattice. Or we may think of a lattice approximation to a real gas, in which
case the constituents are the particle numbers in the elementary cells of any partition of
space. The central object is the Hamiltonian describing the interaction between these
constituents. This interaction determines the relative energies between configurations
that differ only microscopically. The equilibrium states with respect to the given interac-
tion are described by the associated Gibbs measures. These are probability measures on
the space of configurations which have prescribed conditional probabilities with respect
to fixed configurations outside of finite regions. These conditional probabilities are given
by the Boltzmann factor, the exponential of the inverse temperature times the relative
energy. This allows one to compute, at least in principle, equilibrium expectations and
spatial correlation functions following the standard Gibbs formalism. Most important
are the so called extremal Gibbs measures since they describe the possible macrostates
of our physical system. In such a state, macroscopic observables do not fluctuate while
the correlation between local observations made far apart from each other decays to
zero.

Since the early days of statistical mechanics, geometric notions have played a role
in elucidating certain aspects of the theory. This has taken many different forms. Ar-
guably, the thermodynamic formalism, as first developed by Gibbs, already admits
some geometric interpretations primarily related to convexity. For example, entropy is
a concave function of the specific energy, the pressure is convex as a function of the
interaction potential, the Legendre–Fenchel transformation relates various fundamental
thermodynamic quantities to each other, and the set of Gibbs measures for an interac-
tion is a simplex with vertices corresponding to the physically realized macrostates, the
equilibrium phases.

Here, however, we will not be concerned with this kind of convex geometry which
is described in detail e.g. in the books by Israel [138] and Georgii [96]. Rather, the
geometry considered here is a way of visualizing the structure in the typical realizations
of the system’s constituents. To be more specific let us consider for a moment the case
of the standard ferromagnetic Ising model on the square lattice. At each site we have
a spin variable taking only two possible values, +1 and −1. The interaction is nearest-
neighbor and tends to align neighboring spins in the same direction. By the ingenious
arguments first formulated in 1936 by Peierls [187] (see also [63, 213, 96]), the phase
transition in this model can be understood from looking at the typical configurations
of contours, i.e., the broken lines separating the domains with plus resp. minus spins.
The plus phase (the positively magnetized phase) is realized by an infinite ocean of
plus spins with finite islands of minus spins (which in turn may contain lakes of plus
spins, and so on). On the other hand, above the Curie temperature (first computed by
Onsager) there is no infinite path joining nearest neighbors with the same spin value.
So, for this model the geometric picture is rather complete (as we will show later). In
general, however, much less is known, and much less is true. Still, certain aspects of
this geometric analysis have wide applications, at least in certain regimes of the phase
diagram. These ‘certain regimes’ are, on the one hand, the high-temperature (or, in a
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lattice gas setting, low-density) regime and, to the other extreme, the low temperature
behavior.

At high temperatures, all thermodynamic considerations are based on the fact that
entropy dominates over energy. That is, the interaction between the constituents is not
effective enough to enforce a macroscopic ordering of the system. As a result, every
constituent is more or less free to behave at random, not much influenced by other
constituents which are far apart. So, the system’s behavior is almost like that of a free
system with independent components. This means, in particular, that in the center of
a large box we will typically encounter more or less the same configurations no matter
what boundary conditions outside this box are imposed. That is, if we compare two
independent realizations of the system in the box with different boundary conditions
outside then, still at high temperatures, the difference between the boundary conditions
cannot be felt by the spins in the center of the box; specifically, there should not exist
any path from the boundary to the central part of the box along which the spins of
the two realizations disagree. This picture is rather robust and can for example also be
applied when the interaction is random; see Sections 7 and 9.

At low temperatures, or large densities (when the interaction is sufficiently strong),
the picture above no longer holds. Rather, the specific characteristics of the interaction
will come into play and determine the specific features of the low temperature phase. In
many cases, the low temperature behavior can be described as a random perturbation of
a ground state, i.e., of a fixed configuration of minimal energy. Then we can expect that
at low temperatures, and sometimes even up to the critical temperature, the equilibrium
phases are realized as a deterministic ground state configuration, perturbed by finite
random islands on which the configuration disagrees with the ground state. This means
that the ground state pattern can percolate through the space to infinity. One prominent
way of confirming this picture is provided by the so called Pirogov–Sinai theory which
is described in detail e.g. in [230]. In Section 8 we will discuss some other techniques of
establishing the same geometric picture.

It is evident from the above that percolation theory will play an important role in
this text. In fact, we will mainly be concerned with dependent percolation, but one
can say that independent percolation stands as a prototype for the study of statistical
equilibrium properties in geometric terms. In independent percolation, the model is
extremely simple: the components are binary-valued and independent from each other.
What is hard is the type of question one asks, namely the question of existence of
infinite paths of 1’s and their geometry. We will introduce percolation below but refer
to other publications (such as the book by Grimmett [108]) for a systematic account of
the theory.

Percolation will come into play here on various levels. Its concepts like clusters,
open paths, connectedness etc. will be useful for describing certain geometric features of
equilibrium phases, allowing characterizations of phases in percolation terms. Examples
will be presented where the (thermal) phase transition goes hand in hand with a phase
transition in an associated percolation process. Next, percolation techniques can be
used to obtain specific information about the phase diagram of the system. For example,
equilibrium correlation functions are sometimes dominated by connectivity functions in
an associated percolation problem which is easier to investigate. Finally, representations
in terms of percolation models will yield explicit relations between certain observables in
equilibrium models and some corresponding percolation quantities. In fact, the resulting
percolation models, like the random-cluster model, have some interest in their own right

4



and will also be studied in some detail.
This text is supposed to be self-contained. Therefore we need to introduce various

concepts and techniques which are well-known to some readers. On the other hand,
important related issues will not be discussed when they are not explicitly needed. For
more complete discussions on the introductory material we will refer the interested
reader to other sources. More seriously, we will not include here a discussion of some
important geometric concepts developed in the 1980’s for the study of critical behavior
in statistical mechanical systems, namely random walk expansions or random current
representations. Fortunately, we can refer to an excellent book [77] where the interested
reader will find all the relevant results and references. Important steps in this context
include [5, 6, 7, 11, 40, 41] and the references therein.

Finally, to avoid misunderstanding, the random geometry in the title of this work
should not be confused with stochastic geometry (or geometric probability) which, as
a branch of integral geometry, provides a very interesting tool-box for the discussion
of morphological characteristics of random fields appearing in statistical physics and
beyond, see [145, 172, 2].

Acknowledgements: It is a pleasure to thank J. Lebowitz for suggesting (and in-
sisting) that we should write this report. We are also grateful to L. Chayes, A.C.D.
van Enter and J. Lőrinczi who looked at parts of the manuscript and made numerous
suggestions, and to Y. Higuchi for discussions on Proposition 8.5.
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2 Equilibrium phases

2.1 The lattice

Our object of study are physical systems with many constituents, spins or particles,
which will be located at the sites of a crystal lattice L. The standard case is when
L = Zd, the d-dimensional hypercubic lattice. In general, we shall assume that L is
the vertex set of a countable graph. That is, L is an at most countable set and comes
equipped with a (symmetric) adjacency relation. Namely, we write x ∼ y if the vertices
x, y ∈ L are adjacent, and this is visualized by drawing an edge between x and y. In
this case, x and y are also called neighbors, and the edge (or bond) between x and
y is denoted by 〈xy〉. We write B for the set of all edges (bonds) in L. A complete
description of the graph is thus given by the pairs (L,∼) or (L,B).

In the case L = Zd, the edges will usually be drawn between lattice sites of distance
one; hence x ∼ y whenever |x − y| = 1. Here, | · | stands for the sum-norm, i.e.
|x| =

∑d
i=1 |xi| whenever x = (x1, . . . , xd) ∈ Zd. This choice is natural because then

|x − y| coincides with the graph-theoretical (or lattice) distance, viz. the length of the
shortest path (consisting of consecutive edges) connecting x and y. For convenience,
we sometimes use the same notation in the case of a general graph. On Zd we will
occasionally distinguish between the standard metrics d1(x, y) =

∑

i |xi−yi|, d2(x, y) =
[
∑d

i=1(xi − yi)
2)]1/2 and d∞(x, y) = maxi |xi − yi|. Given any metric d on L, we write

d(Λ,∆) = infx∈Λ,y∈∆ d(x, y) for the distance of two subsets Λ,∆ ⊂ L.
We will always assume that the graph (L,∼) is locally finite, which means that each

x ∈ L has only a finite number Nx of nearest neighbors. In other words, Nx is the
number of edges emanating from x. Nx is also called the degree of the graph at x. In
many cases we will even assume that (L,∼) is of bounded degree, which means that
N = supx∈LNx <∞. Common examples of such graphs, besides Zd, are the triangular
lattice in two dimensions, and the regular tree Td (also known as the Cayley tree or the
Bethe lattice), which is defined as the (unique) infinite connected graph containing no
circuits in which every vertex has exactly d+ 1 nearest neighbors.

A region of the lattice, that is a subset Λ ⊂ L, is called finite if its cardinality |Λ| is
finite. We write E for the collection of all finite regions. The complement of a region Λ
will be denoted by Λc = L \ Λ. The boundary ∂Λ of Λ is the set of all sites (vertices)
in Λc which are adjacent to some site of Λ.

At some occasions we will need the notion of thermodynamic (or infinite volume)
limit, and we need to describe in what sense a region Λ ∈ E grows to the full lattice L.
For our purposes, it will in general be sufficient to take an arbitrary increasing sequence
(Λn) with

⋃

n≥1 Λn = L. In the case L = Zd, we will often make the standard choice

Λn = [−n, n]d ∩ Zd, the lattice cubes centered around the origin. As E is a directed set
ordered by inclusion, we will occasionally also consider the limit along E . In each of
these cases we will use the notation Λ ↑ L.

2.2 Configurations

The constituents of our systems are the spins or particles at the lattice sites. So, at each
site x ∈ L we have a variable σ(x) taking values in a non-empty set S, the state space or
single-spin space. In a magnetic set-up (to which we mostly adhere for simplicity), σ(x)
is interpreted as the spin of an elementary magnet at x. In a lattice gas interpretation,
there is a distinguished vacuum state 0 ∈ S representing the absence of any particle,
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and the remaining elements correspond to the types and/or the number of the particles
at x. Unless stated otherwise, we will always assume that S is finite. Elements of S will
typically be denoted by a, b, . . ..

A configuration is a function σ : L → S which assigns to each vertex x ∈ L a spin
value σ(x) ∈ S. In other words, a configuration σ is an element of the product space
Ω = SL. Ω is called the configuration space and its elements are in general written as
σ, η, ξ, . . .. (It is sometimes useful to visualize a, b . . . as colors. A configuration is then
a coloring of the lattice.) A configuration σ is constant if for some a ∈ S, σ(x) = a for
all x ∈ L. Two configurations σ and η are said to agree on a region Λ ⊂ L, written
as “σ ≡ η on Λ”, if σ(x) = η(x) for all x ∈ Λ. Similarly, we write “σ ≡ η off Λ” if
σ(x) = η(x) for all x /∈ Λ.

We also consider configurations in regions Λ ⊂ L. These are elements of SΛ, again
denoted by letters like σ, η, ξ, . . .. Given σ, η ∈ Ω, we write σΛηΛc for the configuration
ξ ∈ Ω with ξ(x) = σ(x) for x ∈ Λ and ξ(x) = η(x) for x ∈ Λc. Then, obviously, ξ ≡ σ
on Λ. The cylinder sets

NΛ(σ) = {ξ ∈ Ω : ξ ≡ σ on Λ} ,

Λ ∈ E , form a countable neighborhood basis of σ ∈ Ω; they generate the product
topology on Ω. Hence, two configurations are close to each other if they agree on some
large finite region, and a diagonal-sequence argument shows that Ω is a compact in this
topology.

We will often change a configuration σ ∈ Ω at just one site x ∈ L. Changing σ(x)
into a prescribed value a ∈ S we obtain a new configuration written σx,a. In particular,
for S = {−1,+1} we write

σx(y) =

{

σ(y) for y 6= x
−σ(x) for y = x

for the configuration resulting from flipping the spin at x.
We will also deal with automorphisms of the underlying lattice (L,∼). Each such

automorphism defines a measurable transformation of the configuration space Ω. The
most interesting automorphisms are the translations of the integer lattice L = Zd; the
associated translation group acting on Ω is given by θxσ(y) = σ(x + y), y ∈ Zd. In
particular, any constant configuration is translation invariant. Similarly, we can speak
about periodic configurations which are invariant under θx with x in some sublattice of
Zd.

Later on, we will also consider configurations which refer to the lattice bonds rather
than the vertices. These are elements η of the product space {0, 1}B , and a bond b ∈ B
will be called open if η(b) = 1, and otherwise closed. The above notations apply to this
situation as well.

2.3 Observables

An observable is a real function on the configuration space which may be thought
of as the numerical outcome of some physical measurement. Mathematically, it is a
measurable real function on Ω. Here, the natural underlying σ-field of measurable
events in Ω is the product σ-algebra F = (F0)

L, where F0 is the set of all subsets of
S. F is defined as the smallest σ-algebra on Ω for which all projections X(x) : Ω→ S,
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X(x)(σ) = σ(x) with σ ∈ Ω and x ∈ L, are measurable. It coincides, in fact, with the
Borel σ-algebra for the product topology on Ω.

We also consider events and observables depending only on some region Λ ⊂ L. We
let FΛ denote the smallest sub-σ-field of F containing the events N∆(σ) for σ ∈ S∆

and ∆ ∈ E with ∆ ⊂ Λ. Equivalently, FΛ is the σ-algebra generated by the projections
X(x) with x ∈ Λ. FΛ is the σ-algebra of events occurring in Λ.

An event A is called local if it occurs in some finite region, which means that A ∈ FΛ

for some Λ ∈ E . Similarly, an observable f : Ω→ R is called local if it depends on only
finitely many spins, meaning that f is measurable with respect to FΛ for some Λ ∈ E .
More generally, an observable f is called quasilocal if it is (uniformly) continuous, i.e.,
if for all ǫ > 0 there is some Λ ∈ E such that |f(σ) − f(ξ)| < ǫ whenever ξ ≡ σ on
Λ. The set C(Ω) of continuous observables is a Banach space for the supremum norm
||f || = supσ |f(σ)| , and the local observables are dense in it.

The local events and observables should be viewed as microscopic quantities. On
the other side we have the macroscopic quantities which only depend on the collective
behavior of all spins, but not on the values of any finite set of spins. They are defined
in terms of the tail σ-algebra T =

⋂

Λ∈E FΛc , which is also called the σ-algebra of all
events at infinity. Any tail event A ∈ T and any T -measurable observable is called
macroscopic.

As a final piece of notation we introduce the indicator function IA of an event A; it
takes the value 1 if the event occurs (IA(σ) = 1 if σ ∈ A) and is zero otherwise.

2.4 Random fields

As the spins of the system are supposed to be random, we will consider suitable prob-
ability measures µ on (Ω,F). Each such µ is called a random field. Equivalently, the
family X = (X(x), x ∈ L) of random variables on the probability space (Ω,F , µ) which
describe the spins at all sites is called a random field.

Here are some standard notations concerning probability measures. The expectation
of an observable f with respect to µ is written as µ(f) =

∫

fdµ. The probability of
an event A is µ(A) = µ(IA) =

∫

A dµ, and we omit the set braces when A is given
explicitly. For example, given any x ∈ L and a ∈ S we write µ(X(x) = a) for µ(A) with
A = {σ ∈ Ω : σ(x) = a}. Covariances are abbreviated as µ(f ; g) = µ(fg)− µ(f)µ(g).

Whenever we need a topology on probability measures on Ω, we shall take the weak
topology. In this (metrizable) topology, a sequence of probability measures µn converges
to µ, denoted by µn → µ, if µn(A) → µ(A) for all local events A ∈ ⋃Λ∈E FΛ. This
holds if and only if µn(f) → µ(f) for all local, or equivalently, all quasilocal functions
f . In applications, µn will often be an equilibrium state in a finite box Λn tending to
L as n → ∞, and we are interested in whether the probabilities of events occurring in
some fixed finite volume have a well-defined thermodynamic (or bulk) limit. That is, we
observe what happens around the origin (via the local function f) while the boundary
of the box in which we realize the equilibrium state receeds to infinity. As there are
only countably many local events, one can easily see by a diagonal-sequence argument
that the set of all probability measures on Ω is compact in the weak topology.

2.5 The Hamiltonian

We will be concerned with systems of interacting spins. As usual, the interaction is
described by a Hamiltonian. As the spins are located at the sites of a graph (L,∼), it is

8



natural to consider the case of homogeneous neighbor potentials. (We will deviate from
homogeneity in Section 9 when considering random interactions.) The Hamiltonian H
then takes the form

H(σ) =
∑

x∼y

U(σ(x), σ(y)) +
∑

x

V (σ(x)) (1)

with a symmetric function U : S × S → R ∪ {∞}, the neighbor-interaction, and a
self-energy V : S → R. The infinite sums are formal; the summation index x ∼ y
means that the sum extends over all bonds 〈xy〉 ∈ B of the lattice. U thus describes the
interaction between spins at neighboring sites, while V might come from the action of
an external magnetic field. In a lattice gas interpretation when S = {0, 1} (the value 1
being assigned to sites which are occupied by a particle), V corresponds to a chemical
potential.

To make sense of the formal sums in (1) we compare the Hamiltonian for two dif-
ferent configurations σ, η ∈ Ω which differ only locally (or are “local perturbations” or
“excitations” of each other), in that σ ≡ η off some Λ ∈ E . For such configurations we
can define the relative Hamiltonian

H(σ|η) =
∑

x∼y

[U(σ(x), σ(y)) − U(η(x), η(y))] +
∑

x

[V (σ(x)) − V (η(x))] (2)

in which the sums now contain only finitely man non-zero terms: the first part is over
those neighbor pairs 〈xy〉 for which at least one of the sites belongs to Λ, and the second
part is over all x ∈ Λ.

2.6 Gibbs measures

Gibbs measures are random fields which describe our physical spin system when it is
in macroscopic equilibrium with respect to the given microscopic interaction at a fixed
temperature. Here, macroscopic equilibrium means that all parts of the system are in
equilibrium with their exterior relative to the prescribed interaction and temperature.
So it is natural to define Gibbs measures in terms of conditional probabilities.

Definition 2.1 A probability measure µ on the configuration space Ω is called a Gibbs
measure for the Hamiltonian H in (1) or (2) at inverse temperature β ∼ 1/T if for all
Λ ∈ E and all σ ∈ Ω,

µ(X ≡ σ on Λ |X ≡ η off Λ) = µη
β,Λ(σ) (3)

for µ-almost all η ∈ Ω. In the above, µη
β,Λ(σ) is the Boltzmann–Gibbs distribution

in Λ for β and H, which is given by

µη
β,Λ(σ) =

I{σ≡η off Λ}

ZΛ(β, η)
exp[−βH(σ|η)] . (4)

Here, ZΛ(β, η) is a normalization constant making µη
β,Λ a probability measure, and the

constraint that σ has to coincide with η outside Λ is added because we want to realize
these probability measures immediately on the infinite lattice. Note that µη

β,Λ in fact
only depends on the restriction of η to Λc.
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So, µ is a Gibbs measure if it has prescribed conditional distributions inside some finite
set of vertices, given that the configuration is held fixed outside, and these conditional
distributions are given by the usual Boltzmann–Gibbs formalism. This definition goes
back to the work of Dobrushin [64] and Lanford and Ruelle [151] in the late 1960’s,
whence Gibbs measures are often called DLR-states. By this work, equilibrium sta-
tistical physics and the study of phase transitions made firm contact with probability
theory and the study of random fields. A thermodynamic justification of this definition
can be given by the variational principle, which states that (in the case L = Zd) the
translation invariant Gibbs measures are precisely those translation invariant random
fields which minimize the free energy density, cf. [151, 96]. For better distinction, the
Gibbs distributions µη

β,Λ are often called finite volume Gibbs distributions, whereas the
Gibbs measures are sometimes specified as infinite volume Gibbs measures.

We write G(βH) for the set of all Gibbs measures with given Hamiltonian H and
inverse temperature β. In the special case U ≡ 0 of no interaction, there is only one
Gibbs measure, namely the product measure with one-site marginals µ(X(x) = a)
= e−βV (a)/

∑

b∈S e
−βV (b). In general, several Gibbs measures for the same interaction

and temperature can coexist. This is the fundamental phenomenon of nonuniqueness of
phases which is one of our main subjects; we return to this point in Section 2.7 below.

First we want to emphasize an important consequence of our assumption that the
underlying interaction U involves only neighbor spins. Due to this assumption, the
Gibbs distribution µη

β,Λ only depends on the restriction η∂Λ of η to the boundary ∂Λ of
Λ, and this implies that each Gibbs measure µ ∈ G(βH) is a Markov random field. By
definition, this means that for each Λ ∈ E and σ ∈ SΛ

µ(X ≡ σ on Λ | FΛc) = µ(X ≡ σ on Λ | F∂Λ), (5)

µ−almost surely. This Markov property will be an essential tool in the geometric
arguments to be discussed in this review. There is in fact an equivalence between
Markov random fields and Gibbs measures for nearest neighbor potentials, see e.g.
Averintsev [17], Grimmett [107] or Georgii [96].

As an aside, let us comment on the case when the interaction of spins is not nearest-
neighbor but only decays sufficiently fast with their distance. The Boltzmann-Gibbs
distributions in (4), and therefore also Gibbs measures, can then still be defined, but
the Gibbs measures fail to possess the Markov property (5). Rather their local condi-
tional distributions µη

β,Λ satisfy a weakening of the Markov property called quasilocality

or almost-Markov property : for every Λ ∈ E and A ∈ FΛ, µη
β,Λ(A) is a continuous

function of η. So, in this case, Gibbs measures have prescribed continuous versions of
their local conditional probabilities. To obtain a sufficiently general definition of Gibbs
measures including this and other cases, one introduces the concept of a specification
G = (GΛ, Λ ∈ E). This is a family of probability kernels GΛ from (Ω,FΛc) to (Ω,F).
GΛ(·, η) stands for any distribution of spins with fixed configuration ηΛc ∈ SL\Λ outside
Λ; the standard case is the Gibbs specification GΛ(·, η) = µη

β,Λ. A Gibbs measure is then
a probability measure µ on Ω satisfying µ(A | FΛc) = GΛ(A, ·) µ-almost surely for all
Λ ∈ E and A ∈ F ; this property can be expressed in a condensed form by the invariance
equation µGΛ = µ. In order for this definition to make sense the specification G needs
to satisfy a natural compatibility condition for pairs of volumes Λ ⊂ Λ′ expressing the
fact that if the system in Λ′ is in equilibrium with its exterior, then the subsystem in Λ
is also in equilibrium with its own exterior. It is easy to see that the Gibbs distributions
in (4) are compatible in this sense. Details and further discussion can be found in many
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books and articles dealing with mathematical results in equilibrium statistical mechan-
ics, including [138, 206, 96, 195, 76, 213]. In [160], the relation between Gibbs measures
and the condition of detailed balance (reversibility) in certain stochastic dynamics is
explained.

Finally, we mention an alternative and constructive approach to the concept of Gibbs
measures. Starting from the finite-volume Gibbs distributions µη

β,Λ, one might ask what
kind of limits could be obtained if η is randomly chosen and Λ increases to the whole
lattice L. (This slightly older but still important approach was suggested by Minlos
[179].) To make this precise we consider the measures µρ

β,Λ =
∫

µη
β,Λ ρ(dη), where ρ

is any probability measure on Ω describing a “stochastic boundary condition”. Any
such µρ

β,Λ is called a (finite volume) Gibbs distribution with respect to H at inverse
temperature β, and their collection is denoted by GΛ(βH). The set of all (infinite
volume) Gibbs measures is then equal to

G(βH) =
⋂

Λ∈E

GΛ(βH).

Equivalently, a probability measure µ on Ω is a Gibbs measure for the Hamiltonian βH
if it belongs to the closed convex hull of the set of limit points of µη

β,Λ as Λ ↑ L.
One important consequence is that G(βH) 6= ∅. This is because each GΛ(βH) is

obviously non-empty and compact. Equivalently, to obtain an infinite volume Gibbs
measure one can fix a particular configuration η and take it as boundary condition.
By compactness, we obtain an infinite volume Gibbs measure µη

β by taking the limit
of (4) as Λ ↑ L, at least along suitable subsequences; for details see e.g. Preston [195]
or Georgii [96]. We remark that in general there is no unique limiting measure µη

β;
rather there may be several such limiting measures obtained as limits along different
subsequences. Fortunately, however, this is not the case for a wide class of models,
either at low temperatures (β large) when η is a ground state configuration (in the
realm of the Pirogov–Sinai theory), or at high temperatures when β is small.

We conclude this subsection with a general remark. As all systems in nature are
finite, one may wonder why we consider here systems with infinitely many constituents.
The answer is that sharp results for bulk quantities can only be obtained when we
make the idealization to an infinite system. The thermodynamic limit eliminates finite
size effects (which are always present but which are not always relevant for certain
phenomena) and it is only in the thermodynamic limit of infinite volume that we can
get a clean and precise picture of realistic phenomena such as phase transitions or phase
coexistence. This is a consequence of the general probabilistic principle of large numbers.
In this sense, infinite systems serve as an idealized approximation to very large finite
systems.

2.7 Phase transition and phases

As pointed out above, in general there may exist several solutions µ to the DLR-equation
(3) for given U , V and β, which means that multiple Gibbs measures exist. The sys-
tem can then choose between several equilibrium states. (In a dynamical theory this
choice would depend on the past; but here we are in a pure equilibrium setting.) The
phenomenon of non-uniqueness therefore corresponds to a phase transition. In fact,
it is then possible to construct different Gibbs measures as infinite volume limits of
Gibbs distributions with different choices of boundary conditions [91, 96]. Since any
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two Gibbs measures can be distinguished by a suitable local observable, a phase tran-
sition can be detected by looking at such a local observable which is then called an
order parameter. Varying the external parameters such as temperature or an external
magnetic field (which can be tuned by the experimenter via some heatbath or reservoir)
one will observe different scenarios; these are collected in the so called phase diagram
of the considered system.

As we have indicated in the introduction, the phase transition phenomenon is of
central interest in equilibrium statistical mechanics. When phase transitions occur and
when they do not is also one of the primary questions (although we will encounter
many others) that we will try to answer with the geometric methods to be developed
in subsequent sections.

If multiple Gibbs measures for a given interaction exist, the structure of the set
G(βH) of all Gibbs measures becomes relevant. We only state here the most basic
results; a detailed exposition can be found in [96], for example. The basic observation
is that G(βH) is a convex set. Its extremal elements, the extremal Gibbs measures,
have a trivial tail σ-field T (which means that all events in T have probability 0 or 1).
Equivalently, all macroscopic observables are almost surely constant. In addition, the
tail triviality can be characterized by an asymptotic independence (or mixing) property.
On the other hand, any Gibbs measure µ can be decomposed into extremal Gibbs
measures; therefore every configuration which is typical for µ is in fact typical for some
extremal Gibbs measure. This shows that the extremal Gibbs measures correspond to
what one can really see in nature as far as large systems in equilibrium are concerned.
The extremal Gibbs measures therefore correspond to the physical macrostates, whereas
non-extremal Gibbs measures only provide a limited description when the system’s
precise state is unknown. For all these reasons, the extremal Gibbs measures are called
(equilibrium) phases. The central subject of this review is the geometric analysis of
their typical configurations, and thereby the analysis of the phase diagram giving the
variation in the number and the nature of the phases as one changes various control
parameters (coupling, temperature, external fields, etc.).

Often it is natural to consider automorphisms of the graph (L,∼). For example, if
L = Zd we consider the translation group (θx)x∈Zd . A homogeneous phase is then an
extremal Gibbs measure which is also translation invariant. On the other hand, we can
regard the extremal points of the convex set of all translation invariant Gibbs measures.
These are ergodic, which means that they cannot be decomposed into distinct transla-
tion invariant probability measures, and are trivial on the σ-algebra of all translation
invariant events. However, these extremal translation invariant Gibbs measures need
not be homogeneous phases; they are only ergodic. Yet, ergodic measures µ satisfy a
law of large numbers: for any observable f and any sequence of increasing cubes Λ,

lim
Λ↑Zd

1

|Λ|
∑

x∈Λ

f ◦ θx = µ(f) µ-almost surely.

Hence, ergodic Gibbs measures are suitable for modelling macrostates in equilibrium if
one limits oneself to measuring certain bulk observables or macroscopic quantities with
additivity properties. Notice, however, that there exists a certain non-uniformity in the
literature concerning the nomenclature. Sometimes these ergodic Gibbs measures are
called (pure) phases. It is then argued that it might happen that two phases (as defined
above) for a system can by no means be macroscopically distinguished (for example if
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one is a translation of the other). We do not wish to enter into a detailed discussion of
these points.
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3 Some models

In this section we discuss briefly the phase transition behaviour of some prototypical
examples of Gibbs systems. Although these examples are fairly standard and well-
known to most of our readers, we need to include them here to set up the stage. They
will be studied in detail in the later sections. An account of phase transition phenomena
in more general lattice models can be found in many other sources, including [147, 96,
212, 213, 180].

3.1 The ferromagnetic Ising model

The Ising model was introduced in the 1920’s by Wilhelm Lenz [158] and his student
Ernst Ising [137] as a simple model for magnetism and, in particular, ferromagnetic
phase transitions. Each site x ∈ L can take either of two spin values, +1 (“spin up”) and
−1 (“spin down”), so that the state space is equal to S = {−1,+1}. The Hamiltonian is
given by (1) with U(σ(x), σ(y)) = −σ(x)σ(y) and V (σ(x)) = −hσ(x). The parameter
h ∈ R describes an external field. The finite volume Gibbs distribution in a box Λ with
external field h at inverse temperature β > 0 with boundary condition η is thus the
probability measure µη

h,β,Λ on Ω = {−1,+1}L which to each σ ∈ Ω assigns probability
proportional to

I{σ≡η on Λc} exp

[

β
(

∑

x∼y
x∈Λ or y∈Λ

σ(x)σ(y) + h
∑

x∈Λ

σ(x)
)

]

.

For β = 0 (“infinite temperature”) the spin variables are independent under µη
h,β,Λ,

but as soon as β > 0 the probability distribution starts to favour configurations with
many neighbor pairs of aligned spins. This tendency becomes stronger and stronger as
β increases.

In the case h = 0 of no external field, the model is symmetric under interchange
of the spin values −1 and +1, so that there is an equal chance of having many pairs
of plus spins or having many pairs of minus spins. This dichotomy gives rise to the
following interesting behavior. Suppose that L = Zd, d ≥ 2. If β is sufficiently small
(i.e., in the high temperature regime), the interaction is not strong enough to produce
any long range order, so that the boundary conditions become irrelevant in the infinite
volume limit and the Gibbs measure is uniquely determined. By ergodicity and the ±
symmetry, the limiting fraction of plus spins will almost surely be 1/2 under this unique
Gibbs measure. In contrast, when β is sufficiently large (in the low temperature regime),
the interaction becomes so strong that a long range order appears: the bias towards
neighbor pairs of equal spin then implies that Gibbs measures prefer configurations with
either a vast majority of plus spins or a vast majority of minus spins, and this preference
even survives in the infinite volume limit. The system thus undergoes a phase transition
which manifests itself in a non-uniqueness of Gibbs measures. Specifically, there exist
two particular Gibbs measures µ+ and µ−, obtained as infinite volume limits with
respective boundary conditions η ≡ +1 and η ≡ −1, which can be distinguished by their
overall density of +1’s: the density is greater than 1/2 under µ+ and (by symmetry) less
than 1/2 under µ−. This is the spontaneous magnetization phenomenon that Lenz and
Ising were looking for but were discouraged by not finding it in one dimension. In higher
dimensions, the uniqueness regime and the phase transition regime are separated by a
sharp critical value βc, as is summarized in the following classical theorem [187, 63, 65]:
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Theorem 3.1 For the ferromagnetic Ising model on the integer lattice Zd of dimension
d ≥ 2 at zero external field, there exists a critical inverse temperature βc ∈ (0,∞)
(depending on d) such that for β < βc the model has a unique Gibbs measure while for
β > βc there are multiple Gibbs measures.

A stochastic-geometric proof of this result will be given in Section 6. In fact, the result
(as well as its proof) holds for any graph (L,∼) in place of Zd, except that βc may
then take the values 0 or ∞. For instance, on the one-dimensional lattice Z1 we have
βc = ∞, which means that there is a unique Gibbs measure for all β. For Z2, the
critical value has been found to be βc = 1

2 log(1 +
√

2). This calculation is a remarkable
achievement which began with Onsager [186] in 1944. An account of various (algebraic
and/or combinatorial) methods can be found e.g. in [220, 171]. Let us also mention the
work done in 1973 by Abraham and Martin-Löf [1] relating these exact computations to
the real magnetization in the appropriate Gibbs measures; it also gives the result that
there is a unique Gibbs measure at the critical value β = βc. A rigorous calculation of
the critical value in higher dimensions is beyond current knowledge. It is believed that
uniqueness holds at criticality in all dimensions d ≥ 2, but so far this is only known for
d = 2 and d ≥ 4 [11].

The case of a nonzero external field h 6= 0 is less interesting, in that one finds a
unique Gibbs measure for all β and d. The intuitive explanation is that for h 6= 0 there
is no ± symmetry which could be broken; depending on the sign of h, the system is
forced to prefer either +1’s or −1’s. This comes from the fact that the magnetic field
acts on the whole volume, whereas the influence of a boundary condition is of smaller
order as the volume increases. In contrast, a phase transition for h 6= 0 does occur
when Zd is replaced by certain nonamenable graph structures for which the boundary
of a volume is of the same order of magnitude as the volume itself (which makes them
physically perhaps less realistic) – an example is the regular tree Td with d ≥ 2; we
refer to [215, 96, 140]. A phase transition can also occur for a non-zero external field
for the Ising model on a half-space where it is due to the so-called Basuev phenomenon
[19, 20].

Because of the simplicity of its model assumptions, the standard Ising model has
inspired a variety of techniques for analyzing interacting random fields. Its ferromagnetic
structure suggests various monotonicity properties which can be checked by the coupling
methods to be described in Section 4, and the assumption of neigbor interaction implies
the spatial Markov property (5) which plays a fundamental role in the geometric analysis
of typical configurations. Many techniques which were developed on this testing ground
turned out to be fruitful also in more general cases.

3.2 The antiferromagnetic Ising model

The Ising antiferromagnet is defined quite similarly to the ferromagnetic case, except
that U(σ(x), σ(y)) is taken to be +σ(x)σ(y) rather than −σ(x)σ(y). This means that
neighboring sites now prefer to take opposite spins.

Suppose that h = 0 and that the underlying graph is bipartite; this means that L
can be partitioned into two sets Leven and Lodd such that sites in Leven only have edges
to sites in Lodd, and vice versa. Clearly, Zd is an example of a bipartite graph. In this
situation, we can reduce the antiferromagnetic Ising model to the ferromagnetic case by
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a simple spin-flipping trick: The bijection σ ↔ σ̃ of Ω defined by

σ̃(x) =

{

σ(x) if x ∈ Leven ,
−σ(x) if x ∈ Lodd

(6)

maps any Gibbs measure for the antiferromagnetic Ising model to a Gibbs measure
for the ferromagnetic Ising model with the same parameters, and vice versa. As a
consequence, a phase transition in the antiferromagnetic model is equivalent to a phase
transition in the ferromagnetic model with the same parameters. Hence, Theorem 3.1
immediately carries over to the antiferromagnetic case.

The model becomes more interesting (or, at least, more genuinely antiferromagnetic)
if either h 6= 0 or the graph is taken to be non-bipartite. Suppose first that h 6= 0 but
still L = Zd. If |h| is small and β sufficiently large, we have the same picture as in
the case h = 0: there exist two distinct phases, one having a majority of plus spins
on the even sublattice and a majority of minus spins on the odd sublattice, the other
one having a majority of plus spins on the odd sublattice and a majority of minus
spins on the even sublattice. We will show this in Section 8.5, Example 8.17; see also
[65, 96]. Note that this phase transition is somewhat different in flavor compared to
that in the ferromagnetic Ising model: whereas in the Ising ferromagnet the phase
transition produces a breaking of a state-space symmetry, the phase transition in the
Ising antiferromagnet instead breaks the translation symmetry between the sublattices
Leven and Lodd.

To see what happens in the case of a non-bipartite graph we consider the triangular
lattice which can be obtained by taking the usual square lattice Z2 and adding an edge
between each vertex x and its north-east neighbor x+ (1, 1). In this case, one expects
uniqueness when h = 0, and existence of three distinct phases when |h| 6= 0 is small and
β is large. Phase transitions in these models were studied in [65, 129], for example.

3.3 The Potts model

A natural generalization of the ferromagnetic Ising model is the (ferromagnetic) Potts
model [194], in which each spin may take q ≥ 2 (rather than only two) different values.
The state space is then S = {1, 2, . . . , q}, and the pair interaction is given by

U(σ(x), σ(y)) = 1− 2I{σ(x)=σ(y)} .

We confine ourselves to the case of zero external field, so that V (σ(x)) ≡ 0. Taking q = 2
and identifying the state space {1, 2} with {−1,+1} we reobtain the ferromagnetic Ising
model with zero external field. Just as in the latter case, the Potts interaction favours
configurations where many neighbor pairs agree, and Theorem 3.1 can be extended to
the Potts model as follows, as we will show in Section 6.3.

Theorem 3.2 For the q-state Potts model on Zd, d ≥ 2, there exists a critical inverse
temperature βc ∈ (0,∞) (depending on d and q) such that for β < βc the model has a
unique Gibbs measure while for β > βc there exist q mutually singular Gibbs measures.

In the same way as Theorem 3.1, this theorem also holds on general graphs provided
we allow βc to be 0 or ∞. The Potts model differs from the Ising model in that, for
q large enough, there are multiple Gibbs measures also at the critical value β = βc,
as demonstrated by Kotecký and Shlosman [148]; an outline of a proof will be given
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in Example 8.21. The Onsager critical value for the two-dimensional Ising model is
believed to extend to the Potts model on Z2 through the formula βc(q) = 1

2 log(1+
√
q);

see Welsh [221], for example. This has so far only been established when q is sufficiently
large [149].

3.4 The hard-core lattice gas model

The hard-core lattice gas model (or hard-core model for short) describes a gas of particles
which can only sit on the lattice sites but are so large that adjacent sites cannot be
occupied simultaneously. The state space is S = {0, 1}, the pair interaction

U(σ(x), σ(y)) =

{

∞ if σ(x) = σ(y) = 1
0 otherwise,

describes the hard core of the particles, and the chemical potential is V (σ(x)) =
−(log λ) σ(x). Here λ > 0 is the so-called activity parameter. The hard-core model
shows some similarities to the Ising antiferromagnet in an external field and can, in
fact, obtained from it by a limiting procedure (β → ∞, h → 2d, β(h − 2d) = const,
[68]). Since U is either 0 or ∞, the inverse temperature β is irrelevant and will thus
be fixed as 1, and we can vary only the parameter λ. Finite volume Gibbs distribitions
can then be thought of as first letting all spins be independent, taking values 0 and 1
with respective probabilities 1

1+λ and λ
1+λ , and then conditioning on the event that no

two 1’s sit next to each other anywhere on the lattice.
The phase transition behavior of the hard-core model on Zd, d ≥ 2, is as follows.

For λ sufficiently close to 0, the particles are spread out rather sparsely on the lattice,
and we get a unique Gibbs measure, just as in the Ising antiferromagnet at high tem-
peratures. When λ increases, the particle density also increases, and the system finally
starts looking for optimal packings of particles. There are two such optimal packings,
one where all sites in Leven are occupied and those in Lodd are empty, and one vice versa;
we denote these configurations by ηeven and ηodd, respectively. (These chessboard con-
figurations look similar to those favoured in the Ising antiferromagnet.) For sufficiently
large λ, the infinite volume construction of Gibbs measures with these two choices of
boundary condition produces different Gibbs measures, so we get a phase transition
[65].

Theorem 3.3 For the hard-core model on Zd, d ≥ 2, there exist two constants 0 <
λc ≤ λ′c < ∞ (depending on d) such that for λ < λc the model has a unique Gibbs
measure while for λ > λ′c there are multiple Gibbs measures.

This result will be proved in Section 6.7. From a computer-assisted proof [201] we know
that λc ≥ 1.50762. It is widely believed that one should be able to take λc = λ′c in this
result, which would mean that the occurrence of phase transition is increasing in λ. Such
a result, however, would (unlike Theorems 3.1 and 3.2) not extend to arbitrary graph
structures; some counterexamples were recently provided by Brightwell, Häggström and
Winkler [38].

The hard-core model analogue of introducing an external field in the Ising model on
Zd is obtained by replacing the single activity parameter λ by two different activities
λeven and λodd, one for sites in Leven and the other for sites in Lodd. By analogy with the
Ising model, one would expect to have a unique Gibbs measure as soon as λeven 6= λodd;
this was conjectured by Van den Berg and Steif [27] and proved for the case d = 2 by
Häggström [117].

17



3.5 The Widom–Rowlinson lattice model

The Widom–Rowlinson model is another lattice gas model, where this time there are two
types of particles, and two particles are allowed to sit on neighboring sites only if they
are of the same type. Actually, Widom and Rowlinson [223] originally introduced it as
a continuum model of particles living in Rd; see Section 10.2 below. The lattice variant
described here was first studied by Lebowitz and Gallavotti [153]. The state space is
S = {−1, 0,+1}, where −1 and +1 are the two particle types, and 0’s correspond to
empty sites. The pair interaction is given by

U(σ(x), σ(y)) =

{

∞ if σ(x)σ(y) = −1 ,
0 otherwise,

and the chemical potential by

V (σ(x)) =











− log λ− if σ(x) = −1 ,
0 if σ(x) = 0 ,

− log λ+ if σ(x) = +1 .

Here λ−, λ+ > 0 are the activity parameters for the two particle types −1 and +1.
As in the hard-core model, we fix the inverse tempreature β = 1 and only vary the
activity parameters. Gibbs measures can then be thought of as first picking all spins
independently, taking values −1, 0 or +1 with probabilities proportional to λ−, 1, and
λ+, and then conditioning on the event that no two particles of different type sit next to
each other in the lattice. We are mainly interested in the symmetric case λ− = λ+ = λ,
where the phase transition behavior on Zd, d ≥ 2 is similar to the Ising model: For λ
small, there is a unique Gibbs measure in which the overall density of plus-particles is
almost surely equal to that of the minus-particles. For λ sufficiently large, the system
wants to pack the particles so densely that the ±1 symmetry is broken. As for the Ising
model, one can construct two particular Gibbs measures µ+ and µ− using boundary
conditions η ≡ +1 and η ≡ −1; for small λ we get µ+ = µ− whereas for large λ the
two measures are different (and distinguishable through the densities of the two particle
types), producing a phase transition.

Theorem 3.4 For the Widom–Rowlinson model on Zd, d ≥ 2, with activities λ− =
λ+ = λ, there exist 0 < λc ≤ λ′c < ∞ (depending on d) such that for λ < λc the model
has a unique Gibbs measure while for λ > λ′c there are multiple Gibbs measures.

As in the hard-core model, we expect that one should be able to take λc = λ′c, but
such a monotonicity is not known. Examples of graph structures where the desired
monotonicity fails can be found in [38].

We furthermore expect that the asymmetric Widom–Rowlinson model on Zd with
λ− 6= λ+ always has a unique Gibbs measure (similarly to the Ising model with a
nonzero external field), but this also is not rigorously known.
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4 Coupling and stochastic domination

Geometry alone will not be sufficient for our analysis of equilibrium phases. We also need
some probabilistic tools which allow us to compare different configurations and different
probability measures. So we need to include another preparatory section describing
these tools and their basic applications to our setting.

Coupling is a probabilistic technique which has turned out to be immensely useful in
virtually all areas of probability theory, and especially in its applications to statistical
mechanics. The basic idea is to define two (or more) stochastic processes jointly on
the same probability space so that they can be compared realizationwise. This direct
comparison often leads to conclusions which would not be easily available by considering
the processes separately. Although an independent coupling is sometimes already quite
useful (as we will see in Section 7.3, for example), it is usually more efficient to introduce
a dependence which relates the two processes in an efficient way. One such particularly
nice relationship is that one process is pointwise smaller than the other in some partial
order. This case is related to the central concept of stochastic domination, via Strassen’s
Theorem (Theorem 4.6) below. We will confine ourselves to those parts of coupling
theory that are needed for our applications; a more general account can for example be
found in the monograph by Lindvall [162].

4.1 The coupling inequality

In this and the next subsection of general character, L will be an arbitrary finite or
countably infinite set. As the notation indicates, we think of the standard case that L
is the lattice introduced in Section 2.1, but the following results will also be applied to
the case when L is replaced by its set B of bonds. We consider again the product space
Ω = SL, where for the moment S is an arbitrary measurable space.

Suppose X and X ′ are random elements of Ω, and let µ and µ′ be their respective
distributions. We define the (half) total variation distance ‖µ − µ′‖ between µ and µ′

by
‖µ− µ′‖ = sup

A⊂Ω
|µ(A)− µ′(A)| (7)

where A ranges over all measurable subsets of Ω. The coupling inequality below provides
us with a convenient upper bound on this distance. To state it we first need to define
what we mean by a coupling of X and X ′.

Definition 4.1 A coupling P of two Ω-valued random variables X and X ′, or of their
distributions µ and µ′, is a probability measure on Ω×Ω having marginals µ and µ′, in
that for every event A ⊂ Ω

P ((ξ, ξ′) : ξ ∈ A) = µ(A) (8)

and
P ((ξ, ξ′) : ξ′ ∈ A) = µ′(A) . (9)

We think of a coupling as a redefinition of the random variables X and X ′ on a new
common probability space such that their distributions are preserved. Sometimes it will
be convenient to keep the underlying probability space implicit, but in general, as in
(8) and (9), we make the canonical choice, which is the product space Ω×Ω; X and X ′

are then simply the projections on the two coordinate spaces. With this in mind, we
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write P (X ∈ A) and P (X ′ ∈ A) for the left hand sides of (8) and (9), respectively. In
the same spirit, P (X = X ′) is a short-hand for P ((ξ, ξ′) : ξ = ξ′).

Proposition 4.2 (The coupling inequality) Let P be a coupling of two Ω-valued
random variables X and X ′, with distributions µ and µ′. Then

‖µ− µ′‖ ≤ P (X 6= X ′). (10)

Proof: For any A ∈ Ω, we have

µ(A)− µ′(A) = P (X ∈ A)− P (X ′ ∈ A)

= P (X ∈ A,X ′ 6∈ A)− P (X 6∈ A,X ′ ∈ A)

≤ P (X ∈ A,X ′ 6∈ A)

≤ P (X 6= X ′) ,

whence (10) follows by symmetry. 2

The next result states that there always exists some coupling which achieves equality
in (10). We call such a coupling optimal.

Definition 4.3 A coupling P of two Ω-valued random variables X and X ′, with distri-
butions µ and µ′, is said to be an optimal coupling if

‖µ− µ′‖ = P (X 6= X ′) .

Proposition 4.4 For any two Ω-valued random variables X and X ′, there exists an
optimal coupling of X and X ′.

To construct an optimal coupling, one simply puts the common mass µ ∧ µ′ of µ and
µ′ on the diagonal of Ω × Ω and adds any measure with marginals µ − µ ∧ µ′ and
µ′ − µ ∧ µ′; the simplest choice of such a measure is the appropriately scaled product
measure. For details we refer to [162], where such a coupling is called the γ-coupling of
µ and µ′. This construction shows, in particular, that the optimal coupling is in general
not unique. Applications of optimal couplings to interacting particle systems can be
found in [160, 166], for example.

4.2 Stochastic domination

Suppose now that S is a closed subset of R, so that S is linearly ordered. The product
space Ω is then equipped with a natural partial order � which is defined coordinatewise:
For ξ, ξ′ ∈ Ω, we write ξ � ξ′ (or ξ′ � ξ) if ξ(x) ≤ ξ′(x) for every x ∈ L. A function
f : Ω → R is said to be increasing (or, non-decreasing) if f(ξ) ≤ f(ξ′) whenever
ξ � ξ′. An event A is said to be increasing if its indicator function IA is increasing. The
following standard definition of stochastic domination expresses the fact that µ′ prefers
larger elements of Ω than µ.

Definition 4.5 Let µ and µ′ be two probability measures on Ω. We say that µ is
stochastically dominated by µ′, or µ′ is stochastically larger than µ, writing µ �D µ′,
if for every bounded increasing observable f : Ω→ R we have µ(f) ≤ µ′(f).
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In the one-dimensional case when |L| = 1 and Ω = S ⊂ R, this definition is equivalent
to the classical requirement that µ([r,∞)) ≤ µ′([r,∞)) for all r ∈ R. The following
fundamental result of Strassen [216] characterizes stochastic domination in coupling
terms.

Theorem 4.6 (Strassen) For any two probability measures µ and µ′ on Ω, the fol-
lowing statements are equivalent.

(i) µ �D µ′

(ii) For all continuous bounded increasing functions f : Ω→ R, µ(f) ≤ µ′(f).

(iii) There exists a coupling P of µ and µ′ such that P (X � X ′) = 1.

Sketch of proof: While the implications (i) ⇒ (ii) and (iii) ⇒ (i) are trivial, the
assertion (ii) ⇒ (iii) is too deep to be explained here in detail. To start one should note
that µ and µ′ may be considered as measures on the compact space [−∞,∞]L, and one
can then follow the arguments outlined in [160], pp. 72 ff., or [162]. Further discussion
of Strassen’s theorem can be found in [162, 141]. 2

The equivalence (i) ⇔ (ii) in Theorem 4.6 readily implies the following corollary.

Corollary 4.7 The relation �D of stochastic domination is preserved under weak lim-
its.

Next we recall a famous sufficient condition for stochastic domination. This condition is
(essentially) due to Holley [134] and refers to the finite-dimensional case when |L| <∞.
We also assume for simplicity that S ⊂ R is finite. Hence Ω is finite. In this case,
a probability measure µ on Ω is called irreducible if the set {η ∈ Ω : µ(η) > 0} is
connected in the sense that any element of Ω with positive µ-probability can be reached
from any other via successive coordinate changes without passing through elements with
zero µ-probability.

Theorem 4.8 (Holley) Let L be finite, and let S be a finite subset of R. Let µ and
µ′ be probability measures on Ω. Assume that µ′ is irreducible and assigns positive
probability to the maximal element of Ω (with respect to �). Suppose further that

µ(X(x) ≥ a |X = ξ off x) ≤ µ′(X(x) ≥ a |X = η off x) (11)

whenever x ∈ L, a ∈ S, and ξ, η ∈ SL\{x} are such that ξ � η, µ(X = ξ off x) > 0 and
µ′(X = η off x) > 0. Then µ �D µ′.

Proof: Consider a Markov chain (Xk)∞k=0 with state space Ω and transition probabilities
defined as follows. At each integer time k ≥ 1, pick a random site x ∈ L according to
the uniform distribution. Let Xk = Xk−1 on L\ {x}, and select Xk(x) according to the
single-site conditional distribution prescribed by µ. This is a so-called Gibbs sampler
for µ, and it is immediate that if the initial configuration X0 is chosen according to µ,
then Xk has distribution µ for each k. Define a similar Markov chain (X ′

k)
∞
k=0 with µ

replaced by µ′.
Next, define a coupling of (Xk)

∞
k=0 and (X ′

k)
∞
k=0 as follows. First pick the initial

values (X0,X
′
0) according to the product measure µ× µ′. Then, for each k, pick a site

x ∈ L at random and let Uk be an independent random variable, uniformly distributed
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on the interval [0, 1]. Let Xk(y) = Xk−1(y) and X ′
k(y) = X ′

k−1(y) for each site y 6= x,
and update the values at site x by letting

Xk(x) = max{a ∈ S : µ(X(x) ≥ a |X = ξ off x) ≥ Uk}

and
X ′

k(x) = max{a ∈ S : µ′(X ′(x) ≥ a |X ′ = η off x) ≥ Uk}
where ξ = Xk−1(L\{x}) and η = X ′

k−1(L\{x}). It is clear that this construction gives
the correct marginal behaviors of (Xk)

∞
k=0 and (X ′

k)∞k=0. The assumption (11) implies
that Xk � X ′

k whenever Xk−1 � X ′
k−1. By the irreducibility of µ′, the chain (X ′

k)
∞
k=0

will almost surely hit the maximal state of Ω at some finite (random) time, and from
this time on we will thus have Xk � X ′

k. Since the coupled chain (Xk,X
′
k)

∞
k=0 is a finite

state aperiodic Markov chain, (Xk,X
′
k) has a limiting distribution as k → ∞. Picking

(X,X ′) according to this limiting distribution gives a coupling of X and X ′ such that
X � X ′ almost surely, whence µ �D µ′ by Theorem 4.6. 2

A non-dynamical proof of Holley’s inequality by induction on |L|, together with an
extension to non-finite S, was given by Preston [197]; the simplest induction proof of
an even more general result can be found in [21].

As a consequence of Holley’s inequality we obtain the celebrated FKG inequality
(Theorem 4.11 below) of Fortuin, Kasteleyn and Ginibre [83], who stated it under
slightly different conditions. It concerns the correlation structure in a single probability
measure rather than a comparison between two probability measures.

Definition 4.9 A probability measure µ on Ω is called monotone if

µ(X(x) ≥ a |X = ξ off x) ≤ µ(X(x) ≥ a |X = η off x) (12)

whenever x ∈ L, a ∈ S, and ξ, η ∈ SL\{x} are such that ξ � η, µ(X = ξ off x) > 0 and
µ(X = η off x) > 0.

Intuitively, µ is monotone if the spin at a site x prefers to take large values whenever
its surrounding sites do.

Definition 4.10 A probability measure µ on Ω is said to have positive correlations
if for all bounded increasing functions f, g : Ω→ R we have

µ(fg) ≥ µ(f)µ(g) .

Since the preceding inequality is preserved under rescaling and addition of constants
to f and g, µ has positive correlations whenever µ �D µ′ for any probability measure
µ′ with bounded increasing Radon–Nikodym density relative to µ. Theorem 4.6 thus
shows that µ has positive correlations whenever µ(fg) ≥ µ(f)µ(g) for all continuous
bounded increasing functions f and g. Hence, the property of positive correlations is
also preserved under weak limits.

Theorem 4.11 (The FKG inequality) Let L be finite, S a finite subset of R, and
µ a probability measure on Ω which is irreducible and assigns positive probability to the
maximal element of Ω (relative to �). If µ is monotone, it also has positive correlations.

22



Proof: Suppose µ′ is a second probability measure on Ω such that µ′(η) = µ(η)g(η)
for all η ∈ Ω and some positive increasing function g. For x ∈ L, a ∈ S and ξ ∈ SL\{x}

such that µ(X = ξ off x) > 0 we write qx(a, ξ) = µ(X(x) ≥ a |X = ξ off x) and define
q′x(a, ξ) similarly in terms of µ′. Then

q′x(a, ξ) / (1− q′x(a, ξ)) =
∑

s≥a

µ(ξx,s) g(ξx,s)

/

∑

s<a

µ(ξx,s) g(ξx,s)

≥
∑

s≥a

µ(ξx,s)

/

∑

s<a

µ(ξx,s)

= qx(a, ξ) / (1− qx(a, ξ)).

Together with assumption (12), this implies that µ and µ′ satisfy (11). Theorem 4.8
thus implies that µ �D µ′, and the corollary follows. 2

Finally we state a simple observation showing that, under the condition of stochastic
domination, the equality of the single-site marginal distributions already implies the
equality of the whole probability measures.

Proposition 4.12 Let L be finite or countable, and let µ and µ′ be two probability
measures on Ω = RL satisfying µ �D µ′. If, in addition, µ(X(x) ≤ r) = µ′(X(x) ≤ r)
for all x ∈ L and r ∈ R then µ = µ′.

Proof: Let P be a coupling of µ and µ′ such that P (X � X ′) = 1 which exists by
Theorem 4.6. Writing Q for the set of rational numbers, we have for each x ∈ L

P (X(x) 6= X ′(x)) = P (X(x) < X ′(x))

≤
∑

r∈Q

P (X(x) ≤ r, X ′(x) > r)

=
∑

r∈Q

(

P (X(x) ≤ r)− P (X ′(x) ≤ r)
)

= 0.

Summing over all x ∈ L we get P (X 6= X ′) = 0, whence µ = µ′ by (10). 2

4.3 Applications to the Ising model

We will now apply the results of the previous subsection to the ferromagnetic Ising
model. Let (L,∼) be any infinite locally finite graph. For definiteness, one may think
of the case L = Zd; the arguments are, however, independent of the particular graph
structure.

As in Section 3.1, we write µη
h,β,Λ for the Gibbs distribution in a finite region Λ

with boundary condition η ∈ Ω and external field h ∈ R at inverse temperature β >
0. Our first application of Holley’s theorem asserts that if one boundary condition
dominates another, then we also have stochastic domination between the corresponding
finite volume Gibbs distributions.

Lemma 4.13 If the boundary conditions ξ, η ∈ Ω satisfy ξ � η, then

µξ
h,β,Λ �D µη

h,β,Λ .

Also, each µξ
h,β,Λ has positive correlations.
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Proof: The conditional probability of having a plus spin at a given site x given the
configuration ξ everywhere else is equal to (1 + exp[−2β(h +

∑

y:y∼x ξ(y))])
−1, which

is an increasing function of ξ. Theorem 4.8 and Theorem 4.11 thus imply stochastic
domination between the projections of the Gibbs distributions to SΛ and the positive
correlations property. As their behavior outside Λ is deterministic, the lemma follows.
2

We write µ+
h,β,Λ and µ−h,β,Λ for the finite volume Gibbs distributions obtained with

respective boundary conditions η ≡ +1 and η ≡ −1. Lemma 4.13 then shows that

µ−h,β,Λ �D µη
h,β,Λ �D µ+

h,β,Λ (13)

for any η ∈ Ω. This sandwich inequality reveals the special role played by the “all
plus” and “all minus” boundary conditions. Next we establish the existence of the
limiting “plus measure” discussed in Section 3.1. We will say that a measure µ on Ω
is homogeneous if it is invariant under all graph automorphisms of (L,∼). In the case
L = Zd, a homogeneous measure is thus invariant under translations, lattice rotations,
and reflections in the axes. We write Λ ↑ L for the limit along an arbitrary increasing
sequence of finite regions which exhaust the full graph L.

Proposition 4.14 The limiting probability measure

µ+
h,β = lim

Λ↑L
µ+

h,β,Λ

exists. µ+
h,β is a homogeneous Gibbs measure for the Ising model on (L,∼) with external

field h and inverse temperature β and has positive correlations.

Proof: By the general theory in Section 2.6, the limit is a Gibbs measure whenever
it exists. Also, by Lemma 4.13 the limit must have positive correlations. To show the
existence of the limit we note that

µ+
h,β,Λ �D µ+

h,β,∆ whenever Λ ⊂ ∆ . (14)

This follows from Lemma 4.13 because µ+
h,β,Λ is obtained from µ+

h,β,∆ by conditioning
on the increasing event that X ≡ +1 on ∆ \ Λ.

Now, for any finite A ⊂ Λ, if Λ increases, then, by (14), µ+
h,β,Λ(X ≡ +1 on A)

decreases and therefore converges to inf∆ µ
+
h,β,∆(X ≡ +1 on A) . Note that this limit is

obviously invariant under any automorphism of (L,∼). By inclusion-exclusion it follows
that, for any local observable f , µ+

h,β,Λ(f) converges to an automorphism invariant limit

as Λ ↑ L. These limits determine a unique homogeneous probability measure µ+
h,β which,

as a weak limit of finite volume Gibbs distributions, is a Gibbs measure. The lemma is
thus proved. 2

Obviously, replacing the “all plus” boundary condition by the “all minus” boundary
condition, we obtain in the same way an automorphism invariant infinite volume Gibbs
measure µ−h,β with positive correlations. In the same way, Lemma 4.13 shows that

any extremal Gibbs measure has positive correlations (since it is a weak limit of µη
h,β,Λ

for suitable η). However, positive correlations may fail for suitable (L,∼) and some
particular non-extremal Gibbs measures. For instance, when L = Z3 and β is sufficiently
large, one can take a convex combination of two different so-called Dobrushin states;
see [66, 22].
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We now take the limit in the sandwich inequality (13). Let µ be any Gibbs measure
for the Ising model with parameters h and β. Taking the mean

∫

µ(dη) in (13), we
obtain that µ−h,β,Λ �D µ �D µ+

h,β,Λ, and since stochastic domination is preserved under
weak limits, we end up with

µ−h,β �D µ �D µ+
h,β (15)

when µ is any Ising-model Gibbs measure for β, h. On the one hand, this shows that
µ−h,β and µ+

h,β are extremal, and thus equilibrium phases in the sense of Section 2.7. On
the other hand, we obtain an efficient criterion for the existence of a phase transition
which was first observed by Lebowitz and Martin-Löf [155] and Ruelle [205].

Theorem 4.15 For the Ising model on an infinite locally finite graph (L,∼) with ex-
ternal field h ∈ R and inverse temperature β, the following statements are equivalent.

(i) There is a unique infinite volume Gibbs measure.

(ii) µ−h,β = µ+
h,β

(iii) µ−h,β(X(x) = +1) = µ+
h,β(X(x) = +1) for all x ∈ L.

Proof: The implications (i) ⇒ (ii) ⇒ (iii) are immediate. (iii) ⇒ (ii) follows directly
from (15) and Proposition 4.12, and (ii) ⇒ (i) from (15). 2

Remarks: (a) In the case h = 0 of no external field, assertion (iii) is equivalent to
µ+

h,β(X(x) = +1) = 1/2 for all x ∈ L, by the ± symmetry of the model. An extension
of Theorem 4.15 in this case to the q-state Potts model will be given in Theorem 6.10.

(b) If the graph automorphisms act transitively on (L,∼) then, by homogeneity,
assertion (iii) is equivalent to having the equation only for some x ∈ L. Using for
example the random-cluster methods of Section 6 one can obtain the same equivalence
also in the general case, assuming only that L is connected.

(c) If L = Zd, (iii) is equivalent to the condition that the free energy density is
differentiable with respect to h at the given values of h and β [155]. By the celebrated
Lee-Yang circle theorem [203], this is the case whenever h 6= 0. Alternatively, one can
use the so-called GHS inequality to establish (iii) for h 6= 0 [196]. Hence, for non-zero
external field the Ising model on Zd does not exhibit a phase transition.

We conclude this subsection comparing the Ising-model “plus” measures for different
values of the parameters. (For similar results in a lattice gas setting see [156].)

Proposition 4.16 Consider the Ising model on an arbitrary graph (L,∼) at two inverse
temperatures β1, β2 and two external fields h1, h2. Suppose that either β1 = β2 and
h1 ≤ h2, or (L,∼) is of bounded degree N = supx∈LNx and β2h2 ≥ β1h1 +N |β1 − β2|.
Then

µ+
h1,β1

�D µ+
h2,β2

.

Proof: The stated conditions imply that µξ
h1,β1,{x}(+1) ≤ µη

h2,β2,{x}(+1) whenever

ξ � η. Hence, by Theorem 4.8, µ+
h1,β,Λ �D µ+

h2,β,Λ for all Λ, and the proposition follows
by letting Λ ↑ L. 2

If L has bounded degree N , we obtain in particular a comparison of Ising and Bernoulli
measures. Let ψp denote the Bernoulli measure on {−1, 1}L with density p. Then
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µ+
h,β → ψp as β → 0 and βh→ 1

2 log p
1−p . The preceding proposition and Corollary 4.7

thus show that

µ+
h,β �D ψp for h ≥ 1

2β
log

p

1− p +N

and

µ+
h,β �D ψp for h ≤ 1

2β
log

p

1− p −N .

4.4 Application to other models

Do the arguments of the previous subsection extend to the other models of Section
3? The answer to this question is different for the different models. For the Potts
model with q ≥ 3, Lemma 4.13 fails because the conditional probability that the spin
at a site x takes a large value is not increasing in the surrounding spin configuration.
Nevertheless, the Potts model admits some analogues of Proposition 4.14 and Theorem
4.15. These results are deeper than their Ising counterparts, and will be demonstrated
by random-cluster arguments in Section 6.

The Widom–Rowlinson model exhibits the same monotonicity properties as the Ising
model. We thus obtain Widom–Rowlinson analogues of Lemma 4.13 and Proposition
4.14. Fixing any two activity parameters λ+, λ− > 0 and writing µ+ (resp. µ−) for
the associated limiting Gibbs measures with “all plus” (resp. “all minus”) boundary
conditions, we find that any other Gibbs measure for the same parameters is sandwiched
(in the sense of (15)) between µ+ and µ−. The analogue of Theorem 4.15 reads as follows.

Theorem 4.17 For the Widom–Rowlinson model on an infinite locally finite graph
(L,∼) with activity parameters λ+, λ− > 0, the following statements are equivalent.

(i) There is a unique infinite volume Gibbs measure.

(ii) µ+ = µ−

(iii) µ+(X(x) = +1) = µ−(X(x) = +1) for all x ∈ L.

The Ising antiferromagnet and the hard-core lattice gas model are far from satisfying
the monotonicity properties needed for the arguments in Section 4.3; the conditional
probability that a site x takes the value +1 is decreasing, rather than increasing, in the
surrounding configuration. However, when (L,∼) is bipartite (as in the case L = Zd)
we can use again the trick of (6) to flip all spins on the odd sublattice. The Ising
antiferromagnet is then mapped onto the Ising ferromagnet with a staggered external
field (having alternating signs on the even and the odd sublattices). Similarly, the
hard-core model is mapped into a model which also exhibits the necessary monotonicity
properties. We thus obtain analogous results which we spell out only for the hard-core
model with activity λ > 0 : There exist two particular Gibbs measures µeven

λ and µodd
λ ,

obtained as infinite volume limits of finite volume Gibbs distributions with respective
boundary conditions ηeven and ηodd, defined in Section 3.4. In terms of these two Gibbs
measures, the existence of a phase transition can be characterized as follows.
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Theorem 4.18 For the hard-core model on an infinite locally finite bipartite graph
(L,∼) with activity parameter λ, the following are equivalent.

(i) There is a unique infinite volume Gibbs measure.

(ii) µeven
λ = µodd

λ

(iii) µeven
λ (X(x) = 1) = µodd

λ (X(x) = 1) for all x ∈ L.
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5 Percolation

We will now introduce the ideas of random geometry we referred to in the title of this
paper. As these were developed first in the framework of percolation theory, we devote
this section to a description of this subject. We will start with the classical case of
independent, or Bernoulli, percolation, and will then proceed to the case of dependent
percolation. In the subsequent sections we will see how these results and ideas can be
used for the geometric analysis of equilibrium phases.

5.1 Bernoulli percolation

Bernoulli percolation was introduced in the 1950’s in papers by Broadbent and Ham-
mersley [39, 124, 125] as a model for the passage of a fluid through a porous medium.
In fact, the model has appeared first in [79] in the context of polymerization. We give
here only a brief introduction; a thorough treatment can be found in the the books and
lectures by Grimmett [108, 110], Chayes and Chayes [52], and Kesten [143].

The porous medium is modelled by a graph (L,∼), and either the sites or the bonds
of this graph are considered to be randomly open or closed (blocked). We begin with
the case of site percolation; the alternative case of random bonds will be discussed at
the end of this subsection.

The basic question of percolation theory is how a fluid can spread through the
medium. This involves the connectivity properties of the set of open vertices. To
describe this we introduce some terminology. A finite path is a sequence (v0, e1, v1, e2,
. . . , ek, vk), where v0, . . . , vk ∈ L are pairwise distinct vertices and e1, . . . , ek ∈ B are
pairwise distinct edges such that, for each i ∈ {1, . . . , k}, the edge ei connects the vertices
vi−1 and vi. Obviously, a path is equivalently described by its sequence (v0, v1, . . . , vk)
of vertices or its sequence (e1, e2, . . . , ek) of edges. The number k is called the length
of the path. In the same way, we can also speak of infinite paths (v0, e1, v1, e2, . . .) and
doubly infinite paths (. . . , v−1, e0, v0, e1, v1, . . .). A region C ⊂ L is called connected if
for any x, y ∈ C there exists a path which starts at x, ends at y, and which only contains
vertices in C.

An open path is a path on which all vertices are open. An open cluster is a maximal
connected set C in which all vertices are open; here maximal means that there is no
larger region C ′ ⊃ C which is connected and only contains open vertices. An infinite
open cluster (or infinite cluster, for short) is an open cluster containing infinitely many
vertices. Using these terms, we may say that the existence of an infinite open cluster is
equivalent to the fact that a fluid can wet a macroscopic part of the medium.

We now turn to the classical case of Bernoulli site percolation with retention param-
eter p ∈ [0, 1]. In this case, each vertex of L, independently of all others, is declared to
be open (and represented by the value 1) with probability p and closed (with value 0)
with probability 1− p. We write ψp for the associated (Bernoulli) probability measure
on the configuration space {0, 1}L.

The first question to be asked is whether or not infinite clusters can exist. This
depends, of course, on both the graph (L,∼) and the parameter p. The basic observation
is the following.

Proposition 5.1 For Bernoulli site percolation on an infinite locally finite graph
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(L,∼), there exists a critical value pc ∈ [0, 1] such that

ψp(∃ an infinite open cluster) =

{

0 if p < pc

1 if p > pc.

At the critical value p = pc, the ψp-probability of having an infinite open cluster is either
0 or 1.

Proof: A moment’s thought reveals that the existence of infinite clusters is invariant
under a change of the status of finitely many vertices. By Kolmogorov’s zero-one law,
the ψp-probability of having infinite clusters is therefore either 0 or 1. It remains to
show that this probability is increasing in p. The existence of an infinite open cluster is
obviously an increasing event, so we are done if we can show that

ψp1 �D ψp2 whenever p1 ≤ p2. (16)

This is intuitively obvious and can be proved by the following elementary coupling
argument. Let Y = (Y (x))x∈L be a family of i.i.d. random variables with uniform
distribution on [0, 1], and for p ∈ [0, 1] let Xp = (Xp(x))x∈L be defined by Xp(x) =
I{Y (x)≤p}. It is then clear that Xp has distribution ψp and Xp1 � Xp2 whenever p1 ≤ p2.
This implies (16) by (the trivial part of) Theorem 4.6. (Note that we have in fact
constructed a simultaneous coupling of all ψp’s, and that this construction would be
used in Monte Carlo simulations of Bernoulli percolation.) 2

We write {x ↔ ∞} for the event that x ∈ L belongs to an infinite cluster, and set
θx(p) = ψp(x ↔ ∞). For homogenous graphs such as L = Zd, θx(p) does not depend
on x, and then we write simply θ(p). Equation (16) shows that θx(p) is increasing in p.
We also make the following observation.

Proposition 5.2 For any infinite locally finite connected graph (L,∼), any x ∈ L and
any p ∈ (0, 1), we have θx(p) > 0 if and only if ψp(∃ an infinite open cluster) = 1.

Proof: From Proposition 5.1 we know that an infinite cluster exists with probability 0
or 1. The implication “only if” is therefore immediate. For the “if” part, we note that
if an infinite cluster exists with positive probability, then there is some N such that
ψp(AN ) > 0, where AN is the event that some vertex within distance N from x belongs
to an infinite cluster. On the other hand we have ψp(BN ) > 0, where BN is the event
that all vertices within distanceN−1 from x are open. The event AN∩BN implies that x
belongs to an infinite cluster. But AN and BN are increasing events (see Section 4.2), so
that we can apply Theorem 4.11 to obtain θx(p) ≥ ψp(AN ∩BN ) ≥ ψp(AN )ψp(BN ) > 0.
2

Note that the proof above applies to the much broader class of all measures with positive
correlations (recall Definition 4.10), rather than only the Bernoulli measures.

Next we ask whether both possibilities in Proposition 5.2 really occur, that is, if
0 < pc < 1. For, only in this case we really have a nontrivial critical phenomenon at
pc. The answer depends on the graph. For L = Zd with dimension d ≥ 2, the threshold
pc is indeed nontrivial, as is stated in the theorem below. This nontriviality of pc is a
fundamental ingredient of many of the stochastic-geometric arguments employed later
on. On the other hand, it is easy to see that pc = 1 for L = Z1.
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Theorem 5.3 The critical value pc = pc(d) for site percolation on L = Zd, d ≥ 2,
satisfies the inequalities

1

2d− 1
≤ pc ≤

6

7
. (17)

Proof: We begin with the lower bound on pc. For k = 1, 2, . . ., we write Nk for the
random number of open paths of length k starting at 0. On the event {0↔∞} we have
Nk ≥ 1 for each k, whence

θ(p) ≤ ψp(Nk) . (18)

The number of all paths of length k starting at 0 is at most 2d(2d − 1)k−1, and each
path is open with probability pk. Hence

ψp(Nk) ≤ 2d(2d − 1)k−1pk

which tends to 0 as k → ∞ whenever p < 1/(2d − 1). In combination with (18) this
implies that θ(p) = 0 for p < 1/(2d − 1), and the first half of (17) is established.

The second half of (17) only needs to be proved for d = 2; this is because Z2 can be
embedded into Zd for any d ≥ 2, so that pc(d) ≤ pc(2). So let d = 2. We first need some
additional terminology. A ∗-path in Z2 is a sequence (v0, v1, . . . , vk) of distinct vertices
such that d∞(vj−1, vj) = 1 for j = 1, . . . k. Note that two consecutive vertices in a ∗-
path need not be nearest-neighbors; they may also be “diagonal neighbors”. A ∗-circuit
is a sequence (v0, v1, . . . , vk, v0) such that (v0, v1, . . . , vk) is a ∗-path and d∞(vk, v0) = 1.
Informally, a ∗-circuit is a ∗-path which ends where it starts. ∗-circuits with the same
set of sites are identified. A closed ∗-circuit is a ∗-circuit in which all vertices are closed.

Now let M be the number of closed ∗-circuits that surround the origin 0. As Z2

is a planar graph, the “outer boundary” of a finite open cluster containing 0 defines a
closed ∗-circuit around 0. Hence, the event {0↔∞} occurs if and only if M = 0.

The number of all (not necessarily closed) ∗-circuits of a given length k surrounding
0 allows the following crude estimate. Consider the leftmost crossing of the x-axis of
such a circuit; the location of such a crossing is at distance at most k from the origin,
so there are at most k such locations to choose from. Starting at this location, we may
trace the ∗-circuit clockwise (say), and at each step we have at most 7 d∞-neighbors to
choose from. Hence, the number of ∗-circuits of length k around 0 is at most k 7k−1.
Each one is closed with probability (1− p)k, so

ψp(M) ≤
∞
∑

k=1

k 7k−1(1 − p)k.

The last sum is finite for p > 6/7. Hence, for such a p and n large enough, there is
a positive probability for having no closed ∗-circuit around 0 which contains a site of
distance at least n from 0. By the argument in the proof of Proposition 5.2, it follows
that ψp(M = 0) > 0 for such p. Hence θ(p) > 0 for p > 6/7, and the second half of (17)
follows. 2

The exact value of the percolation threshold pc(d) of Zd is not known for any d ≥ 2.
The best rigorous bounds for d = 2 are presently

0.556 < pc(2) < 0.680 (19)
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where the first inequality is due to van den Berg and Ermakov [26] (inspired by [176])
and the second to Wierman [224]. For high dimensions, it is known that

lim
d→∞

2d pc(d) = 1 , (20)

see Kesten [144], Gordon [104] and Hara and Slade [127] for this and finer asymptotics.
On some particular graphs, pc can be determined exactly. For example, for L = Td,
the regular (Cayley or Bethe) tree, branching-process arguments immediately show that
pc(Td) = 1/d, and for the triangular lattice it follows from planar duality that pc = 1/2
[143].

The preceding considerations do not tell us what happens at the critical value pc.
It is believed that, for the integer lattice Zd of any dimension d ≥ 2, there is ψpc-a.s.
no infinite cluster, which means that θ(pc) = 0; so far this is only known for d = 2
and d ≥ 19, see Russo [209] and Hara and Slade [126]. One can show that the relation
θ(pc) = 0 implies continuity of θ(p) at p = pc, so in combination with the trivial
continuity of θ(p) in the subcritical regime and the following more interesting result
(which can be found e.g. in [108]) we get continuity of θ(p) throughout [0, 1] as soon as
absence of infinite clusters at criticality is established.

Theorem 5.4 For Bernoulli site percolation on Zd, d ≥ 2, the function θ(p) is contin-
uous throughout the supercritical regime (pc, 1].

So far we were interested in the existence of infinite clusters. In the subcritical
regime p < pc when no infinite cluster exists, one may ask for the size of a typical
cluster. Let |C0| be the random number of vertices in the open cluster containing the
origin; we set |C0| = 0 if the origin is closed. By the definition of pc, ψp(|C0| =∞) = 0.
For L = Zd, we even have the stronger statement that the expected value of |C0| is
finite.

Theorem 5.5 For Bernoulli site percolation on Zd with retention parameter p < pc,
we have ψp(|C0|) <∞.

This was proved independently by Menshikov [174] and by Aizenman and Barsky [6].
The proofs are rather involved, so we refer the reader to the original articles and [108].
It is worth noting that Theorem 5.5 fails in the setting of general graphs; a striking
counterexample is the “three-one-tree” discussed on p. 936 of Lyons [164].

Menshikov even showed that the distribution of the radius of the open cluster con-
taining the origin decays exponentially. The following even stronger result states that
the same is true for the distribution of |C0|; see Grimmett [108] for a proof (in the case
of bond percolation).

Theorem 5.6 For Bernoulli site percolation on Zd with retention parameter p < pc,
there exists a constant c (depending on p) such that

ψp(|C0| ≥ n) ≤ e−c n

for all n.

Looking at a fixed path of length n starting at 0, we immediately obtain the lower
bound ψp(|C0| ≥ n) ≥ pn. So the preceding upper bound is best possible, except that
the optimal constant c is unknown.

31



We conclude this section with some remarks on Bernoulli bond percolation. The
model is similar, except that now the edges rather than the vertices in (L,∼) are in-
dependently open (described by the value 1) or closed (with value 0) with respective
probabilities p and 1− p. The associated configuration space is thus {0, 1}B . We write
φp for the associated (Bernoulli) probability measure on {0, 1}B . In the present context
of bond percolation, an open path is a path in which all edges are open, and an open
cluster is a maximal region C ⊂ L which is connected, in that for any x, y ∈ C there is
an open path in C from x to y.

All results for site percolation discussed so far extend to the bond percolation set-
up. This is no surprise because bond percolation is equivalent to site percolation on
the so-called covering graph for which B is taken as set of vertices, and edges are
drawn between any two coincident elements of B. In particular, there exists again a
critical value pc for the occurrence of infinite open clusters, and Propositions 5.1 and
5.2, Theorems 5.3, 5.5, 5.6 and 5.4, and the asymptotic formula (20) are still true in
the case of bond percolation. What is generally different, are the critical values for
site and bond Bernoulli percolation on a given graph. One remarkable case is that of
bond percolation on Z2, where (again by planar duality) pc = 1/2; this is a famous
result of Kesten [142]. In the specific case of trees, however, site and bond percolation
are equivalent. In particular, for L = Td we have pc = 1/d for both site and bond
percolation; for more general trees a formula for pc was given by Lyons [164].

5.2 Dependent percolation: the role of the density

Our main subject is the analysis of equilibrium phases by means of percolation methods.
In this case, a site will be considered as open if, for example, the configuration in a
neighborhood of this site shows a specified pattern, and the events “site x is open” with
x ∈ L are then far from being independent. This leads us to considering the case of
dependent percolation. In this subsection we do some first steps in this direction.

Our starting point is the following question. In the case of Bernoulli percolation,
there is a unique parameter, the occupation probability or density p, which governs
the phase diagram and allows to distinguish between subcritical (“no infinite clus-
ter”) and supercritical (“at least one infinite cluster”) behavior. Does this also hold
in general? Specifically, is it true that for any translation invariant probability mea-
sure µ on {0, 1}Zd

, the occurrence of an infinite cluster only depends on the density
p(µ) = µ(X(x) = 1) of open sites x ∈ Zd? In general, the answer is obviously “no”, as
we will now show by two simple examples: there exist translation invariant measures µ
on {0, 1}Zd

with arbitrarily small densities such that infinite clusters exist almost surely,
and also translation invariant measures with densities arbitrarily close to 1 for which
no infinite clusters exist with probability 1.

Example 5.7 For q ∈ (0, 1), let (Y (x), x ∈ Z) be i.i.d. random variables taking values
0 and 1 with probability 1 − q resp. q. We define a translation invariant random field
(X(x), x ∈ Zd), d ≥ 2, by setting X(x) = X(x1, . . . , xd) = Y (x1) for each x ∈ Zd.
Writing µ for the distribution of (X(x), x ∈ Zd), we have p(µ) = q, but with µ-
probability 1 there exist infinitely many infinite clusters, even if q is arbitrarily small.

Example 5.8 Again let q ∈ (0, 1), d ≥ 2, and (Y (x, i), x ∈ Z, i ∈ {1, . . . , d}) be i.i.d.
random variables taking values 0 and 1 with probabilities 1 − q and q. We define a
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translation invariant random field (X(x), x ∈ Zd) by setting

X(x) = X(x1, . . . , xd) =
d
∏

i=1

Y (xi, i).

A moment’s thought reveals that µ-a.s. there exist no infinite clusters, despite the fact
that p(µ) = qd may be arbitrarily close to 1.

These examples suggest to look for additional assumptions under which high (resp. low)
density guarantees existence (resp. nonexistence) of infinite clusters. Positive correla-
tions (in the sense of Definition 4.10) does not suffice, because both examples above
obviously have positive correlations.

An alternative might be to assume R-independence in the sense that X(Λ) and
X(∆) are independent for any two finite regions Λ,∆ ⊂ L such that

min
x∈Λ,y∈∆

|x− y| > R

for some given R. For Zd, d ≥ 2, this gives nontrivial thresholds 0 < p1 < p2 < 1 (de-
pending on R) such that existence (resp. non-existence) of infinite clusters is guaranteed
as long as p(µ) > p2 (resp. p(µ) < p1); see e.g. Liggett, Schonmann and Stacey [161].
However, R-independence rarely holds in Gibbs models. For instance, for plus phase of
the Ising model with vanishing external field and inverse temperature β > 0, the spins
at any two vertices are always strictly positively correlated no matter how far apart
they are (although the correlation does tend to 0 in the distance).

However, in contrast to what we just saw in the case of the cubic lattices, the
density does play a significant role for the regular trees Td. To show this we consider a
probability measure µ on {0, 1}L, where now L = Td with d ≥ 2. The natural analogue
of translation invariance in this setting is automorphism invariance of µ, which means
that µ inherits all the symmetries of Td. In particular, this implies that µ(X(x) = 1) is
independent of x, so that the density p(µ) is well-defined. As opposed to the Zd case,
having p(µ) sufficiently close to 1 now does guarantee that an infinite cluster exists with
positive probability. This is also true in the bond percolation case, where p(µ) is defined
as the probability that a given edge is open. The following result is due to Häggström
[118].

Theorem 5.9 For any automorphism invariant site percolation model µ on Td with
density p(µ) ≥ d+1

2d , we have µ(∃ an infinite open cluster) > 0. The same is true for
bond percolation on Td with density p(µ) ≥ 2

d+1 .

These bounds are in fact sharp, in that for any p < d+1
2d there exists some automorphism

invariant probability measure on {0, 1}Td with density p, which does not allow an infinite
cluster with probability 1, and similarly for the case of bond percolation; see [118]. It
follows from Example 5.8 that the corresponding threshold for Zd is trivial: only density
1 is enough to rule out the nonexistence of infinite clusters. The intuitive reason is the
following. On Zd, one can find finite regions Λ ⊂ L with arbitrarily small surface-to-
volume ratio, which means that a vast majority of sites is not adjacent to a vertex
outside Λ; we can simply take Λ = Λn = [−n, n]d ∩ Zd with large n; this property of
Zd is known as amenability. Hence, a relatively small number of closed vertices may
easily “surround” a large number of open sites. In contrast, every region in Td has
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a surface of the same order of magnitude as its volume; this makes it impossible for
a small minority of closed vertices to surround a large number of open vertices. This
intuition can be turned into a proof using the so called mass-transport method sketched
below. Benjamini, Lyons, Peres and Schramm [23] have recently extended this method
to derive a similar dichotomy for a large class of graphs, including Cayley graphs of
finitely generated groups.

Sketch proof of Theorem 5.9: For simplicity we confine ourselves to the case of bond
percolation on T2. We want to show that if p(µ) ≥ 2/3, then an infinite cluster exists
with positive µ-probability. Imagine the following allocation of mass to the edges of T2.
Originally every edge receives mass 1. Then the mass is redistributed, or transported, as
follows. If an edge e is open and is contained in a finite open cluster, then it distributes
all its mass equally among those closed edges that are adjacent to the open cluster
containing e. If e is open and contained in an infinite open cluster, then it keeps its
mass. Closed edges, finally, keep their own mass and happily accept any mass that
open edges decide to send them. The expected mass at each edge before transport is
obviously 1, and one can show — this is an instance of the mass-transport principle [23]
— that the expected mass at a given edge is 1 also after the transport. Suppose now,
for contradiction, that p(µ) ≥ 2/3 and that all open clusters are finite µ-a.s. Then all
open edges have mass 0 after transport. Furthermore, since each open cluster containing
exactly n edges has exactly n+ 3 adjacent closed edges (as is easily shown by induction
— it is here that the tree structure is used), the mass after transport at a closed edge
adjacent to two open clusters of sizes n1 and n2 has mass

1 +
n1

n1 + 3
+

n2

n2 + 3
< 3

Hence the expected mass after transport at a given edge e is strictly less than

3µ(X(e) = 0) = 3(1− p(µ)) ≤ 1,

contradicting the mass-transport principle. 2

5.3 Examples of dependent percolation

¿From the previous subsection the reader might get a rather pessimistic view of the
possibilities of establishing existence (or non-existence) of infinite clusters for depen-
dent percolation models on Zd. This is certainly not the case, and a lot can be done.
One standard way of determining the percolation behavior of a dependent model is by
stochastic comparison with a suitable Bernoulli percolation model : For the existence of
infinite clusters, it is sufficient to show that the given dependent model is stochastically
larger than the Bernoulli model for some parameter p > pc, and the absence of infinite
clusters will follow if the model at hand is stochastically dominated by the Bernoulli
model for some p < pc. Let us demonstrate this technique for the Ising model on Zd.

Consider percolation of plus spins in the plus measure µ+
h,β, defined in Section 4.3.

If we keep β fixed then Proposition 4.16 tells us that µ+
h,β is stochastically increasing in

h. Consequently, both the probability of having an infinite cluster of plus spins, as well
as the probability that a given vertex is in such an infinite cluster, are increasing in h.
Furthermore, as Zd is of bounded degree N = 2d, the remarks after the same propo-
sition imply that, for any given p ∈ (0, 1) and β, the Ising measure µ+

h,β stochastically
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dominates the Bernoulli measure ψp when h is large enough, and is dominated by ψp for
h below some bound. We may combine this observation with Proposition 5.1 to deduce
the following critical phenomenon:

Theorem 5.10 For the Ising model on Zd, d ≥ 2, at a fixed temperature β, there exists
a critical value hc ∈ R (depending on d and β) for the external field, such that

µ+
h,β(∃ an infinite cluster of plus spins) =

{

0 if h < hc

1 if h > hc .

As we shall see later in Theorem 8.2, we have hc = 0 when d ≥ 2 and β > βc. Higuchi
[133] has shown that the percolation transition at hc is sharp, in that the connectivity
function decays exponentially when h < hc, and that the percolation probability is
continuous in (β, h), except on the critical half-line h = 0, β > βc. In Section 6 below, we
will make a similar use of stochastic comparison arguments for random-cluster measures,
cf. Proposition 6.11. The stochastic domination approach works also in the framework
of lattice gases with attractive potential; see Lebowitz and Penrose [156].

In the rest of this subsection we shall give some examples of strongly dependent
systems where other approaches to the question of percolation are needed. Typically in
these examples, the probability that all vertices in a finite region Λ are open (or closed)
fails to decay exponentially in the volume of Λ, and as a consequence, the random field
neither dominates nor is stochastically dominated by any nontrivial Bernoulli model.

The geometry of level heights of a random field forms an important object of study
both from the theoretical and the applied side. For example, it relates to the presence of
hills and valleys on a rough surface, or to the random location of potential barriers in a
doped semi-conductor. To fix the ideas we consider a random field X = (X(x), x ∈ Zd)
with values X(x) ∈ S ⊂ R which are not necessarily discrete. It is often interesting
to divide S into two parts S1 and S0 and to define a new discrete random field Y
via Y (x) = I{X(x)∈S1}. For S = R one typically considers S1 = [ℓ,∞) for some level
ℓ ∈ R. In this way we obtain a coarse-grained description of a system of continuous
spins. One question is to which extent one can reconstruct the complete image from
this information. We consider here a different question: what is the geometry of the
random set {x ∈ Zd : Y (x) = 1}? This set is called the excursion or exceedance set
when it corresponds, as in the example above, to the set on which the original random
field exceeds a given level. For a recent review of this subject we refer to [2].

We now give four examples of equilibrium systems with continuous spins where one
can show (the absence of) percolation of an excursion (exceedance) set. Here we only
state the results. Some hints on the proofs will be given later in Section 8 via Theorem
8.1. Details can be found in the paper by Bricmont, Lebowitz and Maes [36].

Example 5.11 Consider a general model of real-valued spins (σ(x), x ∈ Zd) with fer-
romagnetic nearest-neighbor interaction. The formal Hamiltonian is given by

H(σ) = −
∑

x∼y

σ(x)σ(y) . (21)

The reference (or single-spin) measure λ 6= δ0 on R is assumed to be even and to decay
fast enough at ±∞ so that the model is well defined. Then, for any Gibbs measure
µ relative to (21) with µ(sgn(σ(0))) > 0, there will be percolation of all sites x with
σ(x) ≥ 0. Such Gibbs measures always exist at sufficiently low temperatures when
d ≥ 2.
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Example 5.12 Consider again a spin system (σ(x), x ∈ Zd), where now the Hamilto-
nian has the ‘massless’ form

H(σ) = −
∑

x∼y

ψ(σ(x) − σ(y))

with σ(x) ∈ R or Z and ψ an even convex function. The single-spin measure λ is either
Lebesgue measure on R or counting measure on Z. The case σ(x) ∈ Z and ψ(t) = |t|
corresponds to the so-called solid-on-solid (SOS) model of a d-dimensional surface in
Zd+1; the choice σ(x) ∈ R and ψ(t) = t2 gives the harmonic crystal. Let µ be a Gibbs
measure which is obtained as infinite volume limit of finite volume Gibbs distributions
with zero boundary condition. (In the continuous-spin case, such Gibbs measures exist
for any temperature when d ≥ 3 and ψ(t) = αt2 + φ(t), where α > 0 and φ is convex
[33].) Then, for any ℓ < 0, there is percolation of the sites x ∈ Zd with σ(x) ≥ ℓ .

Example 5.13 Consider next a model of two-component spins σ(x) ∈ R2, x ∈ Zd,
σ(x) = (rx cosφx, rx sinφx), with formal Hamiltonian

H(σ) = −
∑

x∼y

σ(x) · σ(y)

and some rotation-invariant and suitably decaying reference measure λ on R2. Then,
for any Gibbs measure µ with µ(cosφ0) > 0, there is percolation of the sites x ∈ Zd

with cosφx ≥ 0. Such Gibbs measures exist at low temperatures if d ≥ 3.

Example 5.14 Consider again the massless harmonic crystal of Example 5.12 above
(with ψ(t) = t2) in d = 3 dimensions. There exists a value ℓc <∞ so that for all ℓ ≥ ℓc
there is no percolation of sites x ∈ Zd with σ(x) ≥ ℓ.

Finally, we give an example of a strongly correlated system, sharing some properties
with the harmonic crystal of Example 5.14, where at present there is no proof of a
percolation transition. The model is one of the simplest examples of an interacting
particle system. What makes the problem difficult is that the random field is not
Markov (not even Gibbsian) and not explicitly described in terms of a family of local
conditional distributions.

Example 5.15 The voter model is a stochastic dynamics in which individuals (voters)
sitting at the vertices of a graph update their position (yes/no) by randomly selecting a
neighboring vertex and adopting its position, see Liggett [160] for an introduction. Using
spin language and putting ourselves on Z3, the time evolution of this voter model is
specified by giving the rate c(x, σ) for a spin flip at the site x when the spin configuration
is σ ∈ {+1,−1}Z3

,

c(x, σ) =
1

6

∑

y∼x

(

1− σ(x)σ(y)
)

.

There is a one-parameter family of extremal invariant measures µp each obtained asymp-
totically (in time) from taking the Bernoulli measure ψp with density p as initial con-
dition. These stationary states µp are strongly correlating. The spin-spin correlations
decay as the inverse 1/r of the spin-distance r on Z3. It is an open question whether
for p sufficiently close to 1 the plus spins percolate, and whether for sufficiently small p
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there is no percolation. Simulations by Lebowitz and Saleur [157] indicate that there is
indeed a non-trival percolation transition with critical value pc ≈ 0.16.

The same problem may be considered for d ≥ 4. For d = 1, 2, however, the problem
is not interesting because in these cases µp is known to put mass p on the “all +1”
configuration and mass 1 − p on the “all −1” configuration. Alternatively, one may
consider the same model with Z3 replaced by Td; Theorem 5.9 can then be applied to
show that the plus spins do percolate for p ≥ d+1

2d .

5.4 The number of infinite clusters

Once infinite clusters have been shown to exist with positive probability in some per-
colation model, the next natural question is: How many infinite clusters can exist si-
multaneously? For Bernoulli site or bond percolation on Zd, Aizenman, Kesten and
Newman [12] obtained the following, now classical uniqueness result: with probability
1, there exists at most one infinite cluster. Simpler proofs were found later by Gandolfi,
Grimmett and Russo [89] and by Burton and Keane [42]. The argument of Burton and
Keane is not only the shortest (and, arguably, the most elegant) so far. Also, it requires
much weaker assumptions on the percolation model, namely: translation invariance and
the finite-energy condition below, which is a strong way of stating that all local config-
urations are really possible; its significance for percolation theory had been discovered
before by Newman and Schulman [183].

Definition 5.16 A probability measure µ on {0, 1}L, with L a countable set, is said to
have finite energy if, for every finite region Λ ⊂ L,

µ(X ≡ η on Λ |X ≡ ξ off Λ) > 0

for all η ∈ {0, 1}Λ and µ-a.e. ξ ∈ {0, 1}Λc
.

Theorem 5.17 (The Burton–Keane uniqueness theorem) Let µ be a probability

measure on {0, 1}Zd
which is translation invariant and has finite energy. Then, µ-a.s.,

there exists at most one infinite open cluster.

Sketch proof: Without loss of generality we can assume that µ is ergodic with respect
to translations. For, one can easily show that the measures in the ergodic decomposition
of µ admit the same conditional probabilities, and thus inherit the finite-energy property.
Since the number N of infinite clusters is obviously invariant under translations, it then
follows that N is almost surely equal to some constant k ∈ {0, 1, . . . ,∞}. In fact,
k ∈ {0, 1,∞}. Otherwise, with positive probability each of the k clusters would meet
a sufficiently large cube Λ; by the finite-energy property, this would imply that with
positive probability all these clusters are connected within Λ, so that in fact k = 1, in
contradiction to the hypothesis. (This part of the argument goes back to [183].)

We thus only need to exclude the case k =∞. In this case, µ(N ≥ 3) = 1, and the
finite-energy property implies again that µ(Ax) = δ > 0, where Ax is the event that x is
a triple point, in that there exist three disjoint infinite open paths with starting point
x. By the (norm-) ergodic theorem, for any sufficiently large cubic box Λ we have

µ
(

|Λ|−1
∑

x∈Λ

IAx ≥ δ/2
)

≥ 1/2 . (22)
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On the other hand, for geometrical reasons (which are intuitively obvious but need some
work when made precise), there cannot be more triple points in Λ than points in the
boundary ∂Λ of Λ. Indeed, each of the three paths leaving a triple point meets ∂Λ,
which gives three boundary points associated to each triple point in Λ. If one identifies
these boundary points successively for one triple point after the other one sees that, at
each step, at least one of the boundary points must be different from those obtained
before. Hence,

|Λ|−1
∑

x∈Λ

IAx ≤ |Λ|−1|∂Λ| < δ/2

when Λ is large enough. Inserting this into (22) we arrive at the contradiction µ(∅) ≥
1/2, and the theorem is proved. For more details we refer to the original paper [42]. 2

We stress that the last argument relies essentially on the amenability property of Zd

discussed in Section 5.2. The finite-energy condition is also indispensable: In another
paper [43], Burton and Keane construct, for any k ∈ {2, 3, . . . ,∞}, translation invariant
percolation models on Z2 for which finite energy fails and which have exactly k infinite
open clusters. For example, we have k = ∞ in Example 6.1. Fortunately, the finite-
energy condition holds in most of the dependent percolation models which show up in
stochastic-geometric studies of Gibbs measures.

The situation becomes radically different when Zd is replaced by the non-amenable
tree Td. Instead of having a unique infinite cluster, supercritical percolation models on
Td tend to produce infinitely many infinite clusters. It is not hard to verify that this is
indeed the case for supercritical Bernoulli site or bond percolation (except in the trivial
case when the retention probability p is 1), and a corresponding result for automorphism
invariant percolation on Td can be found in [118]. On more general nonamenable graph
structures, the uniqueness of the infinite cluster property can fail in more interesting
ways than on trees; see e.g. Grimmett and Newman [111] and Häggström and Peres
[122].

Let us next consider the particular case of (possibly dependent) site percolation on
Z2. We know from Theorem 5.17 that under fairly general assumptions there is almost
surely at most one infinite open cluster. Under the same asumptions there is almost
surely at most one infinite closed cluster (i.e., at most one infinite connected component
of closed vertices). In fact, the proof of Theorem 5.17 even shows that almost surely
there is at most one infinite closed ∗-cluster. (Here, a closed ∗-cluster is a maximal set
C of closed sites which is ∗-connected, in that any two x, y ∈ C are connected by a
∗-path in C; ∗-paths were introduced in the proof of Theorem 5.3. Any closed cluster
is part of some closed ∗-cluster.) But perhaps an infinite open cluster and an infinite
closed ∗-cluster can coexist? Theorem 5.18 below asserts that under reasonably general
circumstances this cannot happen. Under slightly different conditions (replacing the
finite-energy assumption by separate ergodicity under translations in the two coordinate
directions), it was proved by Gandolfi, Keane and Russo [90].

Theorem 5.18 Let µ be an automorphism invariant and ergodic probability measure
on {0, 1}Z2

with finite energy and positive correlations. Then

µ(∃ infinite open cluster, ∃ infinite closed ∗-cluster) = 0 .

Note that automorphism invariance in the Z2-case means that, in addition to translation
invariance, µ is also invariant under reflection in and exchange of coordinate axes. Under
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the conditions of the theorem, we have in fact some information on the geometric shape
of infinite clusters: If an infinite open cluster exists and thus all closed ∗-clusters are
finite, each finite box of Z2 is surrounded by an open circuit, and all these circuits are
part of the (necessarily unique) infinite open cluster. Hence the infinite open cluster is
a sea, in the sense that all “islands” (i.e., the ∗-clusters of its complement) are finite.
Similarly, if a closed ∗-cluster in Z2 exists, it is necessarily a sea (and in particular
unique).

The corresponding result is false in higher dimensions. To see this, consider Bernoulli
site percolation on Z3. The critical value pc for this model is strictly less than 1/2 (see
Campanino and Russo [47]), whence for p = 1/2 there exist almost surely both an
infinite open cluster and an infinite closed cluster.

The proof of Theorem 5.18 below is based on a geometric argument of Yu Zhang
who gave a new proof of Harris’ [128] classical result that the critical value pc for bond
percolation on Z2 is at least 1/2. (Recall that this bound is actually sharp.) Zhang’s
proof appeared first in [108] and was exploited later in other contexts in [117, 120].

Proof of Theorem 5.18: Let A be the event that there exists an infinite open cluster,
let B be the event that there exists an infinite closed ∗-cluster, and assume by contra-
diction that µ(A ∩B) > 0. Then, by ergodicity, µ(A ∩B) = 1. (This is the only use of
ergodicity we make, and ergodicity could clearly be replaced by tail triviality or some
other mixing condition.) Next we pick n so large that

µ(An) > 1− 10−3 and µ(Bn) > 1− 10−3 ,

where An (resp. Bn) is the event that some infinite open cluster (resp. some infinite
closed ∗-cluster) intersects Λn = [−n, n]2 ∩ Z2. Let AL

n (resp. AR
n , AT

n and AB
n ) be the

event that some vertex in the left (resp. right, top and bottom) side of the square-shaped
vertex set Λn \Λn−1 belongs to some infinite open path which contains no other vertex
of Λn, and define BL

n , BR
n , BT

n and BB
n analogously. Then

An = AL
n ∪AR

n ∪AT
n ∪AB

n .

Since all four events in the right hand side are increasing and µ has positive correlations,

µ(An) = µ(AL
n ∪AR

n ∪AT
n ∪AB

n )

= 1− µ(¬AL
n ∩ ¬AR

n ∩ ¬AT
n ∩ ¬AB

n )

≤ 1− µ(¬AL
n)µ(¬AR

n )µ(¬AT
n )µ(¬AB

n ) ,

where ¬ indicates the complement of a set (for typographical reasons). By the auto-
morphism invariance of µ, AL

n , AR
n , AT

n and AB
n all have the same µ-probability, so

that
µ(¬AL

n) ≤ (1− µ(An))1/4

and therefore

µ(AL
n) = µ(AR

n ) ≥ 1− (1− µ(An))1/4 = 1− 10−3/4 > 0.82 . (23)

In the same way, we get
µ(BT

n ) = µ(BB
n ) > 0.82 . (24)

Now define the event D = AL
n ∩AR

n ∩BT
n ∩BB

n . From (23) and (24) we obtain

µ(D) ≥ 1− 4(1 − 0.82) = 0.28 > 0 .
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When D occurs, both the left side and the right side of Λn are intersected by some
infinite open cluster. By Theorem 5.17, these infinite open clusters are identical and
separate their (common) complement into (at least) two pieces, preventing the infinite
closed ∗-clusters intersecting the top and bottom sides of Λn from reaching each other
(see the picture on p. 196 of [108]). Consequently, there exist two infinite closed ∗-
clusters, in contradiction to Theorem 5.17. 2

Theorem 5.18 admits some variants. First, the assumption of ergodicity can be avoided
if the assumption of positive correlations is strenghtened to the condition that µ is
monotone in the sense of Definition 4.9. (This is because monotonicity is preserved
under ergodic decomposition, so that Theorem 4.11 implies positive correlations for
each ergodic component.) Moreover, as the preceding proof shows, ergodicity is only
needed to show that infinite clusters exist with probability either 0 or 1, and translation
invariance and finite energy are only used for the uniqueness of infinite clusters. We also
need only the invariance under lattice rotations rather than all reflections, and closed
∗-clusters can be replaced by closed clusters. We may thus state the following result.

Proposition 5.19 There exists no probability measure µ on {0, 1}Z2
which has positive

correlations, is invariant under lattice rotations and the interchange of the states 1
(“open”) and 0 (“closed”), and satisfies

µ(∃ a unique infinite open cluster) = 1 .

This proposition will be applied to the ferromagnetic Ising model in Section 8.2.
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6 Random-cluster representations

In the previous section we saw a number of dependent percolation models. Here we shall
focus on a particular class of such models, namely the (Fortuin–Kasteleyn) random-
cluster model (and some of its relatives), which has turned out to be of great value
in analyzing the phase transition behavior of Ising and Potts models. An alternative
source for much of the material in the present section is Häggström [119]. In Sections
6.1 and 6.2, we introduce the random-cluster model and discuss its relation to Ising
and Potts models. This relation is then applied in Section 6.3 to prove Theorems 3.1
and 3.2. Despite the fact that Theorems 3.1 and 3.2 concern infinite systems, these
applications only require defining finite volume random-cluster measures. However, it
may be interesting in its own right to study infinite volume random-cluster measures
on graphs such as Zd; this is done in Section 6.4. In Section 6.6, we describe how the
random-cluster representation of Ising and Potts models can be used to construct highly
efficient Monte Carlo simulation algorithms. Finally, in Section 6.7, we discuss a variant
of the random-cluster model which is applicable to the Widom–Rowlinson model rather
than to Ising and Potts models.

6.1 Random-cluster and Potts models

The random-cluster model, also known as the Fortuin–Kasteleyn (FK) model after its
inventors [82, 80, 81], is a two-parameter family of dependent bond percolation models
living on a finite graph. Let G = (L,∼) be a finite graph with vertex set L and edge
set B. For a bond configuration η ∈ {0, 1}B , we write k(η) for the number of connected
components (including isolated vertices) in the subgraph of G containing all vertices
but only the open edges (i.e. those e ∈ B for which η(e) = 1).

Definition 6.1 The random-cluster measure φG
p,q for G with parameters p ∈ [0, 1]

and q > 0 is the probability measure on {0, 1}B which to each η ∈ {0, 1}B assigns
probability

φG
p,q(η) =

1

ZG
p,q

{

∏

e∈B

pη(e)(1− p)1−η(e)

}

qk(η),

where ZG
p,q is a normalizing constant.

Note that taking q = 1 yields the Bernoulli bond percolation measure φp defined at the
end of Section 5.1. All other choices of q give rise to dependencies between edges (as
long as p is not 0 or 1, and G is not a tree).

Taking q ∈ {2, 3, . . .} yields a model which is intimately related to the q-state Potts
model, in a way which we will explain now. Let µG

β,q be the Gibbs measure for the q-

state Potts model on G at inverse temperature β, i.e. µG
β,q is the measure on {1, . . . , q}L

which to each σ ∈ {1, . . . , q}L assigns probability

µG
q,β(σ) =

1

ZG
β,q

exp

(

−2β
∑

x∼y

I{σ(x)6=σ(y)}

)

,

where again ZG
β,q is a normalizing constant.

For q ∈ {2, 3, . . .} and p ∈ [0, 1], let PG
p,q be the probability measure on {1, . . . , q}L×

{0, 1}B corresponding to picking a random element of {1, . . . , q}L × {0, 1}B according
to the following two-step procedure.
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1. Assign each vertex a spin value chosen from {1, . . . , q} according to uniform dis-
tribution, assign each edge value 1 or 0 with respective probabilities p and 1− p,
and do this independently for all vertices and edges.

2. Condition on the event that no two vertices with different spins have an edge with
value 1 connecting them.

In other words, PG
p,q is the measure which to each element (σ, η) of {1, . . . , q}L×{0, 1}B

assigns probability proportional to
∏

e=〈xy〉∈B

(

pη(e)(1− p)1−η(e) I{(σ(x)−σ(y))η(e)=0}

)

.

Here, 〈xy〉 denotes the edge linking x and y. The measure PG
p,q was introduced by

Swendsen and Wang [219] and made more explicit by Edwards and Sokal [73], and is
therefore called the Edwards–Sokal measure. The following theorem states that the
edge marginal of PG

p,q is a random-cluster measure, and the vertex marginal is a Gibbs

measure for the Potts model, meaning that PG
p,q is a coupling of µG

β,q and φG
p,q.

Theorem 6.2 Let PG,vertex
p,q and PG,edge

p,q be the probability measures obtained by pro-

jecting PG
p,q on {1, . . . , q}L and {0, 1}B, respectively. Then

PG,vertex
p,q = µG

β,q (25)

with β = 1
2 log(1− p), and

PG,edge
p,q = φG

p,q . (26)

Proof: The proof is just a matter of summing out the marginals. Letting Z be the
normalizing constant in PG

p,q, fixing σ ∈ {1, . . . , q}L, and summing over all η ∈ {0, 1}B
we find

PG,vertex
p,q (σ) =

∑

η∈{0,1}B

PG
p,q(σ, η)

=
1

Z

∑

η∈{0,1}B

∏

e=〈xy〉∈B

pη(e)(1− p)1−η(e)I{(σ(x)−σ(y))η(e)=0}

=
1

Z

∏

e=〈xy〉∈B

(1− p)I{σ(x) 6=σ(y)}

=
1

Z
exp

(

− 2β
∑

x∼y

I{σ(x)6=σ(y)}

)

= µG
β,q(σ) ,

since Z must be equal to Zβ,q
G by normalization. This proves (25). To verify (26) we

proceed similarly, fixing η ∈ {0, 1}B and summing over σ ∈ {1, . . . , q}L. Note that,
given η, there are exactly qk(η) spin configurations σ that are allowed, in that any two
neighboring vertices x ∼ y with η(〈xy〉) = 1 have the same spin. We get

PG,edge
p,q (η) =

∑

σ∈{1,...,q}L

PG
p,q(σ, η)

= qk(η) 1

Z

∏

e∈B

pη(e)(1− p)1−η(e)

= µG
p,q(η) ,
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again by normalization. 2

The Edwards–Sokal coupling PG
p,q of µG

β,q and φG
p,q is the key to using the random-cluster

model in analyzing the Potts model. The following two results are each other’s dual,
and are immediate consequences of Theorem 6.2 and the definition of PG

p,q.

Corollary 6.3 Let p = 1 − e−2β , and suppose we pick a random spin configuration
X ∈ {1, . . . , q}L as follows:

1. Pick a random edge configuration Y ∈ {0, 1}B according to the random-cluster
measure φG

p,q.

2. For each connected component C of Y , pick a spin at random (uniformly) from
{1, . . . , q}, assign this spin to every vertex of C, and do this independently for
different connected components.

Then X is distributed according to the Gibbs measure µG
β,q.

Corollary 6.4 Let p = 1 − e−2β , and suppose we pick a random edge configuration
Y ∈ {0, 1}B as follows:

1. Pick a random spin configuration X ∈ {1, . . . , q}L according to the Gibbs measure
µG

β,q.

2. Given X, assign each edge e = 〈xy〉 independently value 1 with probability

{

p if X(x) = X(y)
0 if X(x) 6= X(y) ,

and value 0 otherwise.

Then Y is distributed according to the random-cluster measure φG
p,q.

As a warm-up for the phase transition considerations in Section 6.3, we give the following
result as a typical application of the random-cluster representation.

Corollary 6.5 If we pick a random spin configuration X ∈ {1, . . . , q}L according to
the Gibbs measure µG

β,q, then for i ∈ {1, . . . , q} and two vertices x, y ∈ L, the two events
{X(x) = i} and {X(y) = i} are positively correlated, i.e.

µG
β,q(X(x) = i,X(y) = i) ≥ µG

β,q(X(x) = i)µG
β,q(X(y) = i) .

Proof: The measure µG
β,q is invariant under permutation of the spin set {1, . . . , q}, so

that

µG
β,q(X(x) = i) = µG

β,q(X(y) = i) =
1

q
.

We therefore need to show that

µG
β,q(X(x) = i,X(y) = i) ≥ 1

q2
.

We may now think of X as being obtained as in Corollary 6.3 by first picking an
edge configuration Y ∈ {0, 1}B according to the random-cluster measure φG

p,q and then
assigning i.i.d. uniform spins to the connected components. Given Y , the conditional
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probability that X(x) = X(y) = i is 1/q if u and v are in the same connected component
of Y , and 1/q2 if they are in different connected components. Hence, for some α ∈ [0, 1],

µG
β,q(X(x) = i,X(y) = i) = α

1

q
+ (1− α)

1

q2
≥ 1

q2
.

2

An easy modification of the above proof shows that if G is connected and β > 0, then
the correlation between I{X(x)=i} and I{X(y)=i} is in fact strictly positive.

Note that the relation between the random-cluster model and the Potts model de-
pends crucially on the fact that all spins in {1, . . . , q} are a priori equivalent. This is
no longer the case when a nonzero external field is present in the Ising model. Several
attempts to find useful random-cluster representations of the Ising model with external
field have been made, but progress has been limited. Perhaps the recent duplication
idea of Chayes, Machta and Redner [60] represents a breakthrough on this problem.

6.2 Infinite-volume limits

In this subsection we will exploit some stochastic monotonicity properties of random-
cluster distributions on finite subgraphs of Zd. This will give us the existence of certain
limiting random-cluster distributions, and also the existence of certain limiting Gibbs
measures for the Potts model.

The basic observation is stated in the lemma below which follows directly from
definitions.

Lemma 6.6 Consider the random-cluster model with parameters p and q on a finite
graph G with edge set B. For any edge e = 〈xy〉 ∈ B, and any configuration η ∈
{0, 1}B\{e}, we have that

φG
p,q(e is open | η) =

{

p if x and y are connected via open edges in η
p

p+(1−p)q otherwise.
(27)

For q ≥ 1, Lemma 6.6 means in particular that the conditional probability in (27) is
increasing in η (and also in p). This allows us to use Holley’s Theorem and the FKG
inequality to prove the following very useful result. We write φG

p for Bernoulli bond
percolation on G with parameter p.

Corollary 6.7 For a finite graph G and the random-cluster measure φG
p,q with p ∈ [0, 1]

and q ≥ 1, we have

(a) φG
p,q is monotone, and therefore it has positive correlations,

(b) φG
p,q �D φG

p ,

(c) φG
p,q �D φG

p
p+(1−p)q

.

Furthermore, for 0 ≤ p1 ≤ p2 ≤ 1 and q ≥ 1, we have

(d) φG
p1,q �D φG

p2,q .
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Proof: The monotonicity in (a) is just the observation that the conditional probability
in (27) is increasing in p and in η. Positive correlations then follows from Theorem 4.11.
Next, note that (27) implies that

p

p+ (1− p)q ≤ φ
G
p,q(e is open | η) ≤ p (28)

for all η as in Lemma 6.6. Theorem 4.8 in conjunction with the second (resp. first)
inequality in (28) implies (b) (resp. (a)). Finally, (d) is just another application of (d)
and Theorem 4.8. 2

Consider now the integer lattice Zd (for definiteness and simplicity) with its usual graph
structure. We associate with any finite region Λ ⊂ Zd two specific random-cluster
distributions which correspond to two different choices of boundary condition. The
latter will we distinguished by a parameter b ∈ {0, 1}. Let B be the set of all nearest-
neighbor bonds in Zd, B0

Λ the set of all edges of B that are contained in Λ, and B1
Λ the

set of edges with at least one endpoint in Λ. (The difference B1
Λ \B0

Λ thus consists of all
edges leading from a point of Λ to a point of Λc.) We then let φb

p,q,Λ be the probability

measure on {0, 1}B in which each η ∈ {0, 1}B is assigned probability proportional to

I{η≡b off Bb
Λ}

{

∏

e∈Bb
Λ

pη(e)(1− p)1−η(e)
}

qk(η,Λ) ,

where k(η,Λ) is the number of all η-open clusters meeting Λ. We call φb
p,q,Λ the random-

cluster distribution in Λ with parameters p and q and boundary condition b. In the
case b = 0, k(·,Λ) is simply the number of all clusters that are contained in Λ; this
corresponds to forgetting all sites in Λc and is therefore referred to as the free boundary
condition. On the other hand, suppose that Λ has no holes, in the sense that Λc has
no finite connected components; since we can always assume without loss of generality
that Λ is connected, we call such a Λ simply connected. Then, in the case b = 1, all sites
of Λc may be thought of as being firmly wired together, whence this is called the wired
boundary condition.

Suppose now that Λ ⊂ ∆ are two finite regions in Zd. Then φb
p,q,Λ is obtained from

φb
p,q,∆ by conditioning on the event {η ≡ b on Bb

∆ \ Bb
Λ} which is increasing for b = 1

and decreasing for b = 0. Hence, if q ≥ 1 then Corollary 6.7 (a) implies that

φ0
p,q,Λ �D φ0

p,q,∆ and φ1
p,q,Λ �D φ1

p,q,∆ when Λ ⊂ ∆ , (29)

in complete analogy to (14). Moreover, we obtain the following counterpart of Proposi-
tion 4.14 on the existence of infinite-volume limits. We write Λ ↑ Zd for the limit along
some (any) increasing sequence of finite simply connected subsets of Zd, converging to
Zd in the usual way.

Lemma 6.8 For p ∈ [0, 1] and q ≥ 1, the limiting measures

φb
p,q = lim

Λ↑Zd
φb

p,q,Λ , b ∈ {0, 1} ,

exist and are translation invariant.

This convergence result has consequences for the convergence of Gibbs distributions for
the Potts model, as we will show next. Let q ∈ {2, 3, . . .}, and for i ∈ {1, . . . , q} and
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any finite region Λ in Zd let µi
β,q,Λ denote the Gibbs distribution in Λ for the Potts

model at inverse temperature β with boundary condition η ≡ i on Λc. For i = 0, let
µ0

β,q,Λ be the corresponding Gibbs distribution with free boundary condition, which is

defined by letting L = Λ in (4), i.e., by ignoring all sites outside Λ; we think of µ0
β,q,Λ as

a probability measure on the full configuration space {1, . . . , q}Zd
by using an arbitrary

extension.
Still for i = 0, Theorem 6.2 shows that µ0

β,q,Λ and φ0
p,q,Λ admit an Edwards–Sokal

coupling (on Λ) when p = 1 − e−2β . A similar Edwards–Sokal coupling is possible for
i ∈ {1, . . . , q} when Λ is simply connected. Indeed, let P i

p,q,Λ be the probability measure

on {1, . . . , q}L×{0, 1}B corresponding to picking a random site-and-bond configuration
according to the following procedure.

1. Assign to each vertex of Λc value i, and to all edges of B \ B1
Λ value 1.

2. Assign to each vertex in Λ a spin value chosen from {1, . . . , q} according to uniform
distribution, assign to each edge in B1

Λ value 1 or 0 with respective probabilities p
and 1− p, and do this independently for all vertices and edges.

3. Condition on the event that no two vertices with different spins have an edge with
value 1 connecting them.

It is now a simple modification of the proof of Theorem 6.2 to check that the vertex and
edge marginals of P i

p,q,Λ are µi
β,q,Λ and φ1

p,q,Λ, respectively. (Note that by the simple
connectedness of Λ there is always a unique component containing Λc.) Analogues of
Corollaries 6.3 and 6.4 follow easily. This leads us to the following result extending
Proposition 4.14 to the Potts model.

Proposition 6.9 For any i ∈ {0, 1, . . . , q}, the limiting probability measure

µi
β,q = lim

Λ↑Zd
µi

β,q,Λ

on {1, . . . , q}Zd
exists and is a translation invariant Gibbs measure for the q-state Potts

model on Zd at inverse temperature β.

Proof: In view of the general facts reported in Section 2.6, the limits are Gibbs measures
whenever they exist. We thus need to show that µi

β,q,Λ(f) converges as Λ ↑ Zd, for any
local observable f . For definiteness, we do this for i ∈ {1, . . . , q}; the case i = 0 is
completely similar.

Fix an f as above, and let ∆ ⊂ Zd be the finite region on which f depends. As
shown above, for a simply connected Λ we may think of a {1, . . . , q}Zd

-valued random
element X with distribution µi

β,q,Λ as arising by first picking an edge configuration

Y ∈ {0, 1}Λ according to φ1
p,q,Λ (with p = 1− e−2β) and then assigning random spins to

the connected components, forcing spin i to the (unique) infinite cluster. For x, y ∈ ∆,
we write {x ↔ y} for the event that x and y are in the same connected component in
Y , and {x ↔ ∞} for the event that x is in an infinite cluster. Clearly, the conditional
distribution of f given Y depends only on the indicator functions (I{x↔y})x,y∈∆ and
(I{x↔∞})x∈∆, since the conditional distribution of X on ∆ is uniform over all elements

of {1, . . . , q}∆ such that firstly X(x) = X(y) whenever x ↔ y, and secondly X(x) = i
whenever x ↔ ∞. Hence, the desired convergence of µi

β,q,Λ(f) follows if we can show
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that the joint distribution of (I{x↔y})x,y∈∆ and (I{x↔∞})x∈∆ converges as n→∞. This,
however, follows from Lemma 6.8 upon noting that (I{x↔y})x,y∈∆ and (I{x↔∞})x∈∆ are
increasing functions. 2

6.3 Phase transition in the Potts model

As promised, this subsection is devoted to proving Theorems 3.1 and 3.2, using random-
cluster arguments. The original source for the material in this subsection is Aizenman,
Chayes, Chayes and Newman [9]; see also [119] for a slightly different presentation.

We consider the Potts model on Zd, d ≥ 2. All the arguments to be used here,
except those showing that the critical inverse temperature βc is strictly between 0 and
∞, go through on arbitrary infinite graphs; we stick to the Zd case for definiteness
and simplicity of notation. We consider the limiting Gibbs measures µi

β,q obtained in
Proposition 6.9. For i ∈ {1, . . . , q}, these play a role similar to that of the “plus” and
“minus” measures µ+

β and µ−β for the Ising model. In fact, we have the following result
which extends Theorem 4.15 to the Potts model and also gives a characterization of
phase transition in terms of percolation in the random-cluster model.

Theorem 6.10 Let β > 0 and p = 1 − e−2β . For any x ∈ Zd and any i ∈ {1, . . . , q},
the following statements are equivalent.

(i) There is a unique Gibbs measure for the q-state Potts model on Zd at inverse
temperature β.

(ii) µi
β,q(X(x) = i) = 1/q.

(iii) φ1
p,q(x↔∞) = 0.

As we will see in a moment, it is the percolation criterion (iii) which is most convenient
to apply. In this context we note that

φ1
p,q(x↔∞) = inf

Λ,∆
φ1

p,q,Λ(x↔ ∆c) = lim
Λ↑Zd

φ1
p,q,Λ(x↔ Λc) , (30)

where {x ↔ ∆c} stands for the event that there exists an open path from x to some
site in ∆c. This follows from (29) and the fact that {x ↔ ∆c} decreases to {x ↔ ∞}
as ∆ ↑ Zd.

The usefulness of the percolation criterion is demonstrated by the next result which
extends the scenario for Bernoulli percolation to the random-cluster model. Together
with Theorem 6.10, this gives Theorem 3.2 with βc = 1

2 log(1− pc).

Proposition 6.11 For the random-cluster model on Zd, d ≥ 2, and any fixed q ≥ 1,
there exists a percolation threshold pc ∈ (0, 1) (depending on d and q) such that

φ1
p,q(x↔∞)

{

= 0 for p < pc ,
> 0 for p > pc .

Proof: The statement of the proposition consists of the following three parts:

(i) φ1
p,q(x↔∞) = 0 for p sufficiently small,

(ii) φ1
p,q(x↔∞) > 0 for p sufficiently close to 1, and
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(iii) φ1
p,q(x↔∞) is increasing in p.

We first prove (i). Suppose p < pc(Z
d,bond), the critical value for Bernoulli bond

percolation on Zd. For ε > 0, we can then pick ∆ large enough so that

φp(0↔ ∆c) ≤ ε .

By Corollary 6.7 (b), we have that the projection of φp on {0, 1}B1
∆ stochastically dom-

inates the projection of φ1
p,q,Λ on {0, 1}B1

∆ for any Λ ⊃ ∆, so that

φ1
p,q,Λ(0↔∞) ≤ φ1

p,q,Λ(0↔ ∆c) ≤ ε

for any Λ ⊃ ∆. Since ε was arbitrary, we find

lim
Λ↑Zd

φ1
p,q,Λ(0↔∞) = 0

which in conjunction with (30) implies (i).
Next, (ii) can be established by a similar argument: Let p be such that p∗ =

p/[p + (1− p)q] > pc(Z
d,bond). Corollary 6.7 (c) then shows that φ1

p,q,Λ �D φp∗ for
every Λ, so that

lim
Λ↑Zd

φ1
p,q,Λ(0↔∞) > 0,

proving (ii).
To check (iii) we note that Corollary 6.7 (d) implies that, for any Λ,

φ1
p1,q,Λ �D φ1

p2,q,Λ whenever p1 ≤ p2. (31)

This proves (iii) and thereby the proposition. 2

Before the proof of Theorem 6.10 we need another definition and a couple of lemmas.
For a finite box Λ in Zd and a spin configuration ξ ∈ {1, . . . , q}∂Λ, let

Ai
ξ = {x ∈ ∂Λ : ξ(x) = i}

for i = 1, . . . , q. We now define the random-cluster distribution φξ
p,q,Λ for Λ with bound-

ary condition ξ, as the probability measure on {0, 1}B1
Λ which to each η ∈ {0, 1}B1

Λ

assigns probability proportional to

ID(ξ,η)

{

∏

e∈B1
Λ

pη(e)(1− p)1−η(e)
}

qkξ(η)

where kξ(η) is the number of connected components in η that do not intersect ∂Λ, and
D(ξ, η) is the event that there is no open path in η connecting any two vertices in Ai

ξ

and Aj
ξ for any i 6= j.

Lemma 6.12 Let p = 1 − e−2β , let Λ be a finite region in Zd, and fix some boundary
condition ξ ∈ {1, . . . , q}∂Λ. Suppose that we pick a random spin configuration X ∈
{1, . . . , q}Λ as follows.

1. Pick Y ∈ {0, 1}B1
Λ according to φξ

p,q,Λ.

48



2. For each i ∈ {1, . . . , q} and each connected component C in η intersecting Ai
ξ,

assign spin i to every vertex in C.

3. For all other connected components C in Y , pick a spin at random (uniformly)
from {1, . . . , q}, assign this spin to every vertex of C, and do this independently
for different connected components.

Then X is distributed according to the Gibbs distribution µξ
β,q,Λ for the Potts model on

Λ with boundary condition ξ.

Proof: This is a straightforward generalization of the proofs of Theorem 6.2 and Corol-
lary 6.3. 2

Lemma 6.13 With notation as above, we have, for any ξ ∈ {1, . . . , q}∂Λ, that the

projection of φ1
p,q,Λ on {0, 1}B1

Λ stochastically dominates φξ
p,q,Λ.

Proof: Just write down single-edge conditional distributions for φξ
p,q,Λ and φ1

p,q,Λ (as in
Lemma 6.6) and invoke Theorem 4.8. 2

We are finally ready for the proof of Theorem 6.10.

Proof of Theorem 6.10: We begin with the implication (i)⇒ (ii). If there is a unique
Gibbs measure for the q-state Potts model on Zd at inverse temperature β, then we have
in particular that

µ1
β,q = . . . = µq

β,q .

But since by symmetry µi
β,q(X(x) = i) = µj

β,q(X(x) = j) for any i, j ∈ {1, . . . , q}, we

must have µi
β,q(X(x) = i) = 1/q, and (ii) is established.

Next we turn to the implication (ii) ⇒ (iii). By the Edwards–Sokal coupling of edge
and site processes introduced before Proposition 6.9, we have

µi
β,q(X(0) = i) = lim

Λ↑Zd
µi

β,q,Λ(X(0) = i)

=
1

q
+
q − 1

q
lim
Λ↑Zd

φ1
p,q,Λ(0↔ Λc) . (32)

Together with (30), the result follows.
Most of the work is needed for the implication (iii) ⇒ (i). Roughly speaking, the

absence of percolation in the random-cluster model implies that every finite region is cut
off from infinity by a set of closed edges. Thus, independently of what happens macro-
scopically, the local spins feel as if they are in a system with free boundary condition.
This makes a phase transition impossible.

To make this intuition precise we let µ be an arbitrary Gibbs measure for the Potts
model at inverse temperature β. We will show that µ = µ0

β,q, the limiting measure with
free boundary condition obtained in Proposition 6.9. We fix any local observable f and
some ε > 0. We then can find a finite box ∆ ⊂ Zd such that

∣

∣

∣ µ0
β,q,Γ(f)− µ0

β,q(f)
∣

∣

∣ < ε for all finite Γ ⊃ ∆ . (33)

In view of (30) we can also choose a finite box Λ ⊃ ∆ satisfying φ1
p,q,Λ(x↔ Λc) < ε/|∆|

for all x ∈ ∆, and thus
φ1

p,q,Λ(∆↔ Λc) < ε .
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Here, {∆↔ Λc} is the event that there exists an open path from ∆ to Λc.
Consider the complementary event C = {∆ ↔ Λc}c. For any edge configuration

η ∈ C, ∆ is cut off from Λc by a set of closed edges. Indeed, let Γ be the union of all
η-open clusters meeting ∆. Then

(a) ∆ ⊂ Γ ⊂ Λ, and

(b) η(e) = 0 for all edges from Γ to Γc, i.e., η ≡ 0 on B1
Γ \ B0

Γ.

Since these properties are stable under finite unions, there exists a largest set Γ(η)
satisfying (a) and (b). The maximality implies that, for each fixed region Γ, the event
{η : Γ(η) = Γ} only depends on the status of the edges off B0

Γ.
Coming to the core of the argument, we fix any boundary spin configuration ξ ∈

{1, . . . , q}∂Λ and consider the Edwards–Sokal coupling P = P ξ
p,q,Λ of µξ

β,q,Λ and φξ
p,q,Λ

introduced in Lemma 6.12. We writeX for the random spin configuration in {1, . . . , q}Zd

and Y for the random edge configuration in {0, 1}B . Then P (f ◦X) = µξ
β,q,Λ(f), and

P (Y ∈ C) = φξ
p,q,Λ(C) ≥ φ1

p,q,Λ(C) > 1− ε

by Lemma 6.13 and the choice of Λ. Assuming without loss of generality that ‖f‖ ≤ 1,
we can therefore conclude that

∣

∣

∣P (f ◦X |Y ∈ C)− µξ
β,q,Λ(f)

∣

∣

∣ < 2ε . (34)

However, the conditional expectation on the left is an average of the conditional ex-
pectations P (f ◦ X |Γ(Y ) = Γ) with ∆ ⊂ Γ ⊂ Λ, and these in turn are averages of
conditional expectations of the form

P (f ◦X | Y = η off B1
Γ, Y ≡ 0 on B1

Γ \ B0
Γ)

which, by construction of P , are equal to µ0
β,q,Γ(f). Together with (33) and (34), we

conclude that
∣

∣

∣ µ
ξ
β,q,Λ(f)− µ0

β,q(f)
∣

∣

∣ < 3ε .

Taking the µ-average over ξ and letting ε → 0 we finally get µ(f) = µ0
β,q(f), and the

proof is complete. 2

6.4 Infinite volume random-cluster measures

The random-cluster arguments used in the previous subsections for studying infinite
volume Ising and Potts models only required defining finite volume random-cluster dis-
tributions, although we have seen already the limiting random-cluster measures φb

p,q.
(Their existence was convenient in the formulation of Theorem 6.10, but not really
needed for the arguments.) Recent years have nevertheless witnessed a rapid develop-
ment of a theory for infinite volume random-cluster measures, defined in the DLR spirit.
Here we shall discuss the basics of such a theory. A similar theory of infinite volume
Edwards–Sokal measures for joint spin and edge distributions was recently developed in
[31].

Let G be an infinite (locally finite) graph with vertex set L and edge set B. Fix
p ∈ [0, 1] and q > 0, and let B ⊂ B be a finite simply connected region; since the random-
cluster model lives on edges rather than on vertices, we let “region” refer to edge sets
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rather than vertex sets in this subsection. Let V (B) = {x ∈ L : ∃ e ∈ B incident to x}.
For an edge configuration ξ ∈ {0, 1}Bc

, define the random-cluster distribution φB,ξ
p,q in B

as the probability measure on {0, 1}B in which each η ∈ {0, 1}B is assigned probability
proportional to

I{η=ξ off B}

{

∏

e∈B

pη(e)(1− p)1−η(e)

}

qk(η,B) , (35)

where k(η,B) is the number of connected components of η which intersect V (B). This is
a generalization of the random-cluster distributions φb

p,q,Λ defined in Section 6.2, which

are recovered by taking B = Bb
Λ and ξ ≡ b, b ∈ {0, 1}. It is easy to see that the random-

cluster distributions are consistent in the sense that conditioning on a configuration in
some B′ ⊂ B yields the corresponding random-cluster distribution in B \B′.

Definition 6.14 A probability measure φ on {0, 1}B is said to be a random-cluster
measure with parameters p and q if its conditional probabilities satisfy

φ(η | ξ) ≡ φ(η in B | ξ off B) = φB,ξ
p,q (η)

for all finite simply connected B ⊂ B, φ-almost all ξ and all η such that η = ξ off B.

This is the direct analogue of the definition of a Gibbs measure in the random-cluster
setting. There is, however, also another possibility which differs from the preceding one
for graphs in which the complements of finite regions are not connected. The idea is to
connect all infinite clusters at infinity. This corresponds to a one-point compactification
of G. Accordingly, we shall use a prefix ‘C’ which stands for “compactified”. Thus, we
define a C-random-cluster distribution φ̂B,ξ

p,q as in (35), except that k(η,B) is replaced

by k̂(η,B), defined as the number of all finite connected components of η intersecting
V (B).

Definition 6.15 A probability measure φ on {0, 1}B is said to be a C-random-cluster
measure for p and q if its conditional probabilities satisfy

φ(η | ξ) = φ̂B,ξ
p,q (η)

for all finite simply connected B ⊂ B, φ-almost all ξ and all η such that η = ξ off B.

The study of random-cluster measures in the case G = Zd was initiated by Grimmett
[109], and about simultaneously by Pfister and Vande Velde [191] and Borgs and Chayes
[32]; see also Seppäläinen [211] for some even more recent developments. The C-variant
(Definition 6.15) was introduced in the regular tree case by Häggström [114, 115], and
further studied in a general graph context by Jonasson [139]. In the following, we will
try to convince the reader that random-cluster measures of both types are of interest,
and also discuss their relation to each other.

We shall concentrate mainly on the case q ≥ 1. The reason for this is that it is only
for q ≥ 1 that the conditional probability in (27) is increasing in η, which allows the
use of the stochastic domination and correlation results in Section 4 (Theorems 4.8 and
4.11). For q < 1, these tools are not available, and for this reason the random-cluster
model with q < 1 is much less understood than the q ≥ 1 case, although in Grimmett
[109], Häggström [113] and Seppäläinen [211] one can find at least some results in the
q < 1 regime of the parameter space.
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We write φB,0
p,q for φB,ξ

p,q with ξ ≡ 0, and φ̂B,1
p,q for φ̂B,ξ

p,q with ξ ≡ 1. We can omit

the hat when G = Zd, because there is always exactly one infinite cluster regardless
of the configuration on B (this is related to Proposition 6.19 below). On the other
hand, the two different ways of counting clusters with wired boundary condition are not
equivalent for all graph structures; a simple counterexample is G = Td in which the
wired boundary condition gives rise to several infinite clusters.

Still in the context of general infinite graphs, we write B ↑ B for the limit along
some (any) sequence of finite simply connected regions increasing to B in the usual way.
In complete analogy to (29) and Lemma 6.8 we then obtain the following monotonicity
and convergence result.

Lemma 6.16 For p ∈ [0, 1], q ≥ 1, and any two finite bond sets B1 ⊂ B2, we have

(i) φB1,0
p,q �D φB2,0

p,q , so that the limit φ0
p,q = lim

B↑B
φB,0

p,q exists; and

(ii) φ̂B1,1
p,q �D φ̂B2,1

p,q , so that the limit φ̂1
p,q = lim

B↑B
φ̂B,1

p,q exists.

Now let φ be any random-cluster measure of either type, compactified or not, with the
given parameters p and q. Further application of Theorem 4.8 (or Corollary 6.7) implies
that

φ0
p,q �D φ �D φ̂1

p,q .

This is analogous to the sandwiching relation (15) for the Ising model.
Furthermore, the arguments of Section 6.3 go through to show that the q-state Potts

model on G at inverse temperature β has a unique Gibbs measure if and only if the
φ̂1

p,q-probability of having an infinite cluster is 0, where as usual p = 1− e−2β.
For Definitions 6.14 and 6.15 to be of interest, we have to establish at least the

existence of random-cluster measures of the two types. The following theorem tells us
that at least for q ≥ 1, such measures do exist. (The existence problem for q < 1
remains open in the setting of general graphs, although existence has been established
for Zd and Td; see [109] and [114], respectively.)

Theorem 6.17 For p ∈ [0, 1] and q ≥ 1, we have that (i) φ0
p,q is a random-cluster

measure, and (ii) φ̂1
p,q is a C-random-cluster measure.

For the proof we use the following lemma which characterizes random-cluster measures
in terms of single-edge conditional probabilities. For e = 〈xy〉 ∈ B and ξ ∈ {0, 1}B\{e},
we write as usual {x↔ y} for the event that there exists an open path in ξ from x to y.

We also write {x C←→ y} for the event that there either exists an open path in ξ from
x to y, or x and y are both in infinite clusters of ξ. We think of this C-connectivity

notion x
C←→ y as allowing paths between x and y to go “via infinity”.

Lemma 6.18 Fix p ∈ [0, 1] and q > 0, and let φ be a probability measure on {0, 1}B.
Then φ is a random-cluster measure for p and q if and only if for each e = 〈xy〉 ∈ B
and φ-a.e. ξ ∈ {0, 1}B\{e} we have

φ(e is open | ξ) =

{

p if x↔ y in ξ
p

p+(1−p)q otherwise,
(36)

Similarly, φ is a C-random-cluster measure for p and q if and only if (36) holds with

x
C←→ y instead of x↔ y.

52



Proof: We consider only the first statement, as the C-case is completely similar. For
the “only if” part we only need to note that the right-hand side of (36) is equal to

φ
{e},ξ
p,q (e is open ). Passing to the “if” part, we may restrict ourselves to the case of
p ∈ (0, 1). Assume that φ satisfies (36) for each e = 〈xy〉 ∈ B and φ-a.e. ξ ∈ {0, 1}B\{e}.
Let B ⊂ B be some finite edge set. We need to show that the conditional distribution
φ(·|ξ) of φ given the configuration ξ on Bc equals φB,ξ

p,q for φ-a.e. ξ. For this, it suffices

to check that for any two configurations η, η′ ∈ {0, 1}B which agree with ξ on Bc we
have

φ(η | ξ)
φ(η′ | ξ) =

{∏e∈B p
η(e)(1− p)1−η(e)}qk(η,B)

{∏e∈B p
η′(e)(1− p)1−η′(e)}qk(η′,B)

(37)

with k defined as in (35). If η and η′ differ only at a single edge e, then k(η,B) −
k(η′, B) = k(η, e) − k(η′, e), whence (37) is immediate from (36). In the general case,
we interpolate η and η′ by a sequence of configurations which successively differ in at
most one edge, and use a telescoping argument. 2

Proof of Theorem 6.17: We prove (ii) only, as (i) follows from a similar argument
and is also better known, see e.g. Borgs and Chayes [32]. Fix e = 〈xy〉 ∈ B. By Lemma

6.18, it is sufficient to establish (36) with the C-connectivity relation
C←→ in place of

the standard connectivity relation ↔.
Let B1, B2, . . . be an increasing sequence of finite edge sets containing e and con-

verging to B in the usual sense. We write, with slight abuse of notation, ξ(Bi) for the
restriction of ξ to Bi \ {e}. We recall from the martingale convergence theorem that

φ̂1
p,q(e is open | ξ) = lim

j→∞
φ̂1

p,q(e is open | ξ(Bj)) (38)

for φ̂1
p,q-a.e. ξ ∈ {0, 1}B\{e}.

We suppose first that x
C←→ y fails in ξ. Then at least one of the vertices x and

y is in a finite cluster of ξ, and consequently there is some m (depending on ξ) such

that ¬(x
C←→ y) can be verified by just looking at ξ(Bm). (This is a consequence of the

special concept of C-connectivity.) For any n ≥ j ≥ m we then have

φ̂Bn,1
p,q (e is open | ξ(Bj)) =

p

p+ (1− p)q

so that by the definition of φ̂1
p,q we get

φ̂1
p,q(e is open | ξ(Bj)) =

p

p+ (1− p)q

by letting n→∞. Then we let j →∞ and use (38) to deduce the C-version of (36) in

the case ξ /∈ {x C←→ y}.
We go on to the case ξ ∈ {x C←→ y}. In analogy to (38), we have

lim
j→∞

φ̂1
p,q(x

C←→ y | ξ(Bj)) = 1

for φ̂1
p,q-a.e. ξ ∈ {x

C←→ y}. For such ξ and any ε > 0, we can thus find an m (depending
on ξ) such that

φ̂1
p,q(x

C←→ y | ξ(Bj)) ≥ 1− ε (39)
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for any j ≥ m. Next we use the definition of φ̂1
p,q. For any n = 1, 2, . . ., let Y and Yn be

{0, 1}B-valued random edge configurations with distributions φ̂1
p,q and φ̂Bn,1

p,q satisfying
Yn � Y ; this is possible by Lemma 6.16. We write Pn for the probability measure
underlying this coupling. By the same lemma and the order relation Yn � Y , we have

lim
n→∞

Pn(Yn(Bj) 6= Y (Bj)) = 0 . (40)

Since Yn ∈ {x C←→ y} whenever Y ∈ {x C←→ y}, we can write

∣

∣

∣ φ̂Bn,1
p,q (x

C←→ y , ξ(Bj))− φ̂1
p,q(x

C←→ y , ξ(Bj))
∣

∣

∣

≤ Pn

(

{x C←→ y in Yn, Yn(Bj) = ξ(Bj)} △ {x C←→ y in Y, Y (Bj) = ξ(Bj)}
)

≤
(

φ̂Bn,1
p,q (x

C←→ y)− φ̂1
p,q(x

C←→ y)
)

+ Pn(Yn(Bj) 6= Y (Bj)) ,

where △ denotes symmetric difference. Since {x C←→ y} is the decreasing limit of the
local events {x↔ y in ∆} ∪ {x↔ ∆c, y ↔ ∆c} as ∆ ↑ L, an analogue of (30) together
with (40) shows that the last expression tends to zero as n→∞. It follows that

lim
n→∞

φ̂Bn,1
p,q (x

C←→ y | ξ(Bj)) = φ̂1
p,q(x

C←→ y | ξ(Bj))

which is at least 1 − ε by (39). But since φ̂Bn,1
p,q (e is open | ξ′) = p for each n and all

ξ′ ∈ {x C←→ y}, we get

p− ε ≤ lim
n→∞

φ̂Bn,1
p,q (e is open | ξ(Bj)) ≤ p .

Hence,
p− ε ≤ φ̂1

p,q(e is open | ξ(Bj)) ≤ p ,
and since ε was arbitrary we can use (38) to deduce the C-version of (36) in the case

ξ ∈ {x C←→ y}. 2

Let us now briefly address the issue of whether the two types of random-cluster measures
are any different. The following result says that very often they are the same.

Proposition 6.19 Let φ be a probability measure on {0, 1}B with

φ(∃ at most one infinite open cluster) = 1 .

Then, for any p ∈ [0, 1] and q > 0, φ is a random-cluster measure for p and q if and
only if it is a C-random-cluster measure for p and q.

This means that whenever “uniqueness of the infinite cluster” can be verified, the two
types of random-cluster measures coincide. An example is obtained if we consider trans-
lation invariant random-cluster measures for Zd, since the Burton–Keane uniqueness
theorem (Theorem 5.17) applies in this situation. For Zd, the measures φ0

p,q and φ̂1
p,q

are translation invariant, by Lemma 6.8. On the other hand, uniqueness of the infinite
cluster typically fails on trees, leading to very different behavior for the two types of
random-cluster measures; see [114, 115] for a discussion.
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Proof of Proposition 6.19: For p = 0 or 1 the result is trivial, so we may assume
that p ∈ (0, 1). The conditional probabilities in (36) and its C-counterpart differ only
on the event

Axy = {x C←→ y} \ {x↔ y} .
Hence if φ is a random-cluster measure but not a C-random-cluster measure (or vice
versa), then Axy has to have positive φ-probability for some edge e = 〈xy〉 ∈ B. But
then the event Axy∩{e is closed} has positive φ-probability, and since this event implies
the existence of at least two infinite clusters, we are done. 2

Much of the study of infinite volume random-cluster measures that has been done so
far concerns the issue of uniqueness (or non-uniqueness) of random-cluster measures.
A discussion of this issue would, however, lead us too far, so instead we advise the
reader to consult Grimmett [109], Häggström [114] and Jonasson [139] to find out what
is known and what is conjectured in this field.

6.5 An application to percolation in the Ising model

In Theorem 5.10 we have seen that the probability of percolation of plus spins in the
Ising model is an increasing function of the external field. A much harder question is
to determine monotonicity properties of percolation probabilities as β (rather than h)
is varied. An interesting open problem is to decide whether for G = Zd, d ≥ 2, the
probability

µ+
β (x

+←→∞)

is increasing in β. Here we write µ+
β for the plus phase in the Ising model at inverse

temperature β with external field h = 0, and {x +←→∞} is the event that there exists
an infinite path of plus spins starting at x. At first sight, one might be seduced into
thinking that this would be a consequence of the connection between Ising and random-
cluster models, and the stochastic monotonicity of random-cluster measures as p varies;
see (31). However, such a conclusion is unwarranted. For example, in the coupling
of Theorem 6.2 the existence of an open path between x and y in the random-cluster
representation is a sufficient but not necessary condition for x and y to be in the same
spin cluster. In fact, Häggström [116] showed, by means of a simple counterexample
and in response to a question of Cammarota [45], that the probability that x and y are
in the same spin cluster need not be increasing in β, and similarly for the expected size
of the spin cluster containing x.

However, when the underlying graph is a tree, monotonicity in β of the probability
of plus percolation can be established:

Theorem 6.20 For the Ising model on the regular tree Td, d ≥ 2, with a distinguished

vertex x, the percolation probability µ+
β (x

+←→∞) is increasing in β.

An interesting aspect of this result is that its proof, unlike those of the monotonicity
results mentioned earlier in this section, is not based on stochastic domination between
the probability measures in question. In fact, stochastic domination fails, i.e. it is not
always the case (in the setting of Theorem 6.20) that

µ+
β1
�D µ+

β2
(41)
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when β1 ≤ β2. An easy way to see this is as follows. Just as in Theorem 3.1, let
βc be the critical inverse temperature for non-uniqueness of the Gibbs measure. (It is
straightforward to show, using either the random-cluster approach or the methods in
Section 7, that βc > 0 for L = Td.) Pick β1 < β2 in (0, βc). By Theorem 4.15, we then
have µ+

β1
(ξ : ξ(y) = +1) = µ+

β2
(ξ : ξ(y) = +1) = 1/2 for every vertex y. If now (41)

was true we would have µ+
β1

= µ+
β2

by Proposition 4.12. This, however, is impossible
because the two measures have different conditional distributions on finite regions.

Theorem 6.20 can be proved using the exact calculations for the Ising model on Td,
which can be found in e.g. Spitzer [215] and Georgii [96]. Here we present a simpler
proof which does not require any exact calculation, but which exploits random-cluster
methods.

Proof of Theorem 6.20: As usual we write L and B for the vertex and edge sets of
Td. Since

lim
Λ↑L

µ+
β,Λ(x

+←→∞) = µ+
β (x

+←→∞)

for any β in analogy to (30), it suffices to show that for β1 ≤ β2 and any Λ, we have

µ+
β1,Λ(x

+←→∞) ≤ µ+
β2,Λ(x

+←→∞) . (42)

This we will do by constructing a coupling P of two {−1,+1}L-valued random objects

X1 and X2 with respective distributions µ+
β1,Λ and µ+

β2,Λ and the property that if x
+←→

∞ in X1, then the same thing happens in X2.
Recall the Edwards–Sokal coupling of spin and edge configurations described ahead

of Proposition 6.9. In the present case of the tree Td, this construction requires
the C-version of counting clusters, which corresponds to making the complement of
Λ connected. Therefore we will work with the C-random-cluster distributions. Let
p1 = 1−e−2β1 and p2 = 1−e−2β2 , and let B = B1

Λ ⊂ B be the set of edges incident to at
least one vertex in Λ. We first let Y1 and Y2 be two {0, 1}B-valued random edge config-
urations distributed according to the random-cluster measures φ̂B,1

p1,2 and φ̂B,1
p2,2, and such

that P (Y1 � Y2) = 1; this is possible by the φ̂B,1
p,2 -analogue of (31). X1 and X2 can now

be obtained by assigning spins to the connected components of Y1 and Y2 in the usual
way; these spin assignments are coupled as follows. First we must assign spin +1 to all
infinite clusters in Y1 and Y2. Then we let (Z(y))y∈Λ be i.i.d. random variables taking
values +1 and −1 with probability 1/2 each, and assign to each finite cluster C of Y1

and Y2 the value Z(y), where y is the (unique) vertex of C that minimizes the distance
to x. This defined X1 and X2. A moment’s thought reveals that the set of vertices that
can be reached from x via spins in X1 is almost surely contained in the corresponding
set for X2. Hence (42) is established, and we are done. 2

Note that this proof did not use any property of Td except for the tree structure, so
Theorem 6.20 can immediately be extended to the setting of arbitrary trees.

6.6 Cluster algorithms for computer simulation

An issue of great importance in statistical mechanics which we have not touched upon
so far is the ability to perform computer simulations of large Gibbs systems. Many
(most?) questions about phase transition behavior etc. can with current knowledge only
be answered partially (or not at all) using rigorous mathematical arguments. Computer
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simulations are then important for supporting (or rejecting) heuristic arguments, or (in
case not even a good heuristic can be found) to provide ideas for what a good conjecture
might be. This topic is somewhat beside the main issue of our survey, but since random-
cluster representations have played a key role in simulation algorithms for more than
a decade we feel that it is appropriate to describe some of these algorithms. In fact,
it was the need of efficient simulation which, in the late 1980’s, sparked the revival of
the random-cluster model (Swendsen and Wang [219]) which up to then had raised only
little interest since its introduction by Fortuin and Kasteleyn in the early 1970’s.

Consider for instance the Ising model with free boundary condition on a large cubic
region Λ ⊂ Zd. Direct sampling from the Gibbs distribution µh,β,Λ with free boundary
condition is not feasible, due to the huge cardinality of the state space Ω, and the
(related) intractability of computing the normalizing constant for the Gibbs measure.
The most widely used way to handle this problem is the Markov chain Monte Carlo
method, which dates back to the 1953 paper by Metropolis et al. [178]. The idea is
to define an ergodic Markov chain having as unique stationary distribution the target
distribution µh,β,Λ. Starting the chain in an arbitrary state and running the chain
for long enough will then produce an output with a distribution close to the target
distribution. An example of such a chain is the single-site heat bath algorithm, whose
evolution is as follows. At each integer time, a vertex x ∈ Λ is chosen at random, and
the spin at x is replaced by a new value according to the conditional distribution (under
µh,β,Λ) of the spin at x given the spins at its neighbors. It is immediate that µh,β,Λ is
stationary for this chain, and ergodicity of the chain follows from elementary Markov
chain theory upon checking that it is aperiodic and irreducible. The problem with this
approach is that the time taken to come close to equilibrium may be very long. For
example, let h = 0. Then, for β < βc (with βc defined as in Theorem 3.1), the time
taken to come within a fixed small variational distance from the target distribution
grows only like n log n in the size of the system (here n is the number of vertices in Λ)
whereas in contrast the time grows (stretched) exponentially in the size of the system for
β > βc; see e.g. [169, 168]. This means that simulation using this heat bath algorithm is
computationally feasible even for fairly large systems provided that β < βc, but not for
β > βc. What happens for β > βc is that if the chain starts in a configuration dominated
by plus spins, then the plus spins continue to dominate for an astronomical amount of
time, and similarly for starting configurations dominated by minus spins. The set of
configurations where the fraction of plus spins is around 1/2 (rather than around the
fractions predicted by the magnetization in the infinite-volume Gibbs measures µ+

β and

µ−β ) has small probability and thus can be seen as a “bottleneck” in the state space,
slowing down the convergence rate.

A way to tackle the exceedingly slow convergence rate in the phase coexistence
regime is to use the heat bath algorithm for the corresponding random-cluster model
rather than for the Ising model itself, and only in the end go over to the Ising model
by the random mapping described in Corollary 6.3. This has the disadvantage that
the calculation of single-site (or, rather, single-edge) conditional probabilities become
computationally more complicated due to the possible dependence on edges arbitrarily
far away (see Lemma 6.6). This disadvantage, however, seems to be by far outweighed
by the fact that the convergence rate of the Markov chain (for β > βc) appears to be
very much faster than for the heat bath applied directly to the spin variables. The
reason for this phenomenon is that the random-cluster representation “doesn’t see any
difference” between the plus state and the minus state. This approach can of course
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be used also for the q ≥ 3 Potts model, and is due to Sweeny [218]. Later, Propp and
Wilson [200] built on this approach by coupling several such Markov chains (i.e. running
them in parallel) in an ingenious way, producing an algorithm which runs for a random
amount of time (determined by the algorithm itself) and then outputs a state which
has exactly the target distribution. The running time of this algorithm turns out (from
experiments) to be moderate except for the case of large q and β close to the critical
value. The Propp–Wilson approach, known as exact or perfect simulation, has received
a vast amount of attention among statisticians during the last few years (see e.g. the
annotated bibliography [225]) and we believe that it has interesting potential also in
physics.

There is, however, another Markov chain which appears to converge even faster
than those of Sweeny, Propp and Wilson. We are talking about the Swendsen–Wang
[219] algorithm, which runs as follows for Ising and Potts models on a graph with
vertex set L and edge set B: Starting with a spin configuration X0 ∈ {1, . . . , q}L, a
bond configuration Y0 ∈ {0, 1}B is chosen according to the random mapping defined in
Corollary 6.4. Then another spin configuration X1 is produced from Y0 by assigning
random spins to the connected components, i.e. by the random mapping of Corollary
6.3. This procedure is then iterated, producing a new edge configuration Y1 and a new
spin configuration X2, etc. By combining the two corollaries, we see that if X0 is chosen
according to the target distribution, then the same holds for X1, and consequently for
X2,X3, . . .. In other words, the target distribution is stationary for the chain {Xk}∞k=0,
and by the (easily verified) ergodicity of the chain we have a valid Markov chain Monte
Carlo algorithm. Although it is not exact in the sense of the Propp–Wilson algorithm,
it appears to converge much faster, thus in practice allowing simulation of systems that
are orders of magnitude larger. Heuristically, the reason for this faster convergence is
that large chunks of spins may flip simultaneously, allowing the chain to tunnel through
any bottlenecks in the target distribution. However, rigorous upper and lower bounds
on the time taken to come close to equilibrium are to a large extent lacking, although Li
and Sokal [159] have provided a lower bound demonstrating the phenomenon of “critical
slowing down” as β approaches βc.

The Swendsen–Wang algorithm has, since its introduction in 1987, become the stan-
dard approach to simulating Ising and Potts models. Interesting variants and modifi-
cations of this algorithm have been developed by Wolff [226] and Machta et al. [165];
the last paper is an interesting attempt at combining the original approach of Swendsen
and Wang with ideas from so called invasion percolation (see [55]) to get an algorithm
specifically aimed at sampling from a Gibbs distribution at the critical inverse tem-
perature βc, i.e. where the use of other algorithms have proved to be most difficult.
Generalizations of the Swendsen–Wang algorithm for various models other than Ising
and Potts models have also been obtained, see e.g. Campbell and Chayes [48], Chayes
and Machta [58, 59], and Häggström et al. [121].

6.7 Random-cluster representation of the Widom–Rowlinson model

The random-cluster model can be seen as a perturbation of Bernoulli bond percolation,
where the probability measure is changed in favour of configurations with many (for q >
1) or few (for q < 1) connected components. A fairly natural question is what happens if
we perturb Bernoulli site percolation in the same way. For lack of an established name,
we call the resulting model the site-random-cluster model. Let G be a finite graph with
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vertex set L and edge set B. For a site configuration η ∈ {0, 1}L, we write k(η) for the
number of connected components in the subgraph of G obtained by deleting all vertices
x with η(x) = 0 and their incident edges.

Definition 6.21 The site-random-cluster measure ψG
p,q for G with parameters p ∈

[0, 1] and q > 0 is the probability measure on {0, 1}L which to each η ∈ {0, 1}L assigns
probability

ψG
p,q(η) =

1

ZG
p,q

{

∏

x∈L

pη(x)(1− p)1−η(x)

}

qk(η),

where ZG
p,q is a normalizing constant.

Analogously to the usual random-cluster model living on bonds, taking q = 1 gives
the ordinary Bernoulli site percolation ψp, while other choices of q lead to dependence
between vertices.

Taking q = 2 is of particular interest because it leads to a representation of the
Widom–Rowlinson model which is similar to (and in fact slightly simpler than) the
usual random-cluster representation of the Ising model. Let µG

λ be the Gibbs measure
for the Widom–Rowlinson model with activity λ on G, i.e. µG

λ is the probability measure
on {−1, 0,+1}L which to each ξ ∈ {−1, 0,+1}L assigns probability proportional to

∏

〈xy〉∈B

I{ξ(x)ξ(y)6=−1}

∏

x∈L

λ|ξ(x)| .

The following analogues of Corollaries 6.3 and 6.4 are trivial to check.

Proposition 6.22 Let p = λ
1+λ , and suppose we pick a random spin configuration

X ∈ {−1, 0,+1}L as follows.

1. Pick Y ∈ {0, 1}L according to ψG
p,2.

2. Set X(x) = 0 for each x ∈ L such that Y (x) = 0.

3. For each open cluster C of Y , flip a fair coin to decide whether to give spin +1
or −1 in X to all vertices of C.

Then X is distributed according to the Widom–Rowlinson Gibbs measure µG
λ .

Proposition 6.23 Let p = λ
1+λ , and suppose we pick a random spin configuration

Y ∈ {0, 1}L as follows.

1. Pick X ∈ {−1, 0,+1}L according to µG
λ .

2. Set Y (x) = |X(x)| for each x ∈ L.

Then Y is distributed according to the site-random-cluster measure ψG
p,2.

We remark that for q ∈ {3, 4, . . .}, these results extend in the obvious way to a connection
between ψG

p,q and the generalized Widom–Rowlinson model whith q types of particles
rather than just 2 (and strict repulsion between all particles of different type).

Many of the arguments applied to Ising and Potts models in Section 6.3 can now be
applied to the Widom–Rowlinson model in a similar manner. To apply Theorem 4.8,
we need to calculate the conditional probability in the site-random-cluster model that a
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given vertex is open given the status of all other vertices. For x ∈ L and η ∈ {0, 1}L\{x},
we get

ψG
p,q(x is open | η) =

p q1−κ(x,η)

p q1−κ(x,η) + 1− p (43)

where κ(x, η) is the number of open clusters of η which intersect x’s neighborhood
{y ∈ L : y ∼ x}. If the degree of the vertices in G is bounded by N , say, then
0 ≤ κ(x, η) ≤ N for any x ∈ L and η ∈ {0, 1}L\{x}. For fixed q and any p∗ ∈ (0, 1),
we can thus apply Theorem 4.8 to show that ψG

p,q stochastically dominates ψp∗ for p
sufficiently close to 1, and is dominated by ψp∗ for p small enough. The arguments of
Section 6.3 leading to a proof of Theorem 3.1, with the random-cluster model replaced
by the site-random-cluster model, therefore go through to show Theorem 3.4.

One thing that does not go through in this context, however, is the analogue of (31).
The reason for this is that, in contrast to (27), the conditional probability in (43) fails
to be increasing in η, so that Theorem 4.8 is not applicable for comparison between
site-random-cluster measures with different values of p. In fact, the analogue of (31)
for site-random-cluster measures sometimes fails, and moreover the occurrence of phase
transition for the Widom–Rowlinson model on certain graphs fails to be increasing in
λ, as demonstrated by Brightwell, Häggström and Winkler [38].

Another consequence of the failure of the conditional probability in (43) to be in-
creasing is that the FKG inequality (Theorem 4.11) cannot be applied to ψG

p,q. As a
consequence, the proof of Theorem 6.10 cannot be adapted to the case of the multitype
(q ≥ 3) Widom–Rowlinson model. In fact, such a Widom–Rowlinson analogue of The-
orem 6.10 is known to be false, as shown by Runnels and Lebowitz [207]; see also [57]
and [184].
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7 Uniqueness and exponential mixing

from non-percolation

In the previous section we saw examples where phase transition in one system was
equivalent to the existence of infinite clusters in another, suitably defined, system. In
this section we shall discuss various approaches where conclusions about the phase
transition behavior can only be drawn from nonexistence (and not from existence) of
infinite clusters. On the other hand, these approaches typically apply to a much wider
range of models. We address two problems: the uniqueness of the Gibbs measure, and
the decay of correlations for a given Gibbs measure. In fact, the general theme of
this section can be stated as follows: To which extent can a given spin be influenced
by a configuration far away? If such an influence disappears in the limit of infinite
distance, it follows (depending on the setting) that either there is no long-range influence
of boundary conditions at all (implying uniqueness of the Gibbs measure), or that a
specific low temperature phase exhibits some mixing properties. In both cases, the
decreasing influence comes from the absence of infinite clusters of suitable type which
could transport a dependence between spins. So, both uniqueness and mixing will
appear here as a consequence of non-percolation.

In a first part, we will address the problem of uniqueness. In fact, we will encounter
conditions which not only imply the uniqueness of the Gibbs measure, but also lead
us into a regime where ‘all good things’ happen, i.e., where the unique Gibbs measure
exhibits nice exponential mixing properties and the free energy depends analytically
on all relevant parameters. (In general, the uniqueness of the Gibbs measure does not
imply the absence of other critical phenomena, which might manifest themselves as
singularities of the free energy or other thermodynamic quantities. For example, in
Section 9 we will see that in the so-called Griffiths’ regime of a disordered system there
is a unique Gibbs measure, but the free energy is not analytic.)

The ‘nice regime’ above is usually referred to as the high temperature, or weak
coupling, low density, or also analytic regime, and is usually studied by high temperature
cluster expansions. Dobrushin and Shlosman [70, 71] developed a beautiful and general
theory describing a regime of ‘complete analyticity’ by various equivalent properties.
One of these ranks at the top of a hierarchy of mixing properties. While complete
analyticity makes precise what actually the ‘nice regime’ is, and applies mainly to
high temperatures or large external fields, it is not limited to this case only [75]. The
relationships between this and related notions and also with dynamical properties have
been studied in many papers. Although some of these have an explicit geometric flavor,
we do not discuss them here because of limitations of space. We rather refer to the
sources [70, 71, 217, 168, 170] and also to the references following condition (68).

In Section 7.3 we shall discuss an application of the percolation method to the low
temperature regime, and see how percolation estimates for the covariance between two
distant observables, combined with contour estimates, give rise to exponential mixing
properties.

7.1 Disagreement paths

Let (L,∼) be an arbitrary locally finite graph, and suppose we are given a neighbor in-
teraction U : S×S → R and a self-potential V : S → R. Consider the associated Gibbs
distributions µη

β,Λ introduced in (4). More generally, we could consider an arbitrary
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Markov specification (GΛ)Λ∈E in the sense of Section 2.6. Such specifications appear,
in particular, if we have an interaction of finite range R, say on Zd, and draw edges
between all sites of distance at most R. However, for definiteness and simplicity we
stick to the setting described by the Hamiltonian (1). We will often consider the inverse
temperature β as fixed and then simply write µη

Λ instead of µη
β,Λ. If Λ is a singleton, we

use the shorthand x for {x}.
We look for a condition implying that there is only one Gibbs measure µ for the

Hamiltonian (1), i.e., a unique probability measure on Ω = SL satisfying

µ( · |X ≡ η off Λ) = µη
Λ for µ-almost all η ∈ Ω .

Since this property needs only to be checked for singletons Λ = {x} (cf. Theorem 1.33
of [96]), it is sufficient to look for conditions on the single-spin Gibbs distributions µη

x

with x ∈ L. Intuitively, we want to express that µη
x(X(x) = a) depends only weakly on

η (which can be expected to hold for small β). This dependence can be measured by
the maximal variation

px = max
η,η′∈Ω

‖µη
x − µη′

x ‖x , (44)

where
‖ν‖∆ = sup

A∈F∆

|ν(A)| (45)

is the total variation norm on the sub-σ-algebra F∆ of events which depend only on the
spins in ∆. We write p as a shorthand for the family (px)x∈L.

Given two configurations ξ, ξ′ ∈ Ω, a path in L will be called a path of disagreement
(for ξ and ξ′) if ξ(x) 6= ξ′(x) for all its vertices x. For each finite region Λ ⊂ L and any

two configurations η, η′ on Λc we will construct a coupling P of µη
Λ and µη′

Λ describing
the difference of these measures in terms of paths of disagreement running from the
boundary ∂Λ into the interior of Λ. Intuitively, these paths of disagreement then show
how deep inside the influence of the boundary conditions can still be felt. We write

{∆ 6=←→ ∂Λ} for the event in SΛ × SΛ that there exists a path of disagreement from
some point of a set ∆ ⊂ Λ to some point of ∂Λ.

Although the coupling P to be constructed is not best suited for direct use, it has
a useful special feature: its disagreement distribution is stochastically dominated by a
Bernoulli measure. This will allow us to conclude that absence of percolation for the
latter implies uniqueness of the Gibbs measure for the Hamiltonian (1).

We write ψp for the Bernoulli measure on {0, 1}L with ψp(X(x) = 1) = px for all
x ∈ L, and ψp,Λ for the analogous product measure on {0, 1}Λ. As in Section 4, we
use the notation X(x) and X ′(x) for the projections from Ω × Ω to S. The following
theorem is due to van den Berg and Maes [27].

Theorem 7.1 For each finite Λ ⊂ L and each pair η, η′ ∈ Ω there exists a coupling

P = PΛ,η,η′ of µη
Λ and µη′

Λ having the following properties:

(i) For each x ∈ Λ, {X(x) 6= X ′(x)} = {x 6=←→ ∂Λ} P -a.s.

(ii) For the distribution P 6=
Λ of (I{(X(x)6=X′(x)})x∈Λ under P , we have P 6=

Λ �D ψp,Λ .

(iii) For each ∆ ⊂ Λ,

‖µη
Λ − µ

η′

Λ ‖∆ ≤ P (∆
6=←→ ∂Λ) ≤ ψp(∆↔ ∂Λ) . (46)
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Proof: We construct a coupling (X,X ′) of µη
Λ and µη′

Λ by the following algorithm. In a
preparatory step we introduce an arbitrary linear ordering on Λ , set ∆ = Λ, and define
X(x) = η(x),X ′(x) = η′(x) for x ∈ ∆c.

For fixing the main iteration step, suppose that (X,X ′) is already defined on the
complement of a non-empty set ∆ ⊂ Λ and is realized as a pair (ξ, ξ′) off ∆, where
(ξ, ξ′) ≡ (η, η′) off Λ. Conditional on the event that (X,X ′) ≡ (ξ, ξ′) off ∆, we consider

the Gibbs distributions µξ
∆ and µξ′

∆ obtained by conditioning µη
Λ and µη′

Λ on X ≡ ξ
resp. ξ′ off ∆, and we pick the smallest vertex x = x(ξ, ξ′) ∈ ∆ for which there exists
some vertex y ∈ ∆c with y ∼ x and ξ(y) 6= ξ′(y). If such an x does not exist, we

have µξ
∆ = µξ′

∆ on F∆ by the Markov property, so that we can take the obvious optimal
coupling for which X ≡ X ′ on ∆, and we are done. If such an x does exist, we consider

the single vertex distributions µξ
∆,x = µξ

∆(X(x) = · ) and µξ′

∆,x = µξ′

∆(X(x) = · ) on
S. Conditionally on (X,X ′) ≡ (ξ, ξ′) off ∆, we then let (X(x),X ′(x)) be distributed

according to an optimal coupling (as in Definition 4.3) of µξ
∆,x and µξ′

∆,x. The coupling
(X,X ′) is then defined on the set x∪∆c, so that we can replace ∆ by ∆ \x and repeat
the preceding iteration step.

It is clear that the algorithm above stops after finitely many iterations and gives us a

coupling of µη
Λ and µη′

Λ . Property (i) is evident from the construction, since disagreement
at a vertex is only possible if a path of disagreement leads from this vertex to the

boundary. For (ii), we note that the measures µξ
∆,x and µξ′

∆,x are mixtures of the
Gibbs distributions µσ

x with suitable boundary conditions σ, by the consistency of Gibbs
distributions. Hence

‖µξ
∆,x − µ

ξ′

∆,x‖x ≤ px .

By construction, this means that in each iteration of the main step we have

P (X(x) 6= X ′(x) | (X,X ′) ≡ (ξ, ξ′) off ∆) ≤ px

for x = x(ξ, ξ′), so that (ii) follows by induction. Finally, (iii) follows directly from (i)
and (ii) because for each ∆ ⊂ Λ

‖µη
Λ − µ

η′

Λ ‖∆ ≤ P (X(x) 6= X ′(x) for some x ∈ ∆)

by the coupling inequality (10). The proof is therefore complete. 2

Although the algorithm in the proof above is quite explicit, it is not easy to deal with
directly. In particular, it is not clear in which way the coupling depends on the chosen
ordering, because the site x to be selected in each step depends on (ξ, ξ′) and is therefore
random. Nevertheless, if the Gibbs distributions are monotone (in the sense of Definition
4.9), we get some extra properties.

Remark: Suppose S is linearly ordered and the conditional distributions µξ
x are stochas-

tically increasing in ξ. Then, if η � η′, the coupling P of Theorem 7.1 can be chosen
in such a way that, in addition to properties (i) to (iii), X � X ′ P–a.s. and, for each
x ∈ Λ,

‖µη
Λ − µ

η′

Λ ‖x ≤ P (x
6=←→ ∂Λ) ≤ (|S| − 1) ‖µη

Λ − µ
η′

Λ ‖x . (47)

This is because in each step of the algorithm proving Theorem 7.1 we can achieve that
X(x) ≤ X ′(x), and for the second inequality in (47) it is sufficient to note that

P (x
6=←→ ∂Λ) = P (X(x) < X ′(x)) ≤

∑

a∈S\{m}

[P (X(x) ≤ a)− P (X ′(x) ≤ a)] ,
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where m is the maximal element of S. For details we refer to [27]. In particular, for
|S| = 2 we have equality in (47).

Let us apply this remark to the ferromagnetic Ising model with external field h = 0 and
any inverse temperature β, with boundary conditions η ≡ +1 and η′ ≡ −1 outside of
some finite region Λ ∈ E . Then, by the spin flip symmetry and stochastic monotonicity,

µ+
β,Λ(X(x)) = µ+

β,Λ(X(x) = 1)− µ−β,Λ(X(x) = 1) = ‖µ+
β,Λ − µ−β,Λ‖x

and therefore, by (47),

µ+
β,Λ(X(x)) = P (x

6=←→ ∂Λ) .

We emphasize that this relation is completely similar to what we obtained for the
random-cluster representation, viz.

µ+
β,Λ(X(x)) = φ1

p,2,Λ(x↔ ∂Λ)

for p = 1 − e−2β ; cf. equation (32). The coupling P , however, is less explicit, and
the geometric event involves site percolation rather than bond percolation as for the
random–cluster measure, but the exact correspondence between the magnetization for
the spin system and the percolation probability of the geometric system is the same.

Let us now turn to the main result of this subsection, the uniqueness theorem. Let
µ, µ′ be any two Gibbs measures for the Hamiltonian (1) at some inverse temperature
β. Inequality (46) then shows that

‖µ− µ′‖∆ ≤ sup
η,η′∈Ω

‖µη
Λ − µ

η′

Λ ‖∆ ≤ ψp(∆↔ ∂Λ)

whenever ∆ ⊂ Λ ∈ E . Letting Λ ↑ L we find

‖µ− µ′‖∆ ≤ ψp(∆↔∞)

which gives the following uniqueness result.

Theorem 7.2 If ψp(∃ an infinite open cluster ) = 0 then the set G(βH) of Gibbs mea-
sures for the Hamiltonian (1) at inverse temperature β is a singleton. In particular, this
holds if supx px < pc, the critical density for Bernoulli site percolation on (L,∼).

A weaker version of Theorem 7.2 was obtained first in [24] using a product coupling
instead of Theorem 7.1; see Proposition 7.10 below and also [28]. In some cases, the
simple product coupling nevertheless gives equivalent results; cf. the discussion in [27].

For a large class of regular graphs such as Zd, the assumption of Theorem 7.2 not
only implies the uniqueness of the Gibbs measure but even yields certain exponential
mixing properties. This can be seen almost immediately by combining inequality (46)
with Theorem 5.6 on the exponential tail of the distribution of the cluster diameter in
sub-critical Bernoulli percolation. We will use similar arguments in Section 9.2 in the
context of random interactions.

Let us discuss now some special cases. Clearly, the conditions of Theorem 7.2 hold
when L = Z with the usual graph structure, since then pc = 1. This gives uniqueness
of the Gibbs measure for one-dimensional nearest-neighbor systems. Next we consider
the case L = Zd, d ≥ 2. Recall the bound (19) for the percolation threshold pc when
d = 2, and the large–dimensions asymptotics of pc in (20).
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Example 7.3 The Ising ferromagnet. Let β > 0 be any inverse temperature and h an
external field. Then, for any x, we obtain from (13) by a short computation

px = ‖µ+
h,β,x − µ−h,β,x‖x = [tanh(β(h + 2d))− tanh(β(h− 2d))]/2 .

Hence, the Gibbs measure is unique when h = 0 and tanh(2dβ) < pc, or if |h| > 2d is
so large that 2d < pc cosh2(β(|h| − 2d)), for example.

Example 7.4 The hard-core lattice gas. Setting β = 1, we see that px = λ/(1 + λ) for
any x, so that uniqueness of the Gibbs measure follows for λ < pc/(1 − pc). (This can
also be obtained by using the product coupling mentioned above, cf. [28].)

Example 7.5 The Widom–Rowlinson lattice gas. We take again β = 1 and set λ+ =
λ− = λ. It turns out that the maximum in equation (44) is attained for the boundary
conditions η ≡ 0 and η′ equal to +1 and −1 on (at least) two different neighbors of x,
whence px = 2λ/(1 + 2λ) for any x. It follows that the Gibbs measure is unique when
λ < pc/(2(1 − pc)).

It is interesting to compare the uniqueness condition of Theorem 7.2 with the celebrated
Dobrushin uniqueness condition, cf. [96] and the original papers [65, 66]. This condition
reads

sup
x

∑

y

max
η≡η′ off y

‖µη
x − µη′

x ‖x < 1. (48)

The constraint “η ≡ η′ off y” means that the configurations η, η′ differ only at the vertex
y. For systems with hard-core exclusion or in certain antiferromagnetic models it often
happens that, for every y ∈ ∂x, the maximum in (48) is actually the same as that in
(44), see [27]. Dobrushin’s uniqueness condition then takes the form supx |∂x| px < 1.
For L = Zd and px = p0 independently of x, this means that p0 < 1/(2d), while
Theorem 7.2 only requires p0 < pc, and it is known that pc > 1/(2d − 1) for d > 1.
However, if the constrained maximum in Dobrushin’s condition is much smaller than
the unconstrained maximum in (44), then Dobrushin’s condition will be weaker than
that of Theorem 7.2. For example, for the Ising ferromagnet on Zd with external field
h = 0, Dobrushin’s condition requires that 2d tanh β < 1 which, in view of (20), is
less restrictive than the condition obtained in Example 7.3. Thus, roughly speaking,
Theorem 7.2 works best for “constrained” systems with strong repulsive interactions
and low-dimensional lattices (or graphs with small |∂x|’s) for which reasonable lower
bounds of the critical probability pc are available. Examples are the hard-core lattice
gas and the Widom–Rowlinson lattice gas on Z2 considered above.

There is also another reason why Theorem 7.2 is useful. Namely, its condition of
non-percolation is a global condition: the absence of percolation does not depend on
the value of px at any single site x. In particular, px could be large or even be equal
to 1 for all x’s in an infinite subset (say, a periodic sublattice) of L; once the px’s are
sufficiently small on the complementary set, there is still no infinite open cluster. This
can be applied to non-translation invariant interactions where, in general, it is impossible
to obtain uniform small bounds on the px’s (or on the strength of the interaction, as
would be required by the Dobrushin condition or for some standard cluster-expansion
argument). We will come back to this point in Section 7.3.
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7.2 Stochastic domination by random-cluster measures

Recently, Alexander and Chayes [14] introduced a variant of the random-cluster tech-
nique that applies to a substantially greater class of systems than those considered in
Section 6. This approach involves a so-called graphical representation of the original
system. The graphical representation is stochastically dominated by a random-cluster
model, and absence of infinite clusters in this random-cluster model implies uniqueness
of the Gibbs measure for the original spin system. The price to pay for the greater
generality is that the implication goes only one way: percolation in the random-cluster
model does not, in general, imply non-uniqueness of Gibbs measures.

We assume that the state space S is a finite group with unit element 1; the inverse
element of a ∈ S is denoted by a−1, so that a−1a = aa−1 = 1. For simplicity we assume
that the underlying graph is L = Zd (although this will not really matter). We consider
the Hamiltonian (1) for a pair potential U and with no self-energy, V = 0. By adding
some constant to U (which does not change the relative Hamiltonian) we can arrange
that U ≤ 0. The basic assumption is that U is left-invariant, so that

U(a, b) = u(a−1b) (49)

for all a, b ∈ S and the even function u = U(1, ·) ≤ 0. Note that this setting includes
the q-state Potts model for which S = Zq and u = −2 I{0}. For any finite Λ ⊂ Zd we
consider the Gibbs distribution

µη
β,Λ(σ) =

I{σ≡η off Λ}

ZΛ(β, η)
exp

[

− β
∑

〈xy〉∈BΛ

u(σ(x)−1σ(y))

]

at inverse temperature β with boundary condition η ∈ Ω. Here we write BΛ for the
set of all bonds b ∈ B with at least one endpoint in Λ. The graphical representation
of µη

β,Λ will be based on bond configurations ω ∈ {0, 1}BΛ . Each such ω will also be
viewed as a subset of BΛ, and the bonds in ω will be called open. The key idea of this
representation is taken from the classical high temperature expansion. For fixed β > 0
and any a ∈ S we introduce the difference

Ra = e−β u(a) − 1 ≥ 0 . (50)

With this notation we can write

µη
β,Λ(σ) =

I{σ≡η off Λ}

ZΛ(β, η)

∏

〈xy〉∈BΛ

(1 +Rσ(x)−1σ(y))

=
I{σ≡η off Λ}

ZΛ(β, η)

∑

ω∈{0,1}BΛ

∏

〈xy〉∈ω

Rσ(x)−1σ(y) .

This shows that µη
β,Λ is the first marginal distribution of a probability measure P η

β,Λ on

Ω× {0, 1}BΛ , namely

P η
β,Λ(σ, ω) =

I{σ≡η off Λ}

ZΛ(β, η)

∏

〈xy〉∈ω

Rσ(x)−1σ(y) ,

σ ∈ Ω, ω ∈ {0, 1}BΛ . The second marginal distribution of P η
β,Λ is equal to

γη
β,Λ(ω) = W η

β,Λ(ω)

/

ZΛ(β, η) ,
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where
W η

β,Λ(ω) =
∑

σ≡η off Λ

∏

〈xy〉∈ω

Rσ(x)−1σ(y) (51)

is the “graphical weight” of any ω ∈ {0, 1}BΛ . The probability measure γη
β,Λ on {0, 1}BΛ

is called the graphical distribution or the grey measure (since it ignores the spins which
are considered as colors). The graphical representation of µη

β,Λ thus obtained is analogu-
ous to the random-cluster representation of the Potts model and can be summarized as
follows.

Lemma 7.6 In the set-up described above, the Gibbs distribution µη
β,Λ can be derived

from the graphical distribution γη
β,Λ by means of the conditional probabilities

P η
β,Λ(σ|ω) = W η

β,Λ(ω)
−1

∏

b=〈xy〉∈ω

Rσ(x)−1σ(y) .

That is,
µη

β,Λ(σ) =
∑

ω∈{0,1}BΛ

γη
β,Λ(ω)P η

β,Λ(σ|ω) .

For the Potts interaction u = −2 I{0} with state space S = Zq, the graphical represen-
tation above is easily seen to coincide with the random-cluster representation studied
in Section 6. One important feature is that the graphical weights factorize into cluster
terms. Indeed, each bond configuration ω divides Λ into connected components called
open clusters (which may possibly consist of isolated sites). The set of bonds belonging
to an open cluster C is denoted by ωC . Writing C(ω) for the set of all open clusters we
then obtain that

W η
β,Λ(ω) =

∏

C∈C(ω)

W̄ η
β,Λ(C,ωC) (52)

with
W̄ η

β,Λ(C,ωC) =
∑

σ∈SC : σ≡η on C∩∂Λ

∏

〈xy〉∈ωC

Rσ(x)−1σ(y) .

(We make the usual convention that the empty product is equal to 1; hence W̄ η
β,Λ(C,ωC)

= |S| if C is an isolated site.) Together with Lemma 7.6, equation (52) shows that the
spins belonging to disjoint open clusters are conditionally independent. In particular,
we can simulate the spin system by first drawing a bond configuration ω with weights
(51) and then obtain in each open cluster a spin configuration according to P η

β,Λ(σ|ω).
Suppose we knew that there is no percolation in the graphical representation, in

the sense that maxη γ
η
β,Λ(0 ↔ ∂Λ) → 0 as Λ ↑ L. The conditional independence of

spins in different open clusters would then suggest that there is only one Gibbs measure
for the spin system. Unfortunately, this is not known (though weaker statements are
established in [58]). However, one can make a stochastic comparison of the graphical
distributions with wired random-cluster distributions (Lemma 7.7 below), and the ab-
sence of percolation in the dominating random-cluster distribution will then guarantee
that the original system has a unique Gibbs measure. This will be achieved in The-
orem 7.8 allowing to bound the dependence on boundary conditions in terms of the
connectivity probability in a random-cluster model.

67



To this end we also need to consider Gibbs distributions µf
β,Λ with free boundary

condition. These admit similar graphical representations γf
β,Λ based on bond configura-

tions inside Λ; that is, the bonds leading from Λ to Λc are removed. In the following,
the superscript f will refer to this case.

The stochastic comparison with random-cluster distributions will be formulated us-
ing

R∗ = max
a∈S

Ra , R̄ =
1

|S|
∑

a∈S

Ra , p = R∗/(1 +R∗) , q = R∗/R̄ . (53)

Note that these quantities depend on β since the Ra in (50) do. In the case of the
r-state Potts model when u = −2 I{0}, we have R∗ = 1 − e−2β and q = r; that is,
in this case the parameters p and q are nothing but the standard parameters of the
random-cluster representation. For p and q as above we consider now the wired (resp.
free) random-cluster distribution φ1

p,q,Λ (resp. φ0
p,q,Λ) in Λ as introduced in Section 6.2.

Lemma 7.7 For any Λ ∈ E, β > 0 and p, q as above, γη
β,Λ �D φ1

p,q,Λ and γf
β,Λ �D φ0

p,q,Λ.

Proof: We only prove the first statement since the second is similar and simpler.
According to Section 6.1, the weights of the random-cluster distribution φ1

p,q,Λ are pro-
portional to

(

p

1− p

)|ω|

qk(ω,Λ)

with |ω| the number of open bonds and k(ω,Λ) the number of open clusters meeting
Λ (where all clusters touching ∂Λ are wired together into a single cluster). Up to a
constant factor, the Radon–Nikodym density of γη

β,Λ relative to φ1
p,q,Λ is thus given by

F (ω) = W η
β,Λ(ω)

/

(R∗)|ω|(R∗/R̄)k(ω,Λ) .

Since φ1
p,q,Λ has positive correlations, the lemma will therefore be proved once we have

shown that F is a decreasing function of ω. To this end we let ω � ω′ be such that
ω′ = ω ∪ {b} for a bond b ∈ BΛ \ ω.

We first consider the case when b = 〈xy〉 is not connected to ∂Λ and joins two open
clusters Cx, Cy ∈ C(ω). For each open cluster C let W̄ (C) = W̄ η

β,Λ(C,ωC) be as in (52).
Suppose we stipulate that the spin σ(z) at any site z ∈ C is equal to some a ∈ S. It
is then easy to see that the remaining sum in the definition of W̄ (C) does not depend
on a and thus has the value W̄ (C)/|S|. Prescribing the values of σ(x) and σ(y) in this
way we thus find that

W̄ (Cx ∪ Cy ∪ b) = W̄ (Cx) W̄ (Cy) |S|−2
∑

σ(x), σ(y)

Rσ(x)−1σ(y),

and therefore W η
β,Λ(ω′) = R̄W η

β,Λ(ω). Since k(ω′,Λ) = k(ω,Λ) − 1 and |ω′| = |ω| + 1,
it follows that F (ω′) = F (ω), proving the claim in the first case. If b links some cluster
to the boundary which otherwise was separated from the boundary, then the argument
above shows again that F (ω′) = F (ω).

Next we consider the case when b = 〈xy〉 closes a loop in ω but is still not connected
to the boundary. Since clearly

Rσ(x)−1σ(y) ≤ max
a∈S

Ra = R∗ ,
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we find that W η
β,Λ(ω′) ≤ W η

β,Λ(ω)R∗. On the other hand, in this case we have |ω′| =
|ω|+ 1 and k(ω′,Λ) = k(ω,Λ), so that F (ω′) ≤ F (ω). As we are considering the wired
random-cluster measure, this argument remains valid if b joins two clusters already
attached to the boundary. 2

We are now in a position to state the main result of Alexander and Chayes [14], an
estimate on the dependence of Gibbs distributions on their boundary condition in terms
of percolation in the wired random-cluster distribution. Recall the notation (45) for the
total variation norm on the sub-σ-algebra F∆ of events in some ∆.

Theorem 7.8 Consider the spin system with pair interaction (49) at some inverse
temperature β > 0, and let p, q be given by (53). Then, for any ∆ ⊂ Λ ∈ E and any
pair of boundary conditions η, η′ ∈ Ω,

‖µη
β,Λ − µ

η′

β,Λ‖∆ ≤ φ1
p,q,Λ(∆↔ ∂Λ) .

Proof: (This proof is different from the one that appeared in [14].) Let A be any event
in F∆. From Lemma 7.6 we know that

µη
β,Λ(A) =

∑

ω

γη
β,Λ(ω)P η

β,Λ(A|ω) .

To control the η-dependence of this probability we will proceed in analogy to the argu-
ment for the implication (ii) ⇒ (iii) of Theorem 6.10. If ω ∈ {∆ 6↔ ∂Λ} then equation
(52) shows that the conditional distribution P η

β,Λ(A|ω) does not depend on η. So we

need to control the η-dependence of γη
β,Λ(∆ 6↔ ∂Λ). This, however, does not seem pos-

sible directly. So we will replace γη
β,Λ by the η-independent φ1

p,q,Λ by using a suitable
coupling trick.

By Lemma 7.7 and Strassen’s theorem (Theorem 4.6) there exists a coupling (Ỹ , Ỹ ′)
of γη

β,Λ and φ1
p,q,Λ such that Ỹ � Ỹ ′ almost surely. If Ỹ ′ ∈ {∆ 6↔ ∂Λ}, there exists a

largest (random) set Γ = Γ(Ỹ ′) such that

(a) ∆ ⊂ Γ ⊂ Λ, and

(b) Ỹ ′(b) = 0 for all bonds connecting Γ with Γc.

For Ỹ ′ ∈ {∆↔ ∂Λ} we set Γ = ∅. Conditional on Γ, Lemma 7.7 and Strassen’s theorem

provide us further with a coupling (ỸΓ, Ỹ
′
Γ) of γf

β,Γ and φ0
p,q,Γ such that ỸΓ � Ỹ ′

Γ. It is
then easy to see that the pair of random variables (Y, Y ′) defined by

(Y, Y ′)(b) =

{

(ỸΓ, Ỹ
′
Γ)(b) if b is contained in Γ,

(Ỹ , Ỹ ′)(b) otherwise

is still a coupling of γη
β,Λ and φ1

p,q,Λ such that Y � Y ′ almost surely. (Notice that also

Ỹ (b) = 0 for all bonds from Γ to Γc.) We denote the underlying probability measure by
Qη. Now we can write

µη
β,Λ(A) = Qη

(

P η
β,Λ(A|Y )

)

= Qη
(

P η
β,Λ(A|Y ) I{Γ=∅}

)

+Qη
(

P η
β,Λ(A|Y ) I{Γ6=∅}

)

.
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The first term in the last sum is at most Qη(Γ = ∅) = φ1
p,q,Λ(∆↔ ∂Λ). We claim that

the second term does not depend on η. Indeed, if Γ 6= ∅ then, by (52), P η
β,Λ(A|Y ) =

P f
β,Γ(A|YΓ) only depends on the restriction YΓ of Y to the set of bonds inside Γ. The

second term can thus be written explicitly as

∑

G 6=∅

φ1
p,q,Λ(Γ = G)

∑

ω in G

γf
β,G(ω) P f

β,G(A|ω) ,

which is obviously independent of η. The theorem now follows immediately. 2

To apply the theorem we consider the limiting random-cluster measure φ1
p,q with arbi-

trary parameters p ∈]0, 1[ and q ≥ 1 and wired boundary condition; recall from Section
6.2 that this limiting measure exists. By Corollary 6.7(d), it makes sense to define the
percolation threshold

pc(q) = inf{p : φ1
p,q(0↔∞) > 0}.

We also consider the threshold wc(q) for exponential decay of connectivities, which is
defined as the supremum of all p’s for which

φ1
p,q(0↔ ∂Λ) ≤ Ce−c d(0,∂Λ)

uniformly in Λ (or, at least, for Λ in a prescribed sequence increasing to L) with suitable
constants c > 0 and C < ∞. It is evident that wc(q) ≤ pc(q); for large q it is known
that wc(q) = pc(q) [75]. Theorem 7.8 then gives us the following conditions for high-
temperature behavior; compare with Theorem 7.2.

Corollary 7.9 Whenever β is so small that p < pc(q), there is a unique Gibbs measure
for the Hamiltonian H with pair interaction (49). Furthermore, if in fact p < wc(q)
then the spin system is exponentially weak-mixing in the sense that there are positive
constants C < ∞, c > 0 such that for all ∆ ⊂ Λ ∈ E and all boundary conditions
η, η′ ∈ Ω

‖µη
β,Λ − µ

η′

β,Λ‖∆ ≤ C |∂∆| e−c d(∆,Λc) .

In fact, Alexander and Chayes [14] go a bit further in their exploration of ‘nice’ high
temperature behavior, showing that for p < pc(1) the unique Gibbs measure satisfies
the condition of ‘complete analyticity’ (investigated in [71], for example).

7.3 Exponential mixing at low temperatures

In the previous subsections we have seen how stochastic-geometric methods can be
used to analyze the high temperature behavior of a spin system and, in particular,
for establishing exponential decay of correlations. Here we want to demonstrate that
similar percolation techniques can also be used in the low temperature regime in the
presence of phase transition. We will present a method to show that, for a given phase
µ, the covariance µ(f ; g) of any two local observables f and g decays exponentially fast
with the distance between their dependence sets. (The problem of phase transition at
low temperatures will be addressed in Section 8.)

As a matter of fact, the problem of exponential decay of covariances (or truncated
correlation functions) arises in many physical situations. Correlation functions are re-
lated to interesting response functions or to fluctuations of specific order parameters.
Exponential decay of covariances also provides estimates on higher order correlation
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functions, eventually providing infinite differentiability of the free energy with respect
to an external field [72]. Motivated by these interests, a variety of techniques have been
developed. The most familiar approach are cluster expansions which apply equally well
to both the high temperature (or low density) regime and the low temperature (or high
density) regime. Although they often employ geometric concepts, it seems useful to
combine them with ideas of percolation theory to make geometry more visible. An
example of this is the method to be described below which is taken from a paper by
Burton and Steif [37], where it was used to show that certain Gibbs measures exhibit a
powerful mixing property called ‘quite weak Bernoulli with exponential rate’.

We consider a spin system on an arbitrary graph (L,∼) with Hamiltonian (1). As
before, the essential feature of this Hamiltonian is that only adjacent spins interact, so
that the Gibbs distributions µη

β,Λ in finite regions Λ have the Markov property. The
inverse temperature β > 0 does not play any role for the moment, so we set it equal to
1 and drop it from our notation.

Our starting point is the following estimate on the η-dependence in terms of dis-
agreement paths for two independent copies of µη

Λ. This result is a weak version (and, in
fact, a forerunner [24]) of Theorem 7.1. It is a pleasant surprise that although developed
with high temperature situations in mind, it also provides a useful alternative to some
aspects of the standard low temperature expansions.

Proposition 7.10 For any ∆ ⊂ Λ ∈ E and η, η′ ∈ Ω,

‖µη
Λ − µ

η′

Λ ‖∆ ≤ µ
η
Λ × µ

η′

Λ (∆
6=←→ ∂Λ) .

Proof: For brevity let P = µη
Λ × µ

η′

Λ , and write X,X ′ for the two projections from
Ω× Ω to Ω. Then for any A ∈ F∆ we have

µη
Λ(A)− µη′

Λ (A) = P (X ∈ A)− P (X ′ ∈ A) .

We decompose the probabilities on the right-hand side into the two contributions ac-

cording to whether the event {∆ 6=←→ ∂Λ} occurs or not. In the latter case, there exists
a random set Γ ⊂ Λ containing ∆ such that X ≡ X ′ on ∂Γ. (The union of all disagree-
ment clusters in Λ meeting ∆ is such a set.) Let Γ be the maximal random subset of
Λ with this property. Then for each G the event {Γ = G} only depends on the config-
uration outside G, and X ≡ X ′ on ∂G. The Markov property therefore implies that,
conditionally on {Γ = G} and (XGc ,X ′

Gc), XG and X ′
G are independent and identically

distributed, and this shows that P (X ∈ A, ∆
6=

6↔ ∂Λ) = P (X ′ ∈ A, ∆
6=

6↔ ∂Λ). The
proposition now follows immediately. 2

What is gained with the disagreement estimate above? First, let us observe that this
estimate provides bounds on covariances of local functions in terms of disagreement
percolation.

Corollary 7.11 Fix any Λ ∈ E and η ∈ Ω. Let f and g be any two local functions
depending on the spins in two disjoint subsets ∆ resp. ∆′ of Λ. Then

|µη
Λ(f ; g)| ≤ δ(f) δ(g) µη

Λ × µ
η
Λ(∆

6=←→ ∆′ in Λ)

where δ(f) = maxξ f(ξ)−minξ f(ξ) is the total oscillation of f .
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Proof: By rescaling and addition of suitable constants we can assume that 0 ≤ f ≤ 1
and 0 ≤ g ≤ 1. Proposition 7.10 then shows that

|µη
Λ(f ; g)| ≤

∫

µη
Λ(dξ)

∫

µη
Λ(dξ′) g(ξ′)

∣

∣

∣

∣

µξ
Λ\∆′(f)− µξ′

Λ\∆′(f)

∣

∣

∣

∣

≤ δ(f) δ(g)

∫

µη
Λ(dξ)

∫

µη
Λ(dξ′) µξ

Λ\∆′ × µξ′

Λ\∆′(∆
6=←→ ∆′ in Λ)

because ξ ≡ ξ′ ≡ η on ∂Λ. By carrying out the last integration we obtain the result. 2

The bounds above leave us with the task of estimating the probability of disagreement
paths in a duplicated system. In contrast to the situation in Section 7.1, we are looking
now for estimates valid at low temperatures. If a cluster expansion works, there is no
need to look any further. For instance, a low temperature analysis and estimates of semi-
invariants for the Ising model can be obtained using standard contour representations;
see [67]. It needs to be emphasized, however, that the main step of cluster expansions
consists in expanding the logarithm of the partition function. Only afterwards, by
taking ratios of partition functions, does one obtain expressions for covariances and
higher order correlation functions. Therefore, a point to appreciate is that the bound
of Corollary 7.11 provides a direct geometric bound on covariances which avoids the
machinery of cluster expansions and, in particular, the problems coming from taking
logarithms. As a consequence, this estimate also applies to some cases where standard
cluster expansions are doomed to fail.

Let us illustrate this for the case of the Ising ferromagnet. This might not be the
best example because other methods can also be applied to it; nevertheless, it is useful
to demonstrate the technique in this simple case. Afterwards we will discuss a case
where cluster expansion techniques cannot be used equally easily.

Consider the low temperature plus phase µ+
β of the ferromagnetic Ising model on

the square lattice L = Z2 with zero magnetic field. By taking the infinite volume limit
in Corollary 7.11 with η ≡ +1 we obtain the estimate

|µ+
β (f ; g)| ≤ δ(f) δ(g) µ+

β × µ+
β (∆

6=←→ ∆′) (54)

for the covariance of any two local functions f, g with disjoint dependence sets ∆,∆′.

Next we observe that the event {∆ 6=←→ ∆′} is clearly contained in the event that there
exists a path from ∆ to ∆′ along which (X,X ′) 6= (+,+). The latter event will be

denoted by {∆ 6= (+, +)←→ ∆′}. Now, Burton and Steif [37] have shown how to estimate
the probability of this event to occur in the duplicated plus phase. The result is the
following.

Theorem 7.12 For the Ising ferromagnet on Z2 at sufficiently large β, there exist
constants c > 0 and C < ∞ (depending on β) such that for any two disjoint sets
∆,∆′ ∈ E,

µ+
β × µ+

β (∆
6= (+, +)←→ ∆′) ≤ Cmin{|∂i∆|, |∂i∆

′|} e−c d(∆,∆′) ,

where ∂i∆ = ∂(∆c) is the inner boundary of ∆.

Combining this theorem with (54) we obtain an exponential bound for the covariance
of any two local observables in the low temperature Ising plus phase. While this result
is well-known, its proof below shows how one can proceed in more general cases.
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Sketch proof of Theorem 7.12: It is sufficient to prove the statement with µ+
β

replaced by µ+
β,Λ, where Λ is a sufficiently large square box containing ∆,∆′. For

brevity, let PΛ = µ+
β,Λ × µ+

β,Λ. Suppose that |∂∆′| ≤ |∂∆|, fix an arbitrary x ∈ ∂i∆
′,

and suppose that the event {x 6= (+, +)←→ ∆} occurs. Let Γ0 = Γ0(X,X
′) be the maximal

connected set containing x on which (X,X ′) 6= (+,+). Also, let Γ be the union of Γ0

and all finite components of Γ0
c. Γ is enclosing in the sense that both Γ and Γc are

connected. In fact, Γ can be identified with a contour, the broken line which separates
Γ from its complement.

Consider the set C of all enclosing sets containing x and contained in Λ. For any
integer ℓ ≥ 2, let Cℓ be the set of all C ∈ C such that |∂iC| = ℓ. Since the number
of contours with length ℓ surrounding a given site on the square lattice is bounded by
ℓ3ℓ and since each enclosing set with |∂iC| = ℓ uniquely defines a contour with length
between ℓ and 4ℓ, we have that |Cℓ| ≤ 3(4ℓ + 1)/2(81)ℓ growing exponentially with ℓ.
Now we can write

PΛ(x
6= (+, +)←→ ∆) = PΛ(Γ ∩∆ 6= ∅) ≤

∑

ℓ≥d(∆,∆′)

∑

C∈Cℓ

PΛ(Γ = C) .

Furthermore, for C ∈ Cℓ we have

PΛ(Γ = C) ≤
∑

D⊂∂iC

µ+
β,Λ(X ≡ −1 on D, X ≡ +1 on ∂C)

×µ+
β,Λ(X ≡ −1 on ∂iC \D, X ≡ +1 on ∂C) . (55)

Now, a standard Peierls estimate (see e.g. [213]) shows that

µ+
β,Λ(X ≡ −1 on D,X ≡ +1 on ∂C) ≤ C(β) e−c(β) |D| (56)

with constants c(β), C(β) independent of Λ satisfying c(β) → ∞ as β → ∞. Substi-
tuting (56) into (55) we obtain the theorem by simple combinatorics and summations.
2

We emphasize that the specific properties of the plus phase µ+
β are used only in the last

step, the Peierls estimate (56). Before, we needed only the Markov property. Therefore
it is useful to note that the Peierls estimate is not limited to the Ising model; it remains
valid under the conditions of the standard Pirogov–Sinai theory [213]. In particular, it
follows that the results of Burton and Steif [37] on the ergodic properties of the Ising
model carry over to more general Markovian models of Pirogov–Sinai type.

Let us finally discuss a case in which a Peierls estimate of the form (56) is not
available. Namely, we ask for covariance estimates of local functions, still for the ferro-
magnetic Ising model in a large square Λ, but now for some boundary condition η not
identically equal to +1. This question arises, for example, in the context of correlations
atop of a disordered surface, or in the problem of establishing a Gibbsian description
of non-Gibbsian measures. In fact, in [167] the method to be described below is used
to prove that the projection to a line of the low-temperature plus phase of the two-
dimensional Ising model is weakly Gibbsian.

To be specific, suppose that the boundary condition η on ∂Λ is not identically plus
but contains a large proportion of plus spins; we stipulate that η ≡ +1 on three sides of
Λ while on the remaining side only a large fraction of the spins is plus. In this case, (56)
cannot be true because D can be small and close to the boundary of Λ. For example, if
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E = ∂D ∩ ∂Λ 6= ∅ and η happens to be minus on E then it is not very unlikely that all
spins in D are minus, and (56) will not hold. However, one can take advantage of the
fact that for small D its complement in ∂iC is large, and vice versa. In other words, to
estimate the right-hand side of (55) one should not apply (56) separately to each factor,
but rather one can hope to estimate their product.

To make these general remarks precise we consider the Ising model on the half-plane
Z×Z+. For any n we consider the square Λn = {(x1, x2) ∈ Z2 : −n ≤ x1 ≤ n, 0 < x2 ≤
n} touching the boundary line Z×{0}. On this line we fix a configuration ξ ∈ {+1,−1}Z,
thereby defining a boundary condition on one part of ∂Λ. On the remaining part of ∂Λ
we impose plus boundary condition. That is, we choose the boundary condition η ≡ +1
on ∂Λn \ (Z×{0}) and η ≡ ξ on Z×{0}. We ask for the correlation of the spins at the
sites x = (0, 1) and y = (k, 1) with 0 < |k| < n.

Theorem 7.13 In the situation just described, suppose ξ is such that

m
∑

j=0

ξ(j, 0) ≥ 8m/9 and
−1
∑

j=−m

ξ(j, 0) ≥ 8m/9

for sufficiently large m, and let η be defined as above. Then there are constants c > 0
and C <∞ (not depending on n) such that

|µη
β,Λn

(X(0, 1);X(k, 1))| ≤ C e−c |k|

whenever β and |k| are sufficiently large and n > |k|.

Sketch proof: We proceed as in the proof of Theorem 7.12. In dealing with the
right-hand side of (55) we must take into account that possibly ∂C ∩ ∂Λ 6= ∅. We
therefore replace ∂C by ∂C \∂Λ in the product term and also estimate the probabilities
of intersections by conditional probabilities, yielding the upper bound

µ+,η
β,C(X ≡ −1 on D) µ+,η

β,C(X ≡ −1 on ∂iC \D)

for the summands on the right-hand side of (55). Here, µ+,η
β,C stands for the Gibbs

distribution in C with boundary condition equal to +1 on ∂C ∩ Λ and equal to η on
∂C∩∂Λ. To derive the theorem we need to replace the Peierls estimate (56) by a similar
bound on the last product. The exponential decay of correlations then again follows by
simple combinatorics and summations.

To make the influence of the boundary condition η explicit we exploit a contour
representation leading to the estimate

µ+,η
β,C(X ≡ −1 on D) µ+,η

β,C(X ≡ −1 on ∂iC \D)

≤
∑

Γ,Γ′ inside C
Γ compatible with D

Γ′ compatible with ∂iC\D

∏

γ∈Γ

wη(γ)
∏

γ′∈Γ′

wη(γ
′) . (57)

The right-hand side is defined as follows. For any configuration σ ∈ {+1,−1}Λ we draw
horizontal resp. vertical lines of unit length between neighboring sites of opposite spins,
doing as if the boundary spins were all plus; we then obtain a disjoint union of closed
non-self-intersecting polygonal curves. Each of these curves is called a contour γ, and
a set Γ of contours arising in this way is called compatible. We thus have a one-to-one
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correspondence between spin configurations σ and compatible sets Γ of contours. If
σ ≡ −1 on D, then each component of D is surrounded by some contour γ (i.e., belongs
to the interior Int γ of γ); the smallest contours surrounding the components of D are
collected into a set Γ of contours. Each set Γ arising in this way is called compatible with
D. The probability that a given set Γ of contours occurs is not larger than

∏

γ∈Γ wη(γ),
where

wη(γ) = exp

[

− 2β|γ|+ 2β
∑

x∈Int γ

∑

y∈∂Λ:y∼x

(1− η(y))
]

and |γ| is the length of γ; this can be seen by comparing the probability of a configuration
containing Γ with the probability of the configuration obtained by flipping the spins in
⋃

γ∈Γ Int γ. These observations establish the inequality (57).
Note that the weight wη(γ) of a contour γ depends on the boundary configuration

η; this is because we have chosen to draw the contours for plus boundary conditions
rather than η. It follows that wη(γ) does not necessarily tend to zero when |γ| grows
to infinity; this is in contrast with the case η ≡ +1. The standard low temperature
expansion would therefore become much more complicated. However, if the density of
plus spins in η is sufficiently large, or if ∂Int γ ∩ ∂Λ is rather small, the standard weight
exp[−2β|γ|] of the Ising contours will dominate, and the right-hand side of (57) can be
estimated, as we will show now.

We unite the sets Γ,Γ′ in (57) into a single set of contours Γ̃ = Γ∪Γ′. The contours
in Γ̃ can overlap, but a site of ∂iC can only belong to the interior of at most two
contours. On the other hand, every site of ∂iC is in the interior of at least one contour
of Γ̃, and |∂iC| ≥ k, the distance of the two spins considered. These ingredients allow
us to control the sum on the right-hand side of (57). If k is so large that the density
of plus spins in ξ between 0 and (k, 0) exceeds 8/9 then we find for any collection of
contours Γ̃ = Γ ∪ Γ′ as above

∑

γ̃∈Γ̃

∑

x∈Int γ̃

∑

y∈∂Λ:y∼x

(1− η(y)) ≤ 5/9
∑

γ̃∈Γ̃

|γ̃| .

This yields

∏

γ∈Γ

wη(γ)
∏

γ′∈Γ′

wη(γ
′) ≤

∏

γ∈Γ

exp[−8/9β |γ|]
∏

γ′∈Γ′

exp[−8/9β |γ′|] .

At this point the standard arguments take over (with β replaced by 4β/9), leading to
an exponential estimate of (57). For example, one can conclude the proof along the
lines of Lemma 2.5 of [37]. 2
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8 Phase transition and percolation

Typically, two ends of the phase diagram are amenable to mathematical analysis. One is
the high temperature, or low density, regime which was discussed in the previous section
and in which the system can be viewed as a small perturbation of an independent spin
system. The other end is the low temperature regime which we will now consider. At
low temperatures, the energy dominates over the entropy which comes from the thermal
fluctuations of the spins. One therefore expects that the spin configuration is typically
similar to some frozen zero temperature state, which is a configuration of minimal energy
and thus called a ground state. The similarity of a low temperature state with a ground
state is conveniently described in geometric terms: one imagines that the spins which
agree with the given ground state form an infinitely extended sea, whereas those spins
which have chosen to deviate from the ground state are confined to interspersed finite
islands. This is, of course, a picture of percolation theory: spins that agree with the
ground state form a unique infinite cluster. We are thus led to the concept of agreement
percolation, which will be discussed in the first part of this section.

In fact, agreement percolation is intimately related to the existence of a phase tran-
sition. If several distinct ground states exist, we may hope to find at low temperatures
also several equilibrium phases which can be distinguished by agreement percolation
with respect to the different ground states. One may ask further whether the geo-
metric picture that applies to low temperatures remains valid throughout the whole
non-uniqueness region. Physically, this is a matter of stability of the ground states.
Mathematically, it means to look for conditions under which distinct Gibbs measures
allow distinct stochastic-geometric characterizations.

We will approach this question from two different sides. In Sections 8.1 to 8.4 we
investigate whether “phase transition implies percolation”. We study a fixed equilibrium
phase µ in the non-uniqueness region which, by its very construction, can be viewed
as a random perturbation of some ground state η. We then will see that, in many
cases, spins that agree with η do percolate. After a general discussion of agreement
percolation in Section 8.1, we investigate this concept in the subsequent subsections
for some specific models including the Ising ferromagnet and the Potts model. In the
case of the planar lattice Z2 with its limited geometric possibilities we will also see that
conversely, the absence of phase transition sometimes implies an absence of percolation,
and that in the case of phase transition one has restrictions on the number of phases.
(Methodologically, these results still run under the heading “phase transition implies
percolation”.) In the last Section 8.5 the converse will be treated more systematically
and under a different aspect: we will show that at low temperatures one has percolation
of bonds along which the interaction energy is minimal, and we will see that such a
ground-energy bond percolation often implies a phase transition. Taken together, these
results will show that in various models phase transition comes along with the existence
of a ground-state sea with finite islands (deviation islands) on which the spins deviate
from the ground state, and vice versa.

A theory developing this picture in much more detail is the Pirogov–Sinai theory of
phase transition which deals with the low temperature phase diagram in the presence of
several stable ground states. One basic idea of this theory is to treat the finite deviation
islands of a low temperature system as the constituents of a low density gas of hard-core
particles. While the Pirogov–Sinai theory is intimately related to the subject of this
section, it is much too involved to be developed here. There is, however, a number
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of expositions which may serve as general introductions and in which many additional
references can be found. We mention only [37, 69, 76, 213, 214] and [228] to [230]. Here
we will concentrate on more specific results which are partly beyond the Pirogov–Sinai
theory, in that they are not limited to low temperatures but rather apply to the full
non-uniqueness region, and comment occasionally on some relationships. In particular,
the results of Section 8.5 are similar in spirit to this theory.

8.1 Agreement percolation from phase coexistence

We consider again the general setting of Section 2. (L,∼) is an arbitrary locally finite
graph, S is a finite set, and Ω = SL. Suppose µ is a random field and η ∈ Ω a fixed
configuration. We consider the event {x η←→ ∞} that x ∈ L belongs to an infinite
cluster of the random set R(η) = {y ∈ L : X(y) = η(y)}, and we say that µ exhibits

agreement percolation for η if µ(x
η←→ ∞) > 0 for some x ∈ L. In short, we will then

simply speak of η-percolation. To visualize such an agreement, it may be convenient to
think of a reduced description of µ in terms of its image under the map sη : Ω→ {0, 1}L,
which describes local agreement and disagreement with η, and is defined by

(sη(σ))(x) =

{

1 if σ(x) = η(x),
0 otherwise.

(58)

With this mapping, we can write {x η←→∞} = s−1
η {x↔∞}.

We are interested here in the case when µ is a Gibbs measure for the Hamiltonian
(1), and η is an associated ground state. We say that a configuration η ∈ Ω is a ground
state or, more explicitly, a ground state configuration for the relative Hamiltonian (2),
if H(σ|η) ≥ 0 for any local modification (or “excitation”) σ of η. In other words, η is
a ground state if, for any region Λ ∈ E , the configuration η minimizes the energy in Λ
when ηΛc is fixed. One should note in this context that, in the low temperature limit
β ↑ ∞, the finite-volume Gibbs distribution µη

β,Λ from (4) tends to the equidistribution
on the set of all configurations σ of minimal energy H(σ|η). This fact suggests that, at
least in some cases, the low temperature phase diagram is only a slight deformation of
the zero-temperature phase diagram describing the structure of ground states. This is
precisely the subject of Pirogov–Sinai theory which provides sufficient conditions for this
to hold, proposes a construction of low temperature phases as perturbations of ground
states, and also shows that the size distribution of the deviation islands has exponential
decay.

Suppose next that the Gibbs measure µ is related to the ground state η in some way.
For example, µ might be obtained as the infinite volume limit of the finite volume Gibbs
distributions µη

β,Λ with boundary condition η, possibly along some subsequence. (Under
the conditions of the Pirogov–Sinai theory such a limit always exists.) In the case of a
phase transition, when other phases than µ exist and one is interested in characteristic
properties of µ, one expects that the relationship between µ and η becomes manifest in
a macroscopic pattern of the typical configurations, in that µ shows η-percolation. In
short, we ask for the validity of the hypothesis

|G(βH)| > 1, µ is extremal in G(βH) and related to a ground state η ∈ Ω

=⇒ µ(x
η←→∞) > 0 ∀x ∈ L . (59)

In the specific cases considered below it will always be clear in what sense µ and η are
related; typically, µ will be a limiting Gibbs measure with boundary condition η. We
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emphasize that (59) does not hold in general; a counter-example can be constructed
by combining many independent copies of the Ising ferromagnet to a layered system,
see the discussion after Proposition 8.3 below. Also, even when (59) holds, it does
not necessarily imply that the phase µ is uniquely characterized by the property of
η-percolation.

How can one establish (59)? In the context of the Ising model, Coniglio et al. [62]
and Russo [208] developed a convenient citerion which is based on a multidimensional
analog of the strong Markov property and thus can be used for general Markov random
fields [36, 100]. One version is as follows.

Theorem 8.1 Let (L,∼) be a locally finite graph, µ a Markov field on Ω = SL, and
η ∈ Ω any configuration. Suppose there exist a constant c ∈ R and a local function
f : Ω→ R depending only on the configuration in a connected set ∆, such that µ(f) > c
but

µ(f |X ≡ ξ on ∂Γ) ≤ c (60)

for all finite connected sets Γ ⊃ ∆ and all ξ ∈ Ω with sη(ξ) ≡ 0 on ∂Γ. Then

µ(∆
η←→∞) > 0, i.e., µ exhibits agreement percolation for η.

Proof: Suppose by contraposition that µ(∆
η←→ ∞) = 0. For any ε > 0 we can then

choose some finite Λ ⊃ ∆ such that µ(∆
η←→ Λc) < ε. For ξ /∈ {∆ η←→ Λc}, there

exists a connected set Γ such that ∆ ⊂ Γ ⊂ Λ and sη(ξ) ≡ 0 on ∂Γ; we simply let Γ
be the union of ∆ and all η-clusters meeting ∂∆. As in the proof of Theorem 6.10, we
let Γ(ξ) be the largest such set. For ξ ∈ {∆ η←→ Λc} we put Γ(ξ) = ∅. Then, for each
finite connected set Γ 6= ∅, the event {ξ : Γ(ξ) = Γ} depends only on the configuration
in Λ\Γ, whence by the Markov property µ(f |Γ(·) = Γ) is an average of the conditional
probabilities that appear in assumption (60). ¿From this we obtain

µ(f) ≤ c µ(Γ(·) 6= ∅) + µ(|f | I{Γ(·)=∅}) < c+ ε ‖f‖ .
Letting ε→ 0 we find µ(f) ≤ c, contradicting our assumption. 2

In most applications we will have a natural candidate for the function f . Whenever
distinct phases do exist, they can be distinguished by some order parameter, viz. a
local function f having different expectations for the two phases. If, in addition, some
stochastic monotonicity is available then we can hope to establish (60). In fact, the
percolation phenomena stated in Examples 5.11 to 5.15 can be deduced from a slight
modification of Theorem 8.1. We will not go into the details of these examples which
are treated in [36], but rather apply Theorem 8.1 to our standard examples.

8.2 Plus-clusters for the Ising ferromagnet

The idea of agreement percolation was first developed in the context of the ferromag-
netic Ising model [62, 208]. Let us apply Theorem 8.1 to this standard case. We only
consider the case of no external field, i.e., we set h = 0, so the only parameter is the
inverse temperature β > 0. We are interested in agreement percolation for the constant
configurations η ≡ +1 resp. η ≡ −1, which are the only periodic ground states of the

model. We write
+←→ resp.

−←→ for the corresponding connectedness relation. Our first
result shows that if there is a phase transition then there is plus-percolation for each
Gibbs measure except the minus-phase µ−β ; that is, assertion (59) holds for η ≡ +1.
This result (due to [208]) is valid for an arbitrary locally finite graph (L,∼) with finite
critical inverse temperature βc.
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Theorem 8.2 Let µ be an arbitrary Gibbs measure for the ferromagnetic Ising model

with parameters β > 0, h = 0. If µ 6= µ−β then µ(x
+←→ ∞) > 0 for all x ∈ L. In

particular, if β > βc then µ+
β (x

+←→∞) > 0 for all x ∈ L.
Proof: By the sandwiching inequality (15) and Proposition 4.12, there exists a site
x ∈ L such that µ(X(x) = 1) > c ≡ µ−β (X(x) = 1). On the other hand, the analogue of
inequality (14) for the minus boundary condition shows that

µ(X(x) = 1 |X ≡ −1 on ∂Γ) = µ−β,Γ(X(x) = 1) ≤ c
for every finite Γ ∋ x. Theorem 8.1 thus gives the result for the x at hand. In view of
the finite energy property of µ, this extends easily to all other x ∈ L. 2

Let us rephrase the last statement of Theorem 8.2 as follows: below the critical tem-
perature the plus spins percolate in the plus phase and, by symmetry, the minus spins
percolate in the minus phase µ−β . In the case of graphs with symmetry axes, this state-
ment allows an interesting refinement.

Proposition 8.3 Suppose (L,∼) admits an involutive graph automorphism r which
maps a subset H ⊂ L onto its complement Hc, and that for x ∈ H, y ∈ Hc either x 6∼ y
or y = rx. For x ∈ H let {x +r+←→∞ in H} be the event that there exists an infinite path
γ in H starting from x such that all spins along both γ and its reflection image rγ are
positive. If µ+

β 6= µ−β then µ+
β (x

+r+←→∞ in H) > 0 for all x ∈ H.

One natural case to think of is when L = Zd for d ≥ 2, H a halfspace with boundary
orthogonal to an axis, and r the associated reflection. The proposition then asserts that
µ+

β -almost surely there exists an infinite connected mirror-symmetric set of plus spins.
Another interesting case is when L consists of two disjoint copies of a graph H which
are not connected to each other by any bond. In this case, µ+

β = µ+
β,H × µ+

β,H, and

the statement is that two independent realizations of µ+
β,H exhibit simultaneous plus-

percolation; in this case, the preceding proposition was observed by Giacomin et al.
[100]. It is, however, not possible to take an arbitrarily large number k of independent
realizations X1, . . . ,Xk of µ+

β,H, at least when H has bounded degree N . For, if pc is
the Bernoulli site percolation threshold of H and k is so large that

sup
x∈H

µ+
β,{x}(X(x) = 1)k < pc

then the set {x ∈ H : X1(x) = · · · = Xk(x) = 1} does not percolate. This follows from
a standard domination argument. Since the layered system consisting of k independent
copies of the Ising model with β > βc certainly exhibits a phase transition, we see that
hypothesis (59) does not hold in general.

Proof of Proposition 8.3: We identify each ξ ∈ Ω with (ξ(x), ξ(rx))x∈H ∈ SH,
where S = {−1, 1}2. The event under consideration then corresponds to η-percolation
for the configuration η ∈ SH with η(x) = (1, 1) for all x ∈ H. Let f = X(x) +X(rx).
Then µ+

β (f) = 2µ+
β (X(x)) > 0 by the r-invariance of µ+

β . On the other hand, let Γ ⊂ H
be a finite set containing x, and Γ̃ = Γ ∪ rΓ. If (ξ, ξ′) ∈ SH = Ω with sη(ξ, ξ

′) ≡ 0 on
∂HΓ = ∂Γ ∩H, then ξ′ � −ξ on ∂HΓ, and therefore (ξ, ξ′) � (ξ,−ξ) (as elements of Ω)
on ∂Γ̃ = ∂HΓ ∪ r ∂HΓ. We can thus write

µ+
β (f | (X,X ′) ≡ (ξ, ξ′) on ∂Γ) = µ

(ξ,ξ′)

β,Γ̃
(X(x)) + µ

(ξ,ξ′)

β,Γ̃
(X(rx))

≤ µ
(ξ,−ξ)

β,Γ̃
(X(x)) + µ

(ξ,−ξ)

β,Γ̃
(X(rx)) = 0
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by Lemma 4.13 and the symmetry under r and simultaneous spin flip. The proposition
thus follows from Theorem 8.1. 2

In the remaining part of this subsection we consider the case of the square lattice
L = Z2, in which we can obtain much stronger conclusions. The following result gives a
complete characterization of the non-uniqueness regime of the parameter space in terms
of percolation of plus spins in the Gibbs measure µ+

β . It is due to Coniglio et al. [62];
see also [131].

Corollary 8.4 For the Ising ferromagnet on the square lattice Z2 with no external field
and inverse temperature β, the µ+

β -probability of having an infinite plus-cluster is 0 in
the uniqueness regime β ≤ βc, and 1 in the non-uniqueness regime β > βc.

Proof: The existence of an infinite cluster of plus spins is a tail event and thus,
by the extremality of µ+

β , has probability 0 or 1. The case β > βc is thus covered

by Theorem 8.2. For β ≤ βc, µ
+
β coincides with µ−β . Thus, if an infinite plus-cluster

existed with probability 1 then, by symmetry, an infinite minus-cluster would also exist,
in contradiction to Theorem 5.18; the assumptions of this theorem are satisfied by
Proposition 4.14. 2

Combining the corollary above with Proposition 4.16, we can also obtain some bounds
for the percolative region of the Ising model for h 6= 0; see [8] for a detailed discussion.

The equivalence of non-uniqueness and percolation just observed for the Ising model
on Z2 cannot be expected to hold for non-planar graphs. Consider, for example, the
Ising model on the cubic lattice Z3. For β = 0 uniqueness certainly holds, and plus-
percolation is equivalent to Bernoulli site percolation on Z3 with parameter 1/2. But a
result of [47] states that pc(Z

3) < 1/2. The plus spins thus percolate at β = 0. In view
of Proposition 4.16, this is still the case for sufficiently small β, so that plus-percolation
does occur in a non-trivial part of the uniqueness region.

For the planar graph Z2, however, Theorem 5.18 does not only imply the equivalence
of phase transition and percolation, but also gives some information on the number of
phases in the non-uniqueness region. As a warm-up let us show that, for the Ising
ferromagnet on Z2 at inverse temperature β > βc, there are no other translation and
rotation invariant extremal Gibbs measures than µ+

β and µ−β . For, suppose another
such phase µ existed. By Theorem 8.2 and the Burton-Keane uniqueness theorem 5.17,
there exist unique infinite plus- and minus-clusters with µ-probability 1. As an extremal
Gibbs measure, µ has positive correlations; recall the paragraph below Proposition 4.14.
Proposition 5.19 thus shows that µ cannot exist.

The statement just shown is a weak version of the following result which characterizes
all translation invariant Gibbs measures. In fact, it is sufficient to assume periodicity,
which means invariance under the translation subgroup (θx)x∈pZ2 for some p > 1.

Proposition 8.5 Any periodic Gibbs measure µ for the Ising ferromagnet on L = Z2

with no external field and inverse temperature β > βc is a mixture of the two phases µ+
β

and µ−β .

Under the condition of translation invariance, this proposition was first derived for
large β by Gallavotti and Miracle-Sole [88], and later for all β > βc by Messager and
Miracle-Sole [177] using some specific correlation inequalities; it follows also from the
Onsager-formula for the free energy density and a result of Lebowitz [152]. We will give
a geometric proof below.
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Remarkably enough, one can go one step further: each (not necessarily periodic)
Gibbs measure for the Ising model on the square lattice is a mixture of the plus-phase
and the minus-phase, and thus automatically automorphism invariant. This beautiful
result was obtained independently by Aizenman [3] and Higuchi [130] based on the
work of Russo [208]. For more general two-dimensional systems the absence of non-
translation-invariant Gibbs measures at sufficiently low temperatures was proved in
[69]. In three or more dimensions, however, non-translation invariant phases of the
Ising model do exist; this is a famous result of Dobrushin [66], see also [22] for a short
proof.

Theorem 8.6 (Aizenman–Higuchi) For the Ising ferromagnet on L = Z2 with no
external field and inverse temperature β > βc, µ

+
β and µ−β are the only phases, and any

other Gibbs measure is a mixture of these two.

The proof is a masterpiece of random-geometric analysis of equilibrium phases and
contains various ingenious ideas, but unfortunately it is too long to be sketched here.
For the full result we thus need to refer to the original papers cited above, as well as
to the survey [4]. However, to provide an idea of some of the geometric ideas involved
we will now give a (new) geometric proof of Proposition 8.5. This proof resulted from
discussions of the first author with Y. Higuchi.

In this proof we need to consider infinite clusters in halfplanes. Here, we say that a
set H ⊂ Z2 is a halfplane if H is a translate of either the upper halfplane {x = (x1, x2) ∈
Z2 : x2 ≥ 0} or its complement, the lower halfplane, or a translate of the right and left
halfplanes which are similarly defined. The next lemma provides a first step in the proof
of Proposition 8.5.

Lemma 8.7 Consider the Ising ferromagnet on Z2, and let D be the event that for at
least one halfplane H in Z2, both H and Hc contain an infinite cluster of the same sign.
Then µ(D) = 1 for all µ ∈ G(βH) and β > βc.

Proof: Since each Gibbs measure is a mixture of extremal Gibbs measures, we only
need to show that µ(D) = 1 for any extremal µ. Suppose the contrary. Since D is tail
measurable, it then follows that µ(D) = 0 for some extremal µ. We will show that this
is impossible.

Step 1: Let H be any halfplane, r the reflection of Z2 which maps H onto Hc, and
τ : σ → −σ the spin flip on Ω. We show that µ = µ ◦ r ◦ τ . Since µ(D) = 0, at least
one of the halfplanes H and Hc contains no infinite minus-cluster, and this or the other
halfplane contains no infinite plus-cluster. In view of the tail triviality of µ, we can
assume that H contains no infinite minus-cluster µ-almost surely. Hence, for any given
∆ ∈ E and µ-almost every ξ ∈ Ω, there exists an r-symmetric region Γ(ξ) ∈ E such that
Γ(ξ) ⊃ ∆ and ξ ≡ 1 on ∂Γ(ξ)∩H. The last property implies that ξ � r ◦ τ(ξ) on ∂Γ(ξ),
and using Lemma 4.13 and the flip-reflection symmetry of H we find that

µξ
β,Γ(ξ) �D µ

r◦τ(ξ)
β,Γ(ξ) = µξ

β,Γ(ξ) ◦ r ◦ τ on F∆ .

Assuming that Γ(ξ) is maximal in a large box Λ ⊃ ∆, we can apply the Markov property
of µ in the same way as in the proof of Theorem 8.1. This yields that µ �D µ ◦ r ◦ τ
on F∆ for any ∆, and thus µ �D µ ◦ r ◦ τ . (The preceding argument is a variant of
an idea of Russo [208].) Using the absence of infinite plus-clusters in H or Hc we find
analogously that µ �D µ ◦ r ◦ τ . Hence µ = µ ◦ r ◦ τ as claimed.
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Step 2: Here we use a variant of Zhang’s argument which was explained in the
proof of Theorem 5.18. To begin, we observe that the composition of two reflections in
parallel axes is a translation. Step 1 therefore implies that µ is periodic with period 2.
The flip-reflection symmetry of µ implies further that µ is different from µ+

β and µ−β , so
that (by Theorem 8.2) there exist both an infinite plus- and an infinite minus-cluster
µ-almost surely. By the Burton–Keane uniqueness theorem 5.17, these infinite clusters
are almost surely unique. We now choose a square Λ = [−n, n − 1]2 ∩ Z2 so large that

µ(Λ
+←→ ∞) > 1 − 10−3. Since µ is extremal, µ has positive correlations. By the

argument leading to (23) we thus obtain that µ(∂kΛ
+←→ ∞) > 1 − 10−3/4 for some

k ∈ {1, . . . , 4}, where ∂kΛ is the intersection of ∂Λ with the k’th quadrant (relative to
the axes {x2 = −1/2} and {x1 = −1/2}). For definiteness, we assume that k = 1. By
the flip-reflection symmetry, it follows that the intersection

{∂1Λ
+←→∞, ∂2Λ

−←→∞, ∂3Λ
+←→∞, ∂4Λ

−←→∞}

has probability at least 1−4 ·10−3/4 > 0, which is impossible because of the uniqueness
of the infinite clusters. This contradiction concludes the proof of the lemma. 2

Proof of Proposition 8.5: Let µ be any Gibbs measure invariant under (θx)x∈pZ2 for
some p > 1. Using the ergodic decomposition, we can assume that µ is in fact ergodic
with respect to this group of translations. By Lemma 8.7, there exists a pair (H,Hc) of
halfplanes such that, with positive probability, both H and Hc contain infinite clusters
of spins of the same constant sign. For definiteness, suppose H is the upper halfplane,
and the sign is plus. In view of the finite energy property, it then follows that also
µ(A0) > 0, where for k ∈ Z

Ak = {(k, 0) +←→∞ both in H and Hc} .

Let A be the event that Ak occurs for infinitely many k < 0 and infinitely many k > 0.
The horizontal periodicity and Poincaré’s recurrence theorem (or the ergodic theorem)
then show that µ(A0 \A) = 0, and therefore µ(A) > 0.

Next, let B be the event that there exists an infinite minus-cluster. We claim that
µ(A∩B) = 0. Indeed, suppose µ(A∩B) > 0. Since A is tail measurable and horizontally
periodic, we can use the finite energy property and horizontal periodicity of µ as above
to show that the event

C = A ∩ {(k, 0) −←→∞ for infinitely many k < 0 and infinitely many k > 0}

has positive probability. But on C there exist infinitely many minus-clusters, which is
impossible by the Burton–Keane theorem.

To complete the proof, we note that µ(B) ≤ µ(Ac) < 1, and thus µ(B) = 0 by
ergodicity. In view of Theorem 8.2, this means that µ = µ+

β . In the case considered,
the proposition is thus proved. The other cases are similar; in particular, in the case of
negative sign we find that µ = µ−β . 2

8.3 Constant-spin clusters in the Potts model

Consider the q-state Potts model on the lattice L = Zd introduced in Section 3.3,
q, d ≥ 2, and recall the results of Section 6.3 on the phase transition in this model.
The periodic ground states are the constant configurations ηi ≡ i, 1 ≤ i ≤ q. We
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write
i←→ for the agreement connectivity relation relative to ηi, and we consider the

limiting Gibbs measure µi
β,q at inverse temperature β associated to ηi, which exists by

Proposition 6.9. As a further illustration of assertion (59), we show that µi
β,q exhibits i-

percolation whenever there is a phase transition. This is a Potts-counterpart of Theorem
8.2. For its proof, we use the random-cluster representation rather than Theorem 8.1
because for q > 2 there is no stochastic monotonicity available in the spin configuration.

Theorem 8.8 For the Potts model on Zd at any inverse temperature β with |G(βH)| >
1, we have µi

β,q(x
i←→∞) > 0 for all x ∈ Zd and i ∈ {1, . . . , q}.

Proof: By translation invariance we can choose x = 0. In Theorem 6.10 we have seen
that φ1

p,q(0↔∞) = c > 0 for β > βc, where p = 1− e−2β as usual. In view of (30), this
means that φ1

p,q,Λ(0↔ Λc) ≥ c for all Λ ∋ 0. But for the Edwards-Sokal coupling P i
p,q,Λ

of µi
β,q,Λ and φ1

p,q,Λ (defined before Proposition 6.9) we have {0 ↔ Λc} ⊂ {0 i←→ Λc}
almost surely, so that µi

β,q,Λ(0
i←→ Λc) ≥ c. In particular, µi

β,q,Λ(0
i←→ ∆c) ≥ c

whenever 0 ∈ ∆ ⊂ Λ. Letting first Λ ↑ Zd and then ∆ ↑ Zd we find that µi
β,q(0

i←→
∞) ≥ c, and the theorem follows. 2

Next we ask for a converse stating that “agreement percolation implies phase transition”.
As we already noticed in the case of the Ising model, this can be expected to hold only
in the case of a planar lattice. But then a counterpart of Corollary 8.4 does indeed hold,
as was shown by L. Chayes [56].

Theorem 8.9 For the unique Gibbs measure µβ,q of the q-state Potts model on the
square lattice Z2 at inverse temperature β < βc, we have µβ,q(∃ an infinite i-cluster) = 0
for all i ∈ {1, . . . , q}.

The strategy of proving this theorem is the same as that in the proof of Corollary 8.4.
Suppose the i-spins percolate in µβ,q for some i. Then, by symmetry, this holds for
all i, so that in particular the 1-spins and the other spins percolate. Hence, Theorem
5.18 leads to a contradiction, provided we can show that the set of 1’s has positive
correlations. Theorem 8.9 thus follows from the following lemma.

Lemma 8.10 Consider the phase µi
β,q of the q-state Potts model at any inverse tem-

perature β > 0, and let the mapping si be defined by (58) with η = ηi, i ∈ {1, . . . , q}.
Then the measure νβ,q = µi

β,q ◦ s−1
i has positive correlations.

Sketch of proof: By symmetry, νβ,q does not depend on i. For definiteness we set
i = 1 in the following. Since the property of positive correlations is preserved under
weak limits, it is sufficient to consider the finite volume Gibbs distribution µ1

β,q,Λ and its

image νβ,q,Λ = µ1
β,q,Λ◦s−1

1 . By the FKG inequality, Theorem 4.11, it is further sufficient

to show that νβ,q,Λ is monotone. In terms of µ1
β,q,Λ and the random field Y = s1(X),

this means that the conditional probability

qx(ξ) = µ1
β,q,Λ(Y (x) = 1 |Y ≡ ξ off x)

is increasing in ξ ∈ {0, 1}Zd
for any x ∈ Λ. Since the boundary condition is fixed to be

equal to 1 off Λ, we can assume that ξ is equal to 1 off Λ, and it is sufficient to prove the
inequality qx(ξ) ≤ qx(ξ′) for any two such ξ, ξ′ that differ only at a single site y ∈ Λ and
are such that ξ(y) = 0 and ξ′(y) = 1. For such ξ, ξ′, the inequality qx(ξ) ≤ qx(ξ′) simply
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means that Y (x) and Y (y) are positively correlated under the conditional distribution
µx,y|ξ of µ1

β,q,Λ given that Y ≡ ξ off {x, y}.
To show this we fix x, y, ξ. For µx,y|ξ, we have X ≡ 1 on the complement of

∆ = {x, y} ∪ {v ∈ Λ \ {x, y} : ξ(v) = 0}. We thus consider the graph G with vertex
set ∆ and edge set B(∆) consisting of all edges of B with both endpoints lying in ∆. If
we knew that Y (x) = Y (y) = 0, then µx,y|ξ would be the distribution of a (q − 1)-state
Potts model on G with state space {2, 3, . . . , q}. Now that we don’t know Y (x) and
Y (y), µx,y|ξ is still a modification of this (q − 1)-state Potts model, in which x and y
are allowed to have the q’th spin value 1.

To describe this modification we suppose first that x and y are not adjacent. Let
nx be the number of neighbors v of x with ξ(v) = 1, and define ny accordingly. The
probability weight of µx,y|ξ then contains the additional biasing factor

exp[2β(nxI{X(x)=1} + nyI{X(y)=1})]

which acts like an external field at x and y. For this modified Potts model, we can
still define a modified random-cluster representation which gives any edge configuration
ζ ∈ {0, 1}B(∆) a probability proportional to

(q − 1)k(ζ)(q − 1 + e2βnx)kx(ζ)(q − 1 + e2βny)ky(ζ)
∏

e∈B(∆)

pζ(e)(1− p)1−ζ(e) .

Here p = 1− e−2β , k(ζ) is the number of connected components excluding singletons at
x or y, and kx(ζ) and ky(ζ) are the indicator functions of having a singleton connected
component at x resp. y. A spin configuration with distribution µx,y|ξ is then obtained
from the edge configuration by assigning spins at random uniformly from {2, . . . , q}
to connected components, except for a singleton at x, where the spin is taken from
{1, . . . , q} with probabilities proportional to (e2βnx , 1, . . . , 1), and similarly for a sin-
gleton at y. Just as in Corollary 6.5, this representation gives the desired positive
correlation of Y (x) and Y (y) under µx,y|ξ, provided we can show that kx and ky are
positively correlated in the modified random-cluster model. Since these indicator vari-
ables are decreasing, it suffices to check that the modified random-cluster model has
positive correlations, which follows from Theorem 4.11 by verifying that it is monotone;
this, however, is similar to Lemma 6.6.

The case when x and y are neighbors is handled analogously; in fact, the positive
correlation can only become stronger when x and y have an edge in common. 2

8.4 Further examples of agreement percolation

Here we treat the Ising antiferromagnet, the hard-core lattice gas, and the Widom–
Rowlinson lattice model, and shortly mention the Ashkin–Teller model.

The Ising antiferromagnet. Consider the setting of Section 3.2. We need to assume
that the underlying lattice L is bipartite, and thus splits off into two parts, Leven and
Lodd. If |h| < 2d, there exist two periodic ground states, ηeven and ηodd = −ηeven, where
ηeven ≡ 1 on Leven and ηeven ≡ −1 on Lodd. (There are no other periodic ground states,
see for example [68].) The phase transition in this model has been studied in [65] and
[129]. Because of the bipartite structure, we can flip all spins on a sublattice as in
(6), which turns the model into an Ising ferromagnet in a staggered magnetic field of
alternating sign on Leven and Lodd. The latter model still satisfies the FKG inequality.
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As pointed out in Section 3.2, for h = 0 there is a one-to-one correspondence between all
Gibbs measures for the Ising ferromagnet and the Ising antiferromagnet. In particular,
both models then have the same critical inverse temperature βc. For general |h| < 2d, we
still have two limiting Gibbs measures µηeven

β and µηodd

β , and these measures have positive
correlations relative to the “staggered” ordering σ � σ′ iff σ(x)ηeven(x) ≤ σ′(x)ηeven(x)
for all x ∈ L. Relative to this ordering, an analogue of the sandwiching inequality (15)
holds; for more details see Section 9 of [198]. Here is a version of statement (59) for this
model.

Theorem 8.11 Consider the Ising antiferromagnet on a bipartite graph (L,∼) in an
external field h at any inverse temperature β > 0. If |G(βH)| > 1, we have

µηeven

β (x
ηeven←→∞) > 0

for all x ∈ L.
This follows from Theorem 8.1 in the same way as Theorem 8.2. For L = Z2, the
obvious counterparts of Corollary 8.4 and Proposition 8.5 are also valid since the proofs
of these results carry over to the case of a staggered external field.

The hard-core lattice gas. As we have seen in Section 3.4, this model has state space
S = {0, 1} and corresponds to setting U(a, b) = ∞I{a=b=1} and V (a) = −a log λ in
(1), a, b ∈ S; λ > 0 is an activity parameter. The hard-core model is the limit of the
Ising antiferromagnet for β → ∞ and h → 2d along β(2d − h) = 1

2 log λ, provided a
configuration σ ∈ {−1,+1}L is mapped to (1−σ)/2 ∈ {0, 1}L; see [68] for details. (The
phase diagram point h = 2d, β = +∞ of the Ising antiferromagnet is highly degenerate
since there are infinitely many, in general nonperiodic, ground states.) For L = Zd,
the hard-core lattice gas can be seen as a gas of hard (i.e., non-overlapping) diamonds.
In general, we still assume that L is bipartite. For λ > 1, the hard-core model then
has two periodic ground states of chessboard type, namely ηeven which is equal to 1 on
Leven and 0 otherwise, and ηodd = 1 − ηeven. As noticed in Section 4.4, the associated
limiting Gibbs states µeven

λ and µodd
λ exist. So, following the program stated in (59),

we may ask whether these Gibbs measures exibit agreement percolation in the case of
phase transition. The answer is again positive:

Theorem 8.12 For the hard-core model on a bipartite graph L we have for any activity
λ > 0: If µeven

λ 6= µodd
λ then µeven

λ (x
ηeven←→∞) > 0 for all x ∈ L, and similarly with ‘odd’

in place of ‘even’.

This result is completely analogous to Theorem 8.11, and was conjectured by Hu and
Mak [135, 136] from computer simulations. In these papers, the authors also discuss
the case of hard-core particles on a triangular lattice, the hard hexagon model. While
Theorem 8.12 does apply to the hard triangle model on the hexagonal lattice (which is
bipartite), the non-bipartite triangular lattice with nearest-neighbor bonds is excluded.
The results of [135, 136] suggest that Theorem 8.12 still holds for the triangular lattice.
A geometric proof of this conjecture would be of particular interest.

The hard-core model on the square lattice Z2 admits an analogue to Corollary 8.4,
in that nonuniqueness of the Gibbs measure is equivalent to ηeven-percolation for the
Gibbs measure µeven

λ ; see [100] or [117] for more details.

The Widom–Rowlinson lattice model. Consider the set-up of Section 3.5, with equal
activities λ+ = λ− = λ > 0 for the plus and minus particles. For λ > 1 we have two
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distinct periodic ground states η+ ≡ +1 and η− ≡ −1. From Section 4.4 we know
that the associated limiting Gibbs measures µ+

λ = limΛ↑L µ
η+

λ,Λ and µ−λ exist. Moreover,
Theorem 4.17 asserts that a phase transition occurs for some activity λ if and only
if µ+

λ (X(x) = 1) > µ+
λ (X(x) = −1) for some x ∈ L. Now, it turns out that in

this model not only hypothesis (59) holds, but that the nonuniqueness of the Gibbs
measure is in fact equivalent to agreement percolation, not only for the square lattice
but for any graph. This comes from the nature of the random-cluster representation of
Section 6.7, which is related to the sites rather than the bonds of the lattice, and is a
curious exception from the fact that, on the whole, the Widom–Rowlinson model is less
amenable to sharp results than the Ising model. However, by the reasons discussed in
Section 6.7, this result does not carry over to the multitype Widom–Rowlinson lattice
model with q ≥ 3 types of particles.

Theorem 8.13 Consider the Widom–Rowlinson lattice model on an arbitrary graph
(L,∼) for any activity λ > 0. Then the following statements are equivalent.

(i) The Gibbs measure for the parameter λ is non-unique.

(ii) µ+
λ (x

η+←→∞) > 0 for some, and thus all x ∈ L.

Sketch of Proof: Consider µ
η+

λ,Λ for some finite Λ. In the same way as the random-
cluster representation of Section 6.1 was modified in Section 6.2 to deal with boundary
conditions, we can modify the site-random-cluster representation of Section 6.7 to obtain
a coupling of µ

η+

λ,Λ and a wired site-random cluster distribution ψ1
p,2,Λ, so that analogues

of Propositions 6.22 and 6.23 hold. As a counterpart to equation (32) and by the specific
nature of the site-random-cluster representation, we then find that

µ
η+

λ,Λ(X(x) = 1)− µη+

λ,Λ(X(x) = −1) = ψ1
p,2,Λ(x↔ ∂Λ) = µ

η+

λ,Λ(x
η+←→ ∂Λ)

for all x ∈ L. In the limit Λ ↑ L we obtain by an analogue to (30)

µ+
λ (X(x) = 1)− µ+

λ (X(x) = −1) = µ+
λ (x

η+←→∞) ,

and the theorem follows immediately. 2

To conclude this subsection, we note that hypothesis (59) also holds in other models.
We mention here only the Ashkin–Teller model [16], a 4-state model which interpolates
in an interesting way between the 4-state Potts and the so called 4-state clock model,
which is also accessible to random-cluster methods; we refer to [58, 61, 192, 210].

8.5 Percolation of ground-energy bonds

So far in this section we considered a number of models which are known to show a phase
transition, and asked whether this phase transition goes hand in hand with agreement
percolation. These results run under the heading “phase transition implies percolation”,
even though for the square lattice we established results of converse type coming from
the impossibility of simultaneous occupied and vacant percolation on Z2.

We now take the opposite point of view and ask whether “percolation implies phase
transition”. More precisely, we want to deduce the existence of a phase transition (at low
temperatures or high densities) from a percolation result. In fact, such an idea is already
implicit in Peierls’ [187] and Dobrushin’s [63] proof of phase transition in the Ising
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model, and is an integral part of the Pirogov–Sinai theory. For models with neighbor
interaction as in the Hamiltonian (1), the underlying principle can be sketched as follows.
At low temperatures (or high densities), each pair of adjacent spins (or particles) tries
to minimize its pair interaction energy. Note that this minimization involves the bonds
rather than the sites of the lattice. So, one expects that bonds of minimal energy – the
ground-energy bonds – prevail, forming regions separated by boundaries that consist of
bonds of higher energy. Such boundaries, which are known as contours, cost an energy
proportional to their size, and are therefore typically small when β is large. This implies
that the ground-energy bonds should percolate. Now, the point is that if the spins along
a bond can choose between different states of minimal energy then this ambiguity can
be transmitted to the macroscopic level by an infinite ground-energy cluster, and this
gives rise to phase transition. In other words, the classical contour argument for the
existence of phase transition can be summarized in the phrase: ground-energy bond
percolation together with a (clear-cut) non-uniqueness of the local ground state implies
non-uniqueness of Gibbs measures. We will now describe this picture in detail.

We consider the cubic lattice L = Zd of dimension d ≥ 2 with its usual graph
structure. For definiteness we consider the Hamiltonian (1) for some pair potential
U : S × S → R. We can and will assume that the self-potential V vanishes; this is
because otherwise we can replace U by

U ′(a, b) = U(a, b) +
1

2d
[V (a) + V (b)] , a, b ∈ S, (61)

which, together with the self-potential V ′ ≡ 0, leads to the same Hamiltonian. Let

m = min
a,b∈S

U(a, b) (62)

be the minimal value of U .
Given an arbitrary configuration σ ∈ Ω, we will say that an edge e = {x, y} ∈ B

is a ground-energy bond for σ if U(σ(x), σ(y)) = m. The subgraph of Zd consisting of
all vertices of Zd and only the ground-energy bonds for σ splits then off into connected
components which will be called ground-energy clusters for σ. We are interested in the
existence of infinite ground-energy clusters, and we also need to identify specific such
clusters. Unfortunately, the Burton–Keane uniqueness theorem 5.17 does not apply here
because, for any Gibbs measure, the distribution of the set of ground-energy bonds fails
to have the finite-energy property. We therefore resort to considering ground-energy
clusters in any fixed two-dimensional layer of Zd; the uniqueness of planar infinite
clusters can be shown in our case. (An alternative argument avoiding the use of planar
layers but requiring stronger conditions on the temperature has been suggested in [87].)
In fact, we have the following result.

Theorem 8.14 Consider the Hamiltonian (1) on the lattice L = Zd, d ≥ 2, with
neighbor interaction U and no self-potential, and let P be any planar layer in L. (So
P = L for d = 2.) If β is large enough, there exists a Gibbs measure µ ∈ G(βH) which
is invariant under all automorphisms of L and all symmetries of U such that

µ(∃ a unique infinite ground-energy cluster in P) = 1 .

In the above, a symmetry of U is a transformation τ of S such that U(τa, τb) = U(a, b)
for all a, b ∈ S; such a τ acts coordinatewise on configurations.
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Theorem 8.14 is a particular case of a result first derived in [92] and presented in detail
in Chapter 18 of [96]. We will sketch its proof below. The remarkable fact is that this
type of percolation often implies that µ has a non-trivial extremal decomposition, so
that there must be a phase transition. In fact, this happens whenever the set

GU = {(a, b) ∈ S × S : U(a, b) = m} (63)

of bond ground states splits into sufficiently disjoint parts. To explain the underlying
mechanism (which may be viewed as the core of the classical Peierls argument, and a
rudimentary version of Pirogov–Sinai theory) we consider first the standard Ising model.

Example 8.15 The Ising ferromagnet at zero external field. In this model, we have as
usual S = {−1, 1}, U(a, b) = −ab for a, b ∈ S, m = −1, and GU = {(−1,−1), (1, 1)}.
Hence, either all spins of a ground-energy cluster are negative, or else all these spins
are positive. In other words, each ground-energy cluster is either a minus-cluster or a
plus-cluster. This implies that

{∃ a unique infinite ground-energy cluster in P} ⊂ A− ∪A+ ,

where A− and A+ are the events that there exists an infinite cluster of negative, resp.
positive, spins in P. For the Gibbs measure µ of Theorem 8.14 we thus have µ(A− ∪
A+) = 1 and, by the spin-flip symmetry of U and thus µ, µ(A−) = µ(A+). Hence
µ(A−) > 0 and µ(A+) > 0, so that the measures µ− = µ(· |A−) and µ+ = µ(· |A+)
are well-defined. Since A−, A+ are tail events, it follows immediately that µ−, µ+ are
Gibbs measures for βH. Also, A− ∩ A+ is contained in the event that there are two
distinct ground-energy clusters in P, and therefore has µ-measure 0. Hence µ− and µ+

are mutually singular, whence |G(βH)| > 1.

The same argument as in the preceding example yields the following theorem on phase
transition by symmetry breaking. A detailed proof (in a slightly different setting) can
be found in Section 18.2 of [96].

Theorem 8.16 Under the conditions of Theorem 8.14 suppose that the set GU defined
by (63) admits a decomposition GU = G1 ∪ . . . ∪GN such that

1. the sets Gn, 1 ≤ n ≤ N , have disjoint projections, i.e., if (a, b) ∈ Gn, (a′, b′) ∈ Gn′ ,
and n 6= n′, then a 6= a′, b 6= b′, and

2. for any two indices n, n′ ∈ {1, . . . , N} we have τ̄(Gn) = Gn′ for some transforma-
tion τ̄ of S × S which is either the reflection, or the coordinatewise application of
some symmetry of U , or a composition of both.

Then, if β is sufficiently large, there exist N mutually singular Gibbs measures µ1, . . . µN

∈ G(βH), invariant under all even automorphisms of Zd and such that

µn(∃ an infinite n-cluster in P) = 1

for all 1 ≤ n ≤ N . In particular, there exist N distinct phases for βH.

In the statement above, an infinite n-cluster for a configuration σ is an infinite cluster of
the subgraph of Zd obtained by keeping only those edges e ∈ B with (σ(x), σ(y)) ∈ Gn,
where x is the endpoint of e in the even sublattice Leven and y ∈ Lodd is the other
endpoint of e. Also, an even automorphism of Zd is an automorphism leaving Leven

invariant.
We illustrate this theorem by applying it to our other standard examples.
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Example 8.17 The Ising antiferromagnet in an external field. We have again S =
{−1, 1}, but the interaction is now U(a, b) = ab − h

2d (a + b) for some constant h ∈ R.
(Here we applied the transformation (61).) If |h| < 2d then m = −1 and GU =
{(−1, 1), (1,−1)}. GU splits up into the singletons G1 = {(1,−1)} and G2 = {(−1, 1)}.
This decomposition meets the conditions of the theorem; in particular, G1 and G2 are
related to each other by the reflection of S×S. Consequently, there exist two mutually
singular Gibbs measures µ1 and µ2 which are invariant under even automorphisms and
have an infinite cluster of chessboard type, either with plus spins on the even cluster
sites and minus spins at the odd cluster sites, or vice versa.

Example 8.18 The Potts model. In this case, S = {1, . . . , q} for some integer q ≥ 2
and U(a, b) = 1 − 2I{a=b}. Again m = −1, and GU = {(n, n) : 1 ≤ n ≤ q}. Theorem
8.16 is obviously applicable, and we recover the result that for sufficiently large β there
exist q mutually singular, automorphism invariant Gibbs measures, the nth of which
has an infinite cluster of spins with value n.

Example 8.19 The hard-core lattice gas. This model has state space S = {0, 1} and
neighbor interaction U of the form U(a, b) =∞ if a = b = 1, and U(a, b) = − log λ

2d (a+ b)
for all other (a, b) ∈ S2. Here λ > 0 is an activity parameter, and we have again used
the transformation (61). For λ > 1 we have GU = {(0, 1), (1, 0)}, so that Theorem 8.16
applies. Since multiplying U with a factor β amounts to changing λ, we obtain that
for sufficiently large λ there exist two distinct Gibbs measures with infinite clusters of
chessboard type, just as for the Ising antiferromagnet at low temperatures.

Example 8.20 The Widom–Rowlinson lattice model. Here we have S = {−1, 0, 1} and
U(a, b) = ∞ if ab = −1, U(a, b) = − log λ

2d (|a| + |b|) otherwise, a, b ∈ S. If λ > 1 then
GU = {(−1,−1), (1, 1)}. Theorem 8.16 thus shows that for sufficiently large λ there
exist two translation invariant Gibbs measures having infinite clusters of plus- resp.
minus-particles.

Although the results in the examples above are weaker than those obtained by the
random-cluster methods of Section 6 (when these apply), the ideas presented here have
the advantage of providing a general picture of the geometric mechanisms that imply a
phase transition, and Theorem 8.16 can quite easily be applied. Moreover, the ideas can
be extended immediately to systems with arbitrary state space and suitable interactions.
In this way one obtains phase transitions in anisotropic plane rotor models, classical
Heisenberg ferromagnets or antiferromagnets, and related N -vector models; see Chapter
16 of [96]. One can also consider next-nearest neighbor interactions, and thus obtain
various other interesting examples; for this one has to consider percolation of ground-
energy plaquettes rather than ground-energy bonds, which is in fact the set-up of [96].
Last but not least, the symmetry assumption of Theorem 8.16 can often be replaced by
either some direct argument, or a Peierls condition in the spirit of the Pirogov–Sinai
theory; see Chapter 19 of [96]. One such extension will be used in our next example.

Example 8.21 First-order phase transition in the Potts model. Consider again the
Potts model of Example 8.18, and suppose for simplicity that d = 2. Any translate
in Z2 of the quadratic cell {0, 1}2 is called a plaquette. For a given configuration
σ ∈ Ω, a plaquette P is called ordered if all spins in P agree, disordered if no two
adjacent spins in P agree, and pure if one of these two cases occurs. If q (the number of
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distinct spin values) is large enough then, for arbitrary β, there exists an automorphism
invariant Gibbs measure µ supported on configurations with a unique infinite cluster of
pure plaquettes. This variant of Theorem 8.14 is due to Kotecký and Shlosman [148],
see also Section 19.3.2 of [96]. Clearly, each cluster of pure plaquettes only contains
plaquettes of the same type, either ordered or disordered. For some specific critical
value βc(q) both possibilities must occur with positive probability; this follows from
thermodynamic considerations, namely by convexity of the free energy as a function of
β [148, 96]. Conditioning on each of these two cases yields two mutually singular Gibbs
measures with an infinite cluster of ordered resp. disordered plaquettes. Furthermore, all
spins of a cluster of ordered plaquettes must have the same value, so that by symmetry
the “ordered” Gibbs measure can be decomposed further into q Gibbs measures with
infinite clusters of constant spin value. As a result, for large q and β = βc(q) there
exist q + 1 mutually singular Gibbs measures which behave qualitatively similar to the
disordered phase for β < βc(q) resp. the q ordered phases for β > βc(q). This is the
first-order phase transition in the Potts model for large q. For further discussions we
refer to [227, 148, 150, 149] and the references therein.

We now give an outline of the proof of Theorem 8.14.

Sketch proof of Theorem 8.14: For simplicity we stick to the case d = 2. For
any inverse temperature β > 0 and any square box Λn = [−n, n − 1]2 ∩ Z2 we write
µper

β,n for the Gibbs distribution relative to βH in the box Λn with periodic boundary
condition. The latter means that Λn is viewed as a torus, so that (i, n − 1) ∼ (i,−n)
and (n−1, i) ∼ (−n, i) for i ∈ [−n, n−1]∩Z; the Hamiltonian Hper

n in Λn with periodic
boundary condition is then defined in the natural way. Let µper be an arbitrary limit
point of the sequence (µper

β,n)n≥1. Evidently, µper has the symmetry properties required
of µ in Theorem 8.14, and µper ∈ G(βH).

To establish percolation of ground-energy bonds we fix some α < 1 and consider the
wedge W = {x = (x1, x2) ∈ L : x1 ≥ 0, |x2| ≤ αx1}. Let AW be the event that there
exists an infinite path of ground-energy bonds in W starting from the origin. We want
to show that µper(AW) > 3/4 when β is large enough. Suppose ξ /∈ AW . Then there
exists a contour crossing W, i.e., a path γ in the dual lattice L∗ = Z2 + (1

2 ,
1
2) which

crosses no ground-energy bond for ξ and connects the two half-lines bordering W. For
each such path γ we will establish the contour estimate

µper(γ is a contour) ≤ (|S|e−βδ)|γ| , (64)

where |γ| is the length (the number of vertices) of γ, and δ > 0 is such that m+ 2δ is
the second lowest value of U .

Assuming (64) we obtain the theorem as follows. The number of paths of length k
crossing W is at most ck 3k for some c <∞ depending on α. Hence

µper(Ac
W) ≤ c

∑

k≥1

k (3|S|e−βδ)k <
1

4

for sufficiently large β. By the rotation invariance of µper, it follows that µper(A0) > 0,
where A0 is the intersection of AW with its three counterparts obtained by lattice
rotations. Roughly speaking, A0 is the event that the origin belongs to two doubly
infinite ground-energy paths, one being quasi-horizontal and the other quasi-vertical.
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Since µper is invariant under horizontal and vertical translations, the Poincaré recurrence
theorem (or the ergodic theorem) implies that the event

A∞ = {ξ ∈ Ω : θxξ ∈ A0 for infinitely many x in each of the four half-axes}
has also positive µper-probability. Each configuration in A∞ has infinitely many quasi-
horizontal and quasi-vertical ground-energy paths in each of the four directions of the
compass, and by planarity all paths of different orientation must intersect. Therefore
all these paths belong to the same infinite ground-energy cluster which has only finite
holes, and is therefore unique. Hence A∞ is contained in the event B that there exists
a ground-energy cluster surrounding each finite set of L, and µper(B) > 0. As B is
a tail-event and invariant under all automorphisms of L and all symmetries of U , the
theorem follows by setting µ = µper( · |B).

It remains to establish the contour estimate (64). For this it is sufficient to show
that

µper
β,n(γ is a contour) ≤ (|S|e−βδ)|γ| (65)

when n is so large that γ is contained in Λn. This bound is based on reflection positivity
and the chessboard estimate, which are treated at length in Chapter 17 of [96]. Here
we give only the principal ideas. The basic observation is the following consequence of
the toroidal symmetry of µper

β,n: for any i ∈ {0, . . . , n− 1}, the configurations on the two

parts Λ+
n,i = {x ∈ Λn : x1 ≥ i or x1 ≤ i − n} and Λ−

n,i = {x ∈ Λn : i − n ≤ x1 ≤ i} of
Λn are conditionally independent and, up to reflection, identically distributed given the
spin values on the two separating lines {x1 = i} and {x1 = i−n}. Hence, if f, g are real
functions on SΛn depending only on the configuration in Λ+

n,i, and g(i) is the function
obtained from g by reflection in these two separating lines (and thus depending on the
configuration in Λ−

n,i), then the bilinear form (f, g)→ µper
β,n(fg(i)) is positive definite and

thus satisfies the Cauchy–Schwarz inequality. Similar Cauchy–Schwarz inequalities hold
for vertical reflections. The chessboard inequality is obtained by suitable combinations
of all these, as we will illustrate next.

Let us mark the plaquettes around the vertices of γ with a •; this gives |γ| marked
plaquettes. Marking a plaquette indicates that at least one of its bonds has non-minimal
energy; leaving it unmarked does not say that it consists of ground-energy bonds, but
that we don’t need any information on its spins . In the case n = 2, this might lead to
the picture

• •
•

.

To estimate its probability we use repeatedly the Cauchy–Schwarz inequality relative to
suitable pairs of reflection lines. Indicating each time only the pair of lines used next,
and omitting the event that no plaquette is marked (which has probability 1), we obtain

µper
β,n





• •
•



 ≤ µper
β,n







• • • •
• •







1/2

≤ µper
β,n







• • • •
• • • •
• •
• •







1/4

≤ µper
β,n





• • • •
• • • •
• • • •
• • • •





1/8

µper
β,n





• •
• •
• •
• •





1/8

≤ µper
β,n





• • • •
• • • •
• • • •
• • • •





3/16

.
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In general, we obtain in this way

µper
β,n(γ is a contour) ≤ µper

β,n(Cn)|γ|/|Λn| ,

where Cn is the event that all plaquettes in Λn contain at least one bond of non-minimal
energy. But if Cn occurs then at least |Λn|/2 of the 2|Λn| edges in Λn are no ground-
energy bonds. The Hamiltonian Hper

n with periodic boundary condition is therefore at
least (2m + δ)|Λn| on Cn. Since there is at least one σ ∈ SΛn with Hper

n (σ) = 2|Λn|m,
it follows that

µper
β,n(Cn) ≤

∑

ξ∈Cn

e−β(2m+δ)|Λn |
/

e−β2m|Λn| ≤ (|S| e−βδ)|Λn| .

This gives estimate (65) and completes the proof of Theorem 8.14. 2

92



9 Random interactions

So far in this review, the spin systems considered had an interaction which was invariant
under all automorphisms of the underlying graph L. Here we will assume for convenience
that L is the cubic lattice (Zd,B), d ≥ 2, but the interaction between adjacent spins
will no longer be translation invariant. That is, instead of the Hamiltonian (1) we now
consider a modified Hamiltonian of the form

H(σ) =
∑

b=〈xy〉∈B

Jb U(σ(x), σ(y)) +
∑

x∈Zd

hx V (σ(x)) (66)

where the Jb and the hx may vary from bond to bond, resp. from site to site. In fact, we
are interested in the case where these coupling coefficients show no regular structure,
and thus assume that they are random. Such systems of spins interacting differently
depending on their position and in a way governed by chance are known as disordered
systems. We will not elaborate on the physical origins of such random interactions. We
merely mention that they can be related to the presence of impurities or defects in an
originally homogeneous system, and are used to model quenched alloys of magnetic and
nonmagnetic materials like FeAu. For details we refer to [84, 30, 78].

We assume that the family J = (Jb)b∈B of coupling coefficients and the external
fields h = (hx)x∈Zd are independent, and each collection constitutes a family of mu-
tually independent and identically distributed real random variables. Hence, while no
realization of the coupling coefficients is translation invariant, we still have translation
invariance in a statistical sense. We will not specify the underlying probability space,
except that the letter P will be used to denote the probability measure and the asso-
ciated expectation. The random families J and h are often referred to as the disorder.
The disorder is called bounded if P (|Jb| > c) = 0 for some finite c. Physically, this is
the most relevant case.

(In some physical applications it is natural to assume that the Jb are not independent
but rather have some finite-range dependence structure, but we will not include this case
here. We also assumed for simplicity that the disorder is real valued, although some of
the following also applies to the case when Jb or hx are allowed to take the value +∞
with positive probability.)

In Section 9.1 we will discuss diluted ferromagnets. A bond-diluted Ising or Potts
ferromagnet on Zd can be viewed as an Ising or Potts model on the open clusters for
Bernoulli bond percolation on Zd. As observed in [9], these models can quite easily be
understood using their random-cluster representation. They form just about the only
class of disordered systems where the phase transition can be investigated in such detail.

Then, in Section 9.2, we study the so-called Griffiths regime which is the only non-
trivial regime for disordered systems where by now quite general results are available.
It occurs at intermediate temperatures if the disorder is bounded, or at arbitrary high
temperatures if the disorder is unbounded, and is characterized by the fact that the
Gibbs measure is still unique but fails to have a nice high temperature behavior uni-
formly in the disorder. The study of random Gibbs measures in the Griffiths regime
has started in the early 1980’s and has reached a satisfactory stage only recently. The
simplest and also most powerful methods use stochastic-geometric representations and
will be presented here.

As representative for the large literature on the subject we refer to [13, 18, 29, 46,
72, 84, 85, 86, 102, 106, 189, 190]. Dynamical problems (which are not touched upon
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here) are treated e.g. in [49, 50, 51, 15, 103, 112, 101].

9.1 Diluted and random Ising and Potts ferromagnets

The random Potts model is defined as follows. Spins take values in the state space
S = {1, . . . , q}, and the interaction is given by the Hamiltonian (66) with

U(σ(x), σ(y)) = 2 I{σ(x)6=σ(y)}

and V ≡ 0. Note that this choice of U and V coincides with that used in Section 6.1 for
the standard Potts model and differs from that in Section 3.3 only by constants which
cancel in the definition of Gibbs distributions. The Ising model corresponds to the choice
q = 2. As for the disorder, we make the essential assumption that the random coupling
coefficients Jb are nonnegative, so that the interaction is still ferromagnetic. Of course,
we also make the general assumption of this section that the Jb are independent with
the same distribution, say π. A particular case of special interest is that of dilution, in
which the Jb take the values 1 and 0 with probabilities p and 1− p, respectively, which
means that π = pδ1 + (1 − p)δ0. For p = 1 we then recover the homogeneous Potts
model of Section 3.3.

In the following, the distribution π of the Jb will enter only through the quantities

p̄(β, π) = P

(

1− e−2βJb

)

, p(β, π) = P

(

1− e−2βJb

1 + (q − 1)e−2βJb

)

for β > 0. Note that they do not depend on b ∈ B, and that 0 ≤ p(β, π) ≤ p̄(β, π) ≤ p
with p = P (Jb > 0).

For a given realization J = (Jb)b∈B of the disorder and inverse temperature β, we can
introduce the Gibbs measure µi

βJ,q obtained from the Gibbs distributions with constant
boundary condition i ∈ {1, . . . , q} in the infinite volume limit. This limit exists by the
arguments of Proposition 6.9, since these use only the stochastic monotonicity coming
from Corollary 6.7 (a) as well as the random-cluster representation, which both remain
valid in the non-homogeneous case.

The key quantity for phase transition, the order parameter, is the “quenched mag-
netization”

m(β, π) =
q

q − 1
P

(

µi
βJ,q(X(0) = i)− 1

q

)

.

Indeed, an inhomogeneous version of equation (32) shows that m(β, π) = P (θq(βJ)),
where θq(βJ) = φ1

p,q(0 ↔ ∞) is the percolation probability for the wired infinite-

volume random-cluster measure with bond probabilities pb = 1 − e−2βJb . Hence, we
have m(β, π) > 0 if and only if θq(βJ) > 0 with positive P -probability. But whether or
not θq(βJ) > 0 does not depend on the value of Jb for a single bond b. So, Kolmogorov’s
zero–one law implies that m(β, π) > 0 if and only if θq(βJ) > 0 P -almost surely, and
by an inhomogeneous version of Theorem 6.10 the latter means that multiple Gibbs
measures for βJ exist with P -probability 1. Moreover, an inhomogeneous version of
relation (31) shows that θq(βJ) is an increasing function of βJ. It follows that m(β, π)
is increasing in β and also in π (relative to �D). In particular, for each π there exists a
critical inverse temperature βc(π), possibly = +∞, such that m(β, π) > 0 for β > βc(π)
and m(β, π) = 0 for β < βc(π).

It remains to investigate the quenched magnetization m(β, π). The following lemma
shows how m(β, π) can be estimated in terms of Bernoulli bond percolation; recall the
end of Section 5.1.
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Lemma 9.1 Let θ(p) = φp(0↔∞) be the Bernoulli bond percolation probability on Zd

with parameter p. Then

θ(p(β, π)) ≤ m(β, π) ≤ θ(p̄(β, π)) .

Proof: We will use an inhomogeneous limiting version of the domination bounds (b)
and (c) of Corollary 6.7. Although they were stated only in the case of a homogeneous
interaction, they do extend also to the inhomogeneous case. Define two families p =
(pb)b∈B and p′ = (p′b)b∈B in terms of a realization J by pb = 1 − e−2βJb , p′b = (1 −
e−2βJb)/(1 + (q − 1)e−2βJb) = pb/(pb + q(1 − pb)). Let φ1

p,q be the associated wired

random-cluster measure, and φp, φp′ the corresponding product measures on {0, 1}B .
An inhomogeneous version of Corollary 6.7 then shows that

φp′(0↔∞) ≤ φ1
p,q(0↔∞) ≤ φp(0↔∞) .

We now take the expectation with respect to P . In view of the preceding remarks, the
middle term has P -expectation m(β, π), while the P -integration of the Bernoulli mea-
sures φp′ and φp again leads to Bernoulli measures, namely the homogeneous Bernoulli
measures φp(β,π) and φp̄(β,π). The lemma follows immediately. 2

Combining the lemma with the discussion before we arrive at the following result on
phase transition in the random Potts model.

Theorem 9.2 Consider the random Potts model on Zd at inverse temperature β > 0
with coupling distribution π. Set p(π) = π(]0,∞[) = P (Jb > 0), and let pc be the
Bernoulli bond percolation threshold of Zd; so pc = 1/2 when d = 2.

(i) If p̄(β, π) < pc then with P -probability 1 there exists only one Gibbs measure with
interaction βJ. In particular, this holds when p(π) < pc or β is small enough.

(ii) If p(β, π) > pc then m(β, π) > 0, and with P -probability 1 there exist q distinct
phases for the interaction βJ. In particular, this holds when p(π) > pc and β is
large enough.

Another way of stating this result is the following. Suppose π = (1 − p)δ0 + p π+ with
π+ = π(· |]0,∞[), and let L+(β) =

∫∞
0 e−βtπ+(dt) be the Laplace transform of π+.

(Note that then p̄(β, π) = p(1 − L+(2β)) and p(β, π) ≥ p(1 − q L+(2β)).) Then there
is no phase transition for p < pc, whereas for p > pc the critical inverse temperature
βc(p, π+) ≡ βc(π) is finite (and decreasing in p) and satifies the bounds

p− pc

pq
≤ L+(2βc(p, π+)) ≤ p− pc

p
.

If θ(pc) = 0 (which is known to hold for d = 2, and is expected to hold for all dimensions)
then uniqueness holds when p = pc or β = βc(p, π+). In physical terminology, the
preceding bounds on βc(p, π+) imply that the so-called crossover exponent is 1.

Example 9.3 The case of dilution. If Jb is 1 or 0 with probability p resp. 1 − p then
L+(β) = e−β . Hence, for p > pc the critical inverse temperature satisfies the logarithmic
bounds

− ln
p− pc

p
≤ 2βc(p, δ1) ≤ − ln

p− pc

pq
.

For q = 2, the diluted Ising model, assertion (ii) of Theorem 9.2 gives the slightly
sharper upper bound βc(p, δ1) ≤ tanh−1(pc/p).
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Example 9.4 The case of power law singularities. Suppose π+(dt) = Γ(a)−1ta−1e−tdt
is the Gamma distribution with parameter a > 0. Then L+(β) = (1 + β)−a, so that for
p > pc the critical inverse temperature satisfies a power law with exponent −1/a:

(

pc

p− pc

)1/a

− 1 ≤ 2βc(p, π+) ≤
(

pcq

p− pc

)1/a

.

Examples with other kinds of singularities can easily be produced [94].
Theorem 9.2 is due to [9]. Earlier, a generalized Peierls argument was used in [93]

to show that for the diluted Ising model (q = 2) in d = 2 dimensions a phase transition
occurs almost surely when p > pc = 1/2 and β is large enough. In fact, this paper dealt
mainly with the case of site dilution, in which sites rather than bonds are randomly
removed from the lattice, and which in the present framework can be described by
setting J〈xy〉 = ξ(x)ξ(y) for a family (ξ(x))x∈Zd of Bernoulli variables; the Jb are thus
1-dependent. This was continued in [94, 95] for a class of random interaction models
including the random-bond Ising model as considered here, obtaining improved bounds
on βc(p, π+) for d = 2 as p ↓ 1/2. Extensions, in particular to d ≥ 3, were obtained in
[53]. The diluted Ising model with a non-random external field h 6= 0 does not exhibit
a phase transition; this was shown in [93] for L = Zd and recently extended to quite
general graphs in [123].

For the diluted Ising model there is also a dynamical phase transition at the point
p = pc. For p > pc and βc(1, δ1) < β < βc(p, δ1) the relaxation to equilibrium is no
longer exponentially fast [15]. This illustrates that uniqueness of the Gibbs measure
does not in itself imply the absence of a critical phenomenon. Beside such dynamical
phenomena, there are also some static effects of the disorder in the uniqueness regime,
albeit these are perhaps less remarkable. These are the subject of the next subsection.

9.2 Mixing properties in the Griffiths regime

As we have seen above, the diluted Ising ferromagnet shows spontaneous magnetization
when p > pc and β > βc(p) ≡ βc(p, δ1), and multiple Gibbs measures for βJ exist
almost surely. In the uniqueness region when still p > pc but β < βc(p) we need to
distinguish between two different regimes. At high temperatures when actually β < βc ≡
βc(1), the critical inverse temperature of the undiluted system, we are in the so-called
paramagnetic case. This is comparable to the usual uniqueness regime for translation
invariant Ising models. At intermediate temperatures, namely when βc < β < βc(p),
we encounter different behavior arising from the fact that the system starts to feel the
disorder. This regime is called the Griffiths regime, since it was he [105] who discovered
in this parameter region the phenomenon now called Griffiths’ singularities. He studied
site-diluted ferromagnets , but the arguments remain valid also in the bond-diluted case.
The basic fact is the following: adding a complex magnetic field h to the Hamiltonian of
the diluted Ising model we find that the partition function in a box with plus boundary
conditions, as a function of h, can take values arbitrarily close to zero. The reason is
that typically a large part of the box is filled by a huge cluster of interacting bonds,
giving a contribution corresponding to an Ising partition function in the phase transition
region. The radius of analyticity of the free energy around h = 0 is thus zero. In other
words, the magnetization m(β, p, h) cannot be continued analytically from h > 0 to
h < 0 through h = 0 when p > pc and β > βc. So, the presence of macrosopic clusters
of strongly interacting spins (on which the spins show the low temperature behavior of
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the corresponding translation invariant system) gives rise to singular behavior. Related
phenomena show up in a large variety of other random models, though not necessarily
in the form of non-analyticity in the uniqueness regime; in general it may be difficult to
pinpoint their precise nature. Nevertheless, we will speak of Griffiths’ phase or Griffiths’
regime whenever such singularities are expected to occur, even when a proof is still
lacking. These terms then simply indicate that the usual high temperature techniques
cannot be applied as such.

As another illustration we consider a random Ising model with unbounded, say
Gaussian coupling variables Jb. Then βJb is also unbounded, even for arbitrarily small β,
and with high probability a large box contains a positive fraction of strongly interacting
spins. In particular, there is no paramagnetic regime, and the whole uniqueness region
belongs to the Griffiths phase. For this reason, it is a non-trivial problem to show the
uniqueness of the Gibbs measure. For example, the standard Dobrushin uniqueness
condition encountered in (48) (cf. [65, 70]) is useless in this case; similarly, a naive use
of standard cluster expansion techniques fails. In fact, these methods are bound to fail
since they also imply analyticity which is probably too much to hope for (even though
we cannot disprove it).

In the following we will not deal with the singular behavior in the Griffiths phase.
Instead, we address the problem of showing nice behavior, which we specify here as
good mixing properties of the system. We shall present two techniques: the use of
random-cluster representations, and the use of disagreement percolation.

Application of random-cluster representations. Consider a random Ising model. Spins
take values σ(x) = ±1, and the formal Hamiltonian is

H(σ) = −
∑

b=〈xy〉∈B

Jb σ(x)σ(y) . (67)

We set β = 1. Let µη
J,Λ be the associated Gibbs distribution in Λ ∈ E with boundary

condition η ∈ Ω. For many applications it is important to have good estimates on the
variational distance ‖·‖∆ on ∆ ⊂ Λ (see (45)) of these measures with different boundary
conditions.

Definition 9.5 The random spin system above is called exponentially weak-mixing
with rate m > 0 if for some C <∞ and all Λ ∈ E and ∆ ⊂ Λ

P

(

max
η,η′∈Ω

‖µη
J,Λ − µ

η′

J,Λ‖∆
)

≤ C|∆| e−m d(∆,Λc) , (68)

where d(∆,Λc) is the Euclidean distance of ∆ and Λc.

Various other mixing conditions can also be considered. A stronger condition requires
that the variational distance in (68) is exponentially small in the distance between the
set ∆ and the region where the boundary conditions η and η′ really differ. One could
also restrict Λ and/or ∆ to regular boxes. See [170, 217, 70, 71, 25, 49, 50, 15].

Let us comment on the significance of the exponential weak-mixing condition above.

Remarks: (1) Suppose condition (68) holds. A straightforward application of the
Borel-Cantelli lemma then shows that for any m′ < m

max
η,η′∈Ω

‖µη
J,Λ − µ

η′

J,Λ‖∆ ≤ CJ |∆| e−m′ d(∆,Λc)
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with some realization-dependent CJ < ∞ P -almost surely. Integrating over η′ for any
Gibbs measure µJ we find in particular that µJ = limΛ↑Zd µ

η
J,Λ for all η, implying that

µJ is the only Gibbs measure (and depends measurably on J). Moreover, noting that
µJ(A|B) =

∫

µη
J,Λ(A)µJ(dη|B) for A ∈ F∆ and B ∈ FΛc , we see that this realization-

dependent Gibbs measure µJ satisfies the exponential weak-mixing condition

sup
A∈F∆, B∈FΛc , µJ(B)>0

|µJ(A|B)− µJ(A)| ≤ CJ |∆| e−m′ d(∆,Λc) . (69)

(2) Condition (69) above also implies an exponential decay of covariances. Let f
be any local observable with dependence set ∆ ∈ E and g be any bounded observable
depending only on the spins off Λ, where ∆ ⊂ Λ. Also, let δ(f) = maxσ,σ′ |f(σ)− f(σ′)|
be the total oscillation of f and δ(g) that of g. The covariance µJ(f ; g) of f and g then
satisfies P -almost surely the inequality

|µJ(f ; g)| ≤ CJ |∆| δ(f) δ(g) e−m′ d(∆,Λc)/2 .

Indeed, a short computation shows that |µJ,h(f ; g)| is not larger than the left-hand
side of inequality (69) times δ(f) δ(g)/2, cf. inequality (8.33) in [96]. If g is local, a
similar inequality holds for covariances relative to finite volume Gibbs distributions in
sufficiently large regions with arbitrary boundary conditions.

We will now investigate under which conditions the random Ising system with Hamil-
tonian (67) is exponentially weak-mixing. We start from the estimate

‖µη
J,Λ − µ

η′

J,Λ‖∆ ≤ φ1
p,2,Λ(∆↔ ∂Λ)

obtained in Theorem 7.8. As before, this bound is also valid in the inhomogeneous case
considered here, and φ1

p,2,Λ stands for the wired random-cluster distribution in Λ with
bond-probabilities p ≡ p(|J|) = (pb)b∈B given by pb = 1− exp[−2|Jb|]. Next we can use
a recent concavity result of [15]:

Lemma 9.6 Let K = (Kb)b∈B be a collection of positive real numbers and p = p(K)
denote the collection of densities pb = 1 − e−2Kb. For any increasing function f , the
expectation φ1

p,2,Λ(f) is then a concave function of each Kb.

Proof: For brevity we set φ1
p,2,Λ = φ. For any fixed bond b we consider the functions

F (pb) = φ(f) and G(Kb) = F (1 − e−2Kb). Using equation (27) of Lemma 6.6 we then
find that

F ′(pb) = φ(f gpb
)− φ(f)φ(gpb

)

and
F ′′(pb) = −2F ′(pb)φ(gpb

) ,

where for ηb ∈ {0, 1}
gpb

(ηb) =
2ηb − 1

pηb

b (1− pb)1−ηb
.

This implies
G′′(Kb) = −4e−2KbF ′(pb) [1 + 2e−2Kbφ(gpb

)].

Now, F ′ is nonnegative because f and gpb
are increasing and φ has positive correlations

by Corollary 6.7(a). Another explicit computation shows that

1 + 2e−2Kbφ(gpb
) = 2φ(ηb = 1)/pb − 1 ≥ 2/(2 − pb)− 1 ≥ 0,
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where the first inequality uses the fact that the random-cluster distribution for q =
2 dominates an independent percolation model with densities p′b = pb/(2 − pb), see
Corollary 6.7(c). It follows that G′′ ≤ 0, proving the claimed concavity. 2

The preceding lemma implies that

P

(

φ1
p(|J|),2,Λ(∆↔ ∂Λ)

)

≤ φ1
p,2,Λ(∆↔ ∂Λ) ≤

∑

x∈∂∆

φ1
p,2,Λ(x↔ ∂Λ),

where p = 1 − exp[−2P (|Jb|]. The weak mixing property (68) thus follows provided
we can show an exponential decay of connectivity in the wired random-cluster distri-
bution φ1

p,2,Λ. The latter certainly holds when p < pc because φ1
p,2,Λ is dominated (on

Λ) by the Bernoulli measure φp (cf. Corollary 6.7(b)), and the connectivity of a sub-
critical Bernoulli model decays exponentially fast (recall Theorem 5.6). So we arrive in
particular at the following result.

Theorem 9.7 Consider a random Ising model on Zd with Hamiltonian (67). If
2P (|Jb|) < − ln(1 − pc) for the Bernoulli bond percolation threshold pc of Zd then the
system is exponentially weak-mixing.

As the proof above shows, the factor |∆| on the right-hand side of (68) can actually be
replaced by |∂∆|.

In the diluted Ising model at inverse temperature β (see Example 9.3), the condition
of the preceding theorem reads 2βp < − ln(1 − pc). Therefore, if d is so large that
2βc pc < − ln(1− pc) then the theorem covers part of the Griffiths regime. This fact is
evident in the case of an unbounded, say Gaussian, disorder because then (as explained
above) there is no paramagnetic phase.

Exponential weak-mixing for random Ising models can also be shown by other ap-
plications of random-cluster domination. Let us sketch such an alternative route. Using
the random-cluster representation, Newman [182] showed that (pointwise in the disorder
J)

max
η,η′
‖µη

J,Λ − µ
η′

J,Λ‖∆ ≤ 2
∑

x∈∆

µ+
|J|,Λ(X(x)), (70)

where µ+
|J|,Λ is the Gibbs distribution in Λ with plus boundary conditions for the Hamil-

tonian (67) with Jb replaced by |Jb|. On the other hand, Higuchi [132] obtained the
estimate

µ+
|J|,Λ(X(x)) ≤

∑

y/∈Λ

∑

z∈Λ: z∼y

µf
|J|,Λ(X(x)X(z))

(the superscript ‘f ’ referring to the free boundary condition), while Olivieri, Perez and
Goulart Rosa [185] proved that

P

(

µf
|J|,Λ(X(x)X(z))

)

≤ µf
J,Λ(X(x)X(z)) (71)

with J = P (|Jb|). We are thus back to the standard Ising Gibbs distribution in Λ with
zero external field, free boundary condition and coupling constant J . Now we can take
advantage of the second Griffiths inequality (which we did not discuss so far in this text)
stating that correlation functions such as on the right-hand side above are monotone in
the coupling coefficients, see e.g. [160]. This implies that the right-hand side of (71) is
an increasing function of Λ and thus bounded above by its infinite volume limit. But for
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J less than Jc, the critical coupling, the Gibbs measure is unique and has an exponential
decay of correlations, see [7]. We thus find that for J < Jc the right-hand side of (71)
has an exponential upper bound C exp[−m|x − z|] for suitable constants C < ∞ and
m > 0. Together with the previous estimates, we conclude that under the condition
P (|Jb|) < Jc, the random Ising model on Zd with Hamiltonian (67) is exponentially
weak-mixing. Again, this condition covers part of the Griffiths regime for the diluted
Ising ferromagnet.

As an alternative to the use of Griffiths’ inequalities above we can also apply Theo-
rem 6.2 and Corollary 6.7(b), giving

P

(

µf
|J|,Λ(X(x)X(z))

)

≤ φp(x↔ z)

where φp is the bond Bernoulli measure with density p = P (1 − exp[−2|Jb|]). As
mentioned above, its connectivity function decays exponentially fast when p < pc. We
therefore conclude that the random Ising model on Zd is also exponentially weak-mixing
when P (1− exp[−2|Jb|]) < pc.

The above estimate (70) does not hold when we add a random magnetic field to the
Hamiltonian (67),

H(σ) = −
∑

b=〈xy〉∈B

Jb σ(x)σ(y) −
∑

x∈Zd

hx σ(x), (72)

with i.i.d. real random variables hx independent from the Jb. However, if Jb, hx ≥ 0
then we can take advantage of Section 2 of [132] to replace (70) with

max
η,η′
‖µη

J,h,Λ − µ
η′

J,h,Λ‖∆ ≤ 2
∑

x∈∆

µ+
J,0,Λ(X(x)),

and we can continue as above.

Application of disagreement percolation. As we have indicated at the end of Section
7.1, the idea of disagreement percolation can be applied to study the Griffiths regime
for rather general random-interaction systems. To be specific we consider Ising spins
with the Hamiltonian (72). We consider the finite volume Gibbs distribution µη

J,h,Λ in
a box Λ with boundary condition η ; as before, the subscripts J,h describe the random
interaction. We are going to apply Theorems 7.1 and 7.2 pointwise in the disorder. As
in (44) we thus have to consider the variational single-spin oscillations

pJ,h
x = max

η,η′∈Ω
‖µη

J,h,x − µ
η′

J,h,x‖x (73)

which depend on the disorder J,h. Under the present assumptions, (pJ,h
x )x∈Zd is a

1-dependent random field; this is the only property of the disorder needed below. Now,
from Theorems 7.1 and 7.2 we can conclude that if with P -probability 1 there is no
Bernoulli site-percolation with densities (73) then, again with P -probability 1, there is
a unique Gibbs measure for J,h. (In fact, similarly to the results of Section 7.2 the
random system can be dominated by a random percolation system which more or less
coincides with a stochastic-geometric representation of the diluted ferromagnet [101].)
The following theorem is an immediate consequence of the results of Section 7.1.
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Theorem 9.8 An Ising system with random Hamiltonian (72) satisfying

P (pJ,h
x ) <

1

(2d− 1)2

is exponentially weak-mixing.

Of course, we now have to add in (68) the subscript h referring to the random external
field.

Proof: Consider Theorem 7.1. Evidently, the right hand side of (46) can only increase
if the density for an open site is set to be 1 on the odd sublattice Lodd of Zd. Due to
the 1-dependence of the random field p = (pJ,h

x )x∈Zd noticed above, the remaining pJ,h
x

with x ∈ Leven are mutually independent. Taking the P -expectation in (46) we thus
obtain on the right-hand side the Bernoulli percolation probability ψp, even(∆↔ ∂Λ),
where ψp, even is the Bernoulli measure with density p = P (pJ,h

x ) on the even sublattice
Leven and density 1 on Lodd. The exponential weak-mixing property now follows by an
argument similar to that following (18); note that, relative to ψp, even, a path of length
k is open with probability at most p⌊k/2⌋. 2

Remarks: (1) Suppose we add a uniform magnetic field h to the random Hamiltonian
(72). Under the conditions of Theorem 9.8 it is then not too difficult to show that
the disorder-averaged expectation P (µJ,h+h(f)) of any local function f is an infinitely
differentiable function of h, see e.g. [72].

(2) Following Theorem 7.2, Theorem 9.8 requires that the single-point densities (73)
are globally small enough to prevent percolation in the associated Bernoulli model. This
condition can be extended to so-called constructive conditions involving finite boxes
rather than single sites [25].

(3) Another very powerful and transparent treatment of the Griffiths regime (based
on very similar percolation ideas) has been developed in [72]. This paper proposes
a technique similar to [18] and [85] of a resummation in the high temperature cluster
expansion. The bounds then allow a probabilistic interpretation of the expansion linking
it with a bond percolation process.
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10 Continuum models

All models considered so far lived on a lattice. Physical systems like real gases, however,
are more realistically modelled by particles living in continuous space. This section is
an outline of how some of the stochastic-geometric ideas developed in previous sections
can be applied to a continuum setting. First, in Section 10.1, we consider the natural
continuum analogues, based on Poisson processes, of the Bernoulli percolation models
introduced in Section 5. Then, in Section 10.2, we consider a continuum variant of
the Widom–Rowlinson model introduced in Section 3.5 and discuss its phase transition
behavior. (As mentioned in Section 10.2, this continuum variant is the one originally
considered by Widom and Rowlinson [223], so it predates the lattice model.)

10.1 Continuum percolation

Here we consider the basic models of continuum percolation. For a thorough treatment
of the mathematical theory of continuum percolation we refer to Meester and Roy [173].

We first need to introduce the Poisson process on Rd and its subsets. Heuristically,
a Poisson process with intensity λ > 0 on Rd is a random set X of points in Rd with
the properties that

(i) for any bounded Borel set Λ of Rd with volume |Λ|, the number of points of X in
Λ is Poisson distributed with mean λ|Λ|, i.e., for n = 0, 1, 2, . . . the probability of
seeing exactly n points in Λ equals exp(−λ|Λ|)(λ|Λ|)n/n! ;

(ii) for any two disjoint such subsets Λ1 and Λ2, the numbers of points observed in Λ1

and in Λ2 are independent.

For a construction of such a process, we first consider a bounded Borel set Λ of Rd. Let
ΩΛ be the set of all finite subsets of Λ. A Poisson process on Λ with intensity λ > 0 is
then given by a random element of ΩΛ having distribution πλ,Λ, where

πλ,Λ(F ) = e−λ|Λ|
∞
∑

n=0

λn

n!

∫

· · ·
∫

I{{x1,...,xn}∈F} dx1 · · · dxn

for all F ∈ FΛ, the smallest σ-field which allows us to count the number of points in
each Borel subset of Λ.

Next, let Ω be the set of all locally finite point configurations on Rd; locally finite
means that any bounded set contains only finitely many points. The Poisson process
on Rd with intensity λ is a random point configuration X distributed according to the
unique probability measure πλ on Ω which, when projected on any bounded Borel set
Λ ⊂ Rd, yields πλ,Λ. Properties (i) and (ii) above are easily verified, and make Poisson
processes the natural analogues of Bernoulli measures for lattice models.

To study percolation properties of the Poisson process X, we need to introduce some
notion of connectivity. A natural way is to imagine a closed Euclidean ball B(x,R) of
fixed radius R around each point x of the Poisson process, which leads us to considering
the random subset X̄ =

⋃

x∈X B(x,R) of Rd. Such random subsets are widely known as
Boolean models. (More generally, B(x,R) could be replaced by a closed compact random
set centered at x.) This particular Boolean model is often referred to as the Poisson
blob model or lily pond model. Two points x, y ∈ X are then considered as connected
to each other if they are connected in X̄, meaning that there exists a continuous path
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from x to y in X̄ . By scaling, there is no loss of generality in setting R = 1/2, so that
two balls centered at x and y intersect if and only if |x − y| ≤ 1, where | · | denotes
Euclidean distance. The basic result on Boolean continuum percolation, analogous to
Theorem 5.3 for ordinary site percolation, is the following.

Theorem 10.1 Pick a Poisson process X on Rd, d ≥ 2, with intensity λ. Let X̄ =
⋃

x∈X B(x, 1/2) be the associated Boolean model, and let θ(λ) denote the probability that
the origin belongs to an unbounded connected component of X̄. Then there exists a
critical value λc = λc(d) ∈ (0,∞) such that θ(λ) = 0 if λ < λc and θ(λ) > 0 if λ > λc.

The standard proof of this result is based on a partitioning of Rd into small cubes,
reducing the problem to its lattice analogue, Theorem 5.3; see [173] or [108].

Another continuum percolation model is the so called random connection model, or
Poisson random edge model, which was introduced by M. Penrose [188]. Let g : [0,∞)→
[0, 1] be a decreasing function with bounded support (that is g(x) = 0 when x exceeds
some R <∞). The random connection model with intensity λ and connectivity function
g arises by taking a Poisson processX in Rd with intensity λ and independently drawing
an edge between each pair of points x and y of X with probability g(|x−y|). This setting
includes the Boolean model, which corresponds to the choice g = I[0,1]. Theorem 10.1
extends to this model: For g as above with

∫∞
0 g(x)dx > 0 and dimensions d ≥ 2, there

is a critical value λc = λc(d, g) such that infinite connected components a.s. occur (resp.
do not occur) whenever λ > λc (resp. λ < λc) in the random connection model with
intensity λ and connectivity function g.

Much of the theory of standard (lattice) percolation has analogues for these con-
tinuum models. An example is the uniqueness of the infinite cluster (Theorem 5.17),
which goes through for the Boolean and random connection models. See [173] for this
and much more.

10.2 The continuum Widom–Rowlinson model

The continuum Widom–Rowlinson model is a marked point process where the points are
of two types: we call them plus-points and minus-points. (From now on and throughout
this section, we drop the term “continuum” when refering to this model, and instead add
the word “lattice” when talking about the model of Section 3.5.) For the model defined
on a region Λ ⊆ Rd realizations take values in ΩΛ × ΩΛ; the first coordinate describes
the locations of the plus-points, and the second coordinate the minus-points. There is
a hard sphere interaction preventing two points from coming within Euclidean distance
R from each other; again, we set R = 1 without loss of generality. This interaction
corresponds to the Hamiltonian

H(x,y) =
∑

x∈x,y∈y

∞ I{|x−y|≤1} ,

x,y ∈ ΩΛ .
When Λ is bounded, the Widom–Rowlinson model on Λ with intensity λ is obtained

by conditioning the Poisson product measure πλ,Λ × πλ,Λ on the event that there is no
pair of points of opposite type within unit distance from each other. The extension
to Rd is done in the usual DLR fashion: a probability measure µ on Ω × Ω is a Gibbs
measure for the Widom–Rowlinson model at intensity λ if, for any bounded Borel set Λ,
the conditional distribution of the point configuration on Λ given the point configuration
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on Rd \Λ is that of two independent Poisson processes conditioned on the event that no
point in Λ is placed within unit distance from a point of the opposite type, either inside
or outside Λ. The resemblence with the lattice Widom–Rowlinson model of Section 3.5
is evident. We have the following analogue of Theorem 3.4.

Theorem 10.2 For the Widom–Rowlinson model on Rd, d ≥ 2, with activity λ, there
exist constants 0 < λ′c ≤ λ′′c < ∞ (depending on d) such that for λ < λ′c the model has
a unique Gibbs measure, while for λ > λ′′c there are multiple Gibbs measures.

The proof of this result splits naturally into two parts: first, we need to demonstrate
uniqueness of Gibbs measures for λ sufficiently small, and secondly we need to show non-
uniqueness for λ sufficiently large. The first half can be done by a variety of techniques.
For instance, one can partition Rd into cubes of unit sidelength and apply disagreement
percolation (Theorem 7.1). Two observations are crucial in order to make this work:
that the conditional distribution of the configuration in such a cube given everything else
only depends on the configurations in its neighboring cubes, and that the conditional
probability of seeing no point at all in a cube tends to 1 as λ → 0, uniformly in the
neighbors’ configurations.

The more difficult part, the nonuniqueness for large λ, was first obtained by Ruelle
[204] using a Peierls-type argument. Here we shall sketch a modern stochastic-geometric
approach using a random-cluster representation. This approach is due mainly to Chayes,
Chayes and Kotecký [54] (but see also [100]), and works in showing both parts of
Theorem 3.4. The so called continuum random-cluster model is defined as follows.

Definition 10.3 The continuum random-cluster distribution φλ,Λ with intensity
λ for the compact region Λ ⊂ Rd is the probability measure on ΩΛ with density

f(x) =
1

Zλ,Λ
2k(x) , x ∈ ΩΛ (74)

with respect to the Poisson process πλ,Λ of intensity λ; here Zλ,Λ is a normalizing con-
stant and k(x) is the number of connected components of the set x̄ =

⋃

x∈xB(x, 1/2).

In analogy to the correspondence between the lattice Widom–Rowlinson model and its
random-cluster representation in Propositions 6.22 and 6.23, we obtain the continuum
random-cluster model by simply disregarding the types of the points in the Widom–
Rowlinson model, with the same choice of the parameter λ. Conversely, the Widom–
Rowlinson model is obtained when the connected components in the continuum random-
cluster model are assigned independent types, plus or minus with probability 1/2 each.
To see why this is true, note that for any x ∈ ΩΛ there are exactly 2k(x) elements of
ΩΛ × ΩΛ which do not contradict the hard sphere condition of the Widom–Rowlinson
model and which map into x when we disregard the types of the points.

Besides the random-cluster representation, we can also take advantage of stochastic
monotonicity properties. Let us define a partial order � on Ω× Ω by setting

(x,y) � (x′,y′) if x ⊆ x′ and y ⊇ y′ , (75)

so that in other words a configuration increases with respect to � if plus-points are added
and minus-points are deleted. A straightforward extension of Theorem 10.4 below then
implies that the Gibbs distributions for the Widom–Rowlinson model have positive
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correlations relative to this order. The methods of Sections 4.1 and 4.3 can therefore
be adapted to show that the Widom–Rowlinson model on Rd at intensity λ admits two
particular phases µ+

λ and µ−λ , where µ+
λ is obtained as a weak limit of Gibbs measures

on compact sets (tending to Rd) with boundary condition consisting of a dense crowd
of plus-points, and µ−λ is obtained similarly. We also have the sandwiching relation

µ−λ �D µ �D µ+
λ (76)

for any Gibbs measure µ for the intensity λ Widom–Rowlinson model on Rd, so that
uniqueness of Gibbs measures is equivalent to having µ−λ = µ+

λ .
The Gibbs measure for the Widom–Rowlinson model on a box Λ with “plus” (or

“minus”) boundary condition corresponds to the wired continuum random-cluster model
φ1

λ,Λ on Λ where all connected components within distance 1/2 from the boundary count
as a single component. Arguing as in Sections 6.3 and 6.7 we find that uniqueness of
Gibbs measures for the Widom–Rowlinson model is equivalent to not having any infinite
connected components in the continuum random-cluster model. Let λc be as in Theorem
10.1. Theorem 10.2 follows if we can show that the continuum random-cluster model
φ1

λ,Λ with sufficiently large intensity λ stochastically dominates πλ1,Λ for some λ1 > λc,

whereas φ1
λ,Λ �D πλ2,Λ for some λ2 < λc when λ is sufficiently small.

To this end we need a point process analogue of Theorem 4.8, which is based on
the concept of Papangelou (conditional) intensities for point processes. Suppose µ is a
probability measure on ΩΛ which is absolutely continuous with density f(x) relative to
the unit intensity Poisson process π1,Λ. For x ∈ Λ and a point configuration x ∈ ΩΛ

not containing x, the Papangelou intensity of µ at x given x is, if it exists,

λ(x|x) =
f(x ∪ {x})

f(x)
. (77)

Heuristically, λ(x|x)dx can be interpreted as the probability of finding a point inside an
infinitesimal region dx around x, given that the point configuration outside this region
is x. Alternatively, λ(· | ·) can be characterized as the Radon–Nikodym density of the
measure

∫

µ(dx)
∑

x∈x δ(x,x\{x}) on Λ×ΩΛ, the so-called reduced Campbell measure of
µ, relative to the Lebesgue measure times µ [98]. It is easily checked that the Poisson
process πλ,Λ has Papangelou intensity λ(x|x) = λ.

The following point process analogue of Theorem 4.8 was proved by Preston [199]
under an additional technical assumption, using a coupling of so called spatial birth-
and-death processes similar to the coupling used in the proof of Theorem 4.8. Later,
the full result was proved in Georgii and Küneth [98] by a discretization argument.

Theorem 10.4 Suppose µ and µ̃ are probability measures on ΩΛ with Papangelou in-
tensities λ(· | ·) and λ̃(· | ·) satisfying

λ(x|x) ≤ λ̃(x|x̃)

whenever x ∈ Λ and x, x̃ ∈ ΩΛ are such that x ⊆ x̃. Then µ �D µ̃, in that there exists
a coupling (X, X̃) of µ and µ̃ such that X ⊆ X̃ a.s.

Plugging (74) into (77) we find that the continuum random-cluster measure φλ,Λ has
Papangelou intensity

λ(x|x) = λ 21−κ(x,x) , (78)
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where κ(x,x) is the number of connected components of
⋃

y∈xB(y, 1/2) intersecting
B(x, 1/2). It is a simple geometric fact that there exists a constant κmax = κmax(d) <∞
such that κ(x,x) ≤ κmax for all x and x; for d = 2 we may take κmax = 5. It follows
that

λ 21−κmax ≤ λ(x|x) ≤ 2λ (79)

for all x and x. Hence, applying Theorems 10.4 and 10.1 we find that φ1
λ,Λ �D π2λ,Λ,

so that for λ < λc/2 we obtain the absence of unbounded connected components of
⋃

x∈xB(x, 1/2) in the limit Λ ↑ Rd of continuum random-cluster measures. On the other
hand, taking λ > λc 2κmax−1 yields the presence of unbounded connected components
in the same limit. Theorem 10.2 follows immediately.

It is important to note that this approach does not allow us to show that nonunique-
ness of Gibbs measures depends monotonically on λ. The reason is similar to what we
saw for the lattice Widom–Rowlinson model in Section 6.7: the right hand side of (78)
fails to be increasing in x. It thus remains an open problem whether one can actually
take λ′c = λ′′c in Theorem 10.2.

There are several interesting generalizations of the Widom–Rowlinson model. Let
us mention one of them, in which neighboring pairs of particles of the opposite type
are not forbidden, but merely discouraged. Let h : [0,∞) → [0,∞] be an “interspecies
repulsion function” which is decreasing and has bounded support. For Λ ⊂ Rd compact
and λ > 0, the associated Gibbs distribution µh,λ,Λ on ΩΛ × ΩΛ is given by its density

f(x,y) =
1

Zh,λ,Λ
exp

(

−
∑

x∈x,y∈y

h(|x− y|)
)

.

relative to πλ,Λ×πλ,Λ. Infinite volume Gibbs measures on Ω×Ω are then defined in the
usual way. Lebowitz and Lieb [154] proved nonuniqueness of Gibbs measures for large
λ when h(x) is large enough in a neighborhood of the origin. Georgii and Häggström
[97] later established the same behavior without this condition, and for a larger class
of systems, using the random-cluster approach. This involves a generalization of the
continuum random-cluster model, which arises by taking the random connection model
of Section 10.1 with connectivity function g(x) = 1 − e−h(x) and biasing it with a
factor 2k(z), where k(z) is the number of connected components of a configuration z of
points and edges. To establish the phase transition behavior of this “soft-core Widom–
Rowlinson model” (i.e., uniqueness of Gibbs measures for small λ and nonuniqueness
for large λ) one can basically use the same arguments as the ones sketched above for the
standard Widom–Rowlinson model. However, due to the extra randomness of the edges
some parts of the argument become more involved. In particular, there is no longer a
deterministic bound (corresponding to κmax) on how much the number of connected
components can decrease when a point is added to the random-cluster configuration;
thus more work is needed to obtain an analogue of the first inequality in (79).

To conclude, we note that the Widom–Rowlinson model on Rd has an obvious
multitype analogue with q ≥ 3 different types of particles. This multitype model still
admits a random-cluster representation from which the existence of a phase transition
can be derived [97]. There is, however, no partial ordering like (75) giving rise to
stochastic monotonicity or an analogue of (76).
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[57] Chayes, L., Kotecký, R. and Shlosman, S.B. (1997) Staggered phases in diluted systems
with continuous spins, Commun. Math. Phys. 189, 631–640.

109



[58] Chayes, L. and Machta, J. (1997) Graphical representations and cluster algorithms I.
Discrete spin systems, Physica A 239, 542–601.

[59] Chayes, L. and Machta, J. (1998) Graphical representations and cluster algorithms. Part
II, Physica A 254, 477–516.

[60] Chayes, L., Machta, J. and Redner, O. (1998) Graphical representations for Ising systems
in external fields, J. Stat. Phys. 93, 17–32.

[61] Chayes, L., McKellar, D. and Winn, B. (1998) Percolation and Gibbs states multiplicity
for ferromagnetic Ashkin–Teller models on Z2, J. Phys. A 31, 9055–9063.

[62] Coniglio, A., Nappi, C.R., Peruggi, F. and Russo, L. (1976) Percolation and phase tran-
sitions in the Ising model, Commun. Math. Phys 51, 315–323.

[63] Dobrushin, R.L. (1965) Existence of a phase transition in two and three dimensional Ising
models, Th. Probab. Appl. 10, 193–213.

[64] Dobrushin, R.L. (1968) Gibbsian random fields for lattice systems with pairwise interac-
tions, Funct. Anal. Appl. 2, 292–301.

[65] Dobrushin, R.L. (1968) The problem of uniqueness of a Gibbsian random field and the
problem of phase transition, Funct. Anal. Appl. 2, 302–312.

[66] Dobrushin, R.L. (1972) Gibbs state describing coexistence of phases for a three-
dimensional Ising model, Th. Probab. Appl. 17, 582–601.

[67] Dobrushin, R.L. (1996) Estimates of semi-invariants for the Ising model at low tempera-
tures, Amer. Math. Soc. Transl. 177, 59–81.

[68] Dobrushin, R.L., Kolafa, J. and Shlosman, S.B. (1985) Phase diagram of the two–
dimensional Ising antiferromagnet (computer–assisted proof), Commun. Math. Phys. 102,
89–103.

[69] Dobrushin, R.L. and Shlosman S.B. (1985) The problem of translation invariance of Gibbs
states at low temperatures, in Mathematical Physics Reviews, Soviet Science Reviews
Section C, Vol. 5, S.P. Novikov, ed. (Gordon and Breach, New York).

[70] Dobrushin, R.L. and Shlosman, S.B. (1985) Constructive criterion for the uniqueness of a
Gibbs field. In: Fritz, J., Jaffe, A., Szasz, D. (eds.), Statistical mechanics and dynamical
systems. 347–370, Birkhauser, Boston.

[71] Dobrushin, R.L. and Shlosman, S.B. (1987) Completely analytical interaction: construc-
tive description, J. Stat. Phys. 46, 983–1014.

[72] von Dreifus, H., Klein, A. and Perez, J.F. (1995) Taming Griffiths’ singularities: infinite
differentiability of quenched correlation functions, Comm. Math. Phys. 170, 21–39.

[73] Edwards, R.G. and Sokal, A.D. (1988) Generalization of the Fortuin–Kasteleyn–-
Swendsen–Wang representation and Monte Carlo algorithm, Phys. Rev. D 38, 2009–2012.

[74] Ellis, R.S. (1985) Entropy, Large Deviations and Statistical Mechanics, Springer, New
York.

[75] van Enter, A.C.D., Fernandez, R., Schonmann, R.H and Shlosman, S.B. (1997) On com-
plete analyticity of the 2D Potts model, Commun. Math. Phys. 189,

[76] van Enter, A.C.D., Fernandez, R. and Sokal A.D. (1993) Regularity properties and
pathologies of position-space renormalization-group transformations: scope and limita-
tions of Gibbsian theory, J. Stat. Phys. 72, 879–1167.

110
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[85] Fröhlich, J. and Imbrie, J. (1984) Improved perturbation expansion for disordered systems:
beating Griffiths’ singularities, Commun. Math. Phys. 96, 145–180.
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