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Abstract

We consider the action of a semigroup S on a standard space E. An orbit
coupling of two probability measures on E is a coupling of these measures giving
the largest possible weight to the event that the orbits of the two coordinates meet
each other. We establish the existence of such orbit couplings for a large class of
semigroups S. We also discuss some applications.

Résumé

On considère l’action d’ un semigroupe S sur une espace standard E. Un cou-
plage orbital de deux mesures de probabilité sur E est un couplage de ces mesures
qui maximise la probabilité de rencontre des orbites des deux coordonnés. On
établit l’ existence d’ un tel couplage orbital pour une grande classe de semigroupes
S. On discute aussi quelques applications.

1 Introduction and result

Let (E,B) be a standard measurable space (i.e., B is the Borel σ–algebra for some
Polish topology on E) and µ, ν two probability measures on (E,B). A coupling of µ
and ν is a probability measure P on (E × E,B ⊗ B) with marginals µ and ν, which
means that P ◦X−1 = µ and P ◦Y −1 = ν for the two projections X,Y of E×E onto E.
Of course, one is primarily interested in couplings with some additional nice properties,
and it is well- known that the construction of suitable couplings is a particularly useful
technique of modern probability theory. This paper is devoted to the construction of
couplings which reflect the ergodic properties of µ and ν with repect to a given class
of transformations of (E,B).

To motivate this coupling we consider first the well–known tail coupling of (dis-
tributions of) stochastic processes. Suppose (E,B) = (F,F)N, the countably infinite
product of some standard space (F,F). Let θ : E → E be the left–shift and T the tail
σ-field. Then there exists a coupling P of µ and ν such that

P (θnX = θnY for some n ∈ N) = 1− 1
2‖µ− ν‖T . (1.1)

Here and below, we use the notation

‖µ− ν‖A = 2 sup
A∈A

|µ(A)− ν(A)|
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for the total variation distance of two probability measures which are defined on, or
restricted to, a σ–algebra A. A detailed account of tail couplings can be found in
[8]. (In traditional terminology, tail couplings P as in (1.1) are referred to as maximal
couplings. This is because each coupling P of µ and ν satisfies (1.1) with “≤” instead
of “=”. In our context, however, this terminology is misleading: we need to distinguish
between couplings of different nature rather than to stress the maximality which is a
common feature of all couplings considered here.) An existence proof for tail couplings
will also come out in Section 3 below.

An analogous result involving the ergodic rather than the tail behaviour of µ and ν
was recently obtained by Aldous and Thorisson [1] and Thorisson [12]: Let S = N or
Z, (E,B) = (F,F)S for some standard space (F,F), θ the left–shift of E, and I the
σ-algebra of all θ–invariant events in B. Then any two probability measures µ, ν on
(E,B) admit a coupling P such that

P (θmX = θnY for some m,n ∈ S) = 1− 1
2‖µ− ν‖I . (1.2)

Aldous and Thorisson call such a coupling a shift coupling. For actions of R+, a similar
result was derived in [11]. It is the purpose of this note to establish the existence of
such couplings for actions of more general semigroups or groups. (After completion of
this paper, I learned of Thorisson’s independent work [13] which deals with actions of
locally compact second countable groups. This should be read as a companion paper.)

Let (S,S) be a standard measurable semigroup, that is, a standard measurable
space with an associative measurable multiplication. Next, let (E,B) be any standard
measurable space and T : S × E → E, (s, x) → Tsx, a measurable left action of S on
E, i.e., an S ⊗ B –B –measurable mapping such that Tstx = TsTtx for all s, t ∈ S and
x ∈ E. If S has an identity e, we also require that Tex = x for all x ∈ E. Finally, we
let I = I(S) be the σ-algebra of all invariant events, viz.

I = {A ∈ B : T−1
s A = A for all s ∈ S}. (1.3)

Definition. An orbit coupling of two probability measures µ, ν on (E,B) is a coupling
P of µ and ν such that

P (TsX = TtY for suitable s, t ∈ S) = 1− 1
2‖µ− ν‖I . (1.4)

Note that the coupling event

C = {TsX = TtY for some s, t ∈ S} (1.5)

on the left-hand side of (1.4) can be rewritten as {O(X) ∩ O(Y ) 6= ∅}, where O(x) =
{Tsx : s ∈ S} is the orbit of x ∈ E. In the case when S is a group, this is equal to
{O(X) = O(Y )}. This explains our choice of terminology.

Remarks. (a) The coupling event C in (1.5) is measurable whenever S is countable.
This is because — (E,B) being standard — the diagonal ∆ in E × E is measurable,
and C is the (then countable) union of the sets (Ts × Tt)−1(∆) ∈ B ⊗ B. In the
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general case, C is the projection onto E × E of the measurable set (T × T )−1(∆) in
(S×E)× (S×E). This shows that C is analytic and therefore universally measurable,
in that C ∈ (B ⊗ B)∗, the universal completion of B ⊗ B; see Section 8.4 of Cohn [3].
Moreover, the cross section theorem (Theorem 8.5.3 of [3]) implies the existence of two
(B ⊗ B)∗–S –measurable mappings σ, τ : E × E → S such that

C = {TσX = TτY } ≡ {(x, y) ∈ E × E : Tσ(x,y)x = Tτ(x,y)y}. (1.6)

This representation of C is particularly convenient.
(b) For an arbitrary coupling P of µ and ν and all A ∈ I we have 1A◦X = 1A◦TσX =

1A ◦ TτY = 1A ◦ Y on C and therefore

|µ(A)− ν(A)| ≤
∫

Cc

|1A ◦X − 1A ◦ Y | dP ≤ P (Cc).

This gives (1.4) with “≤” instead of “=” and reveals the maximality of orbit couplings.
However, as explained above in connection with (1.1), we prefer to skip the epithet
“maximal” to avoid confusion.

(c) In addition to the apparent similarity of (1.1) and (1.4), there is also a deeper
connection between tail couplings and orbit couplings. Suppose F is a finite set and
E = FN. Let Γ = Perm(F )N be the countable group of all transformations of E
which act coordinatewise on finitely many coordinates by permutations of F . Then
T = I(Γ), and the orbit coupling event C in (1.5) with S = Γ is equal to the tail
coupling event on the left-hand side of (1.1). The existence of a tail coupling (for finite
F ) is therefore a special case of our theorem below on the existence of orbit couplings.
Conversely, as pointed out to me by B. Weiss, a celebrated theorem of Dye (and others,
see [6]) asserts that every measure preserving action of a countable amenable group on
a standard probability space is orbit equivalent to the action of Γ on E (which preserves
the Bernoulli measure). That is, there exists a measure space isomorphism which maps
orbits onto orbits. As a consequence, the existence of orbit couplings for actions of
countable amenable groups can be deduced from the existence of tail couplings, at
least when µ and ν admit a dominating invariant probability measure. As a matter
of fact, our construction of orbit couplings for countable S completely parallels the
construction of tail couplings.

(d) For the trivial action of the identity group S = {e}, (1.4) takes the form

P (X = Y ) = 1− 1
2‖µ− ν‖B. (1.7)

The existence of such a “diagonal coupling” (called γ–coupling in [8]) is well-known
and easy to derive by putting µ ∧ ν on the diagonal ∆ and adding a suitable multiple
of (µ− µ ∧ ν)⊗ (ν − µ ∧ ν).

(e) In the case when S acts transitively on E, in that O(x) = E for all x ∈ E, we
have I = {E, ∅} and C = E × E, so that every coupling is an orbit coupling. More
generally, it is easy to see that the existence of orbit couplings is trivial whenever E
splits into at most countably many orbits. 2

Our main result will state that an orbit coupling exists whenever S is either a
countable normal semigroup, or a compact metric group, or when S is composed of
finitely many such building blocks.
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To describe this in detail we need the counterparts for semigroups of some basic
concepts for groups. Let (S,S) be a measurable semigroup. A subsemigroup R of S
is called normal (in S) if sR = Rs for all s ∈ S. In particular, S is called normal
if it is normal in itself. [Any group and any abelian semigroup is normal.] A normal
subsemigroup R of S defines an equivalence relation ∼R on S by s ∼R s′ iff sR∩s′R 6= ∅.
The quotient S/R ≡ S/∼R with its natural multiplication is then a semigroup, the
factor semigroup.

Definition. Suppose (S,S) is a measurable semigroup and R ∈ S a normal subsemi-
group. We will say

(a) S is a countable extension of R if S/R is countable and normal; and
(b) S is a compact group extension of R if S/R is a group and, for a suitable topology

on S/R with Borel σ–algebra B(S/R),
(i) S/R is a compact metrizable topological group, and
(ii) the canonical projection γ : S → S/R admits a measurable section, that is,

a B(S/R)–S–measurable mapping φ : S/R→ S with γ ◦ φ = id.

[Sufficient conditions for the existence of a measurable section can be found in Exercise
4 on p. 287 of [3], for example. These conditions are satisfied if S is Polish, the ∼R

equivalence classes are closed, and γ is open. In specific examples, the existence of a
measurable section can often be seen directly.]

We write S for the class of all standard measurable semigroups (S,S) which admit a
finite increasing sequence R1 ⊂ . . . ⊂ Rn = S of measurable subsemigroups such that,
for all 1 ≤ k < n, Rk+1 is either a countable extension or a compact group extension
of Rk. S includes

(1) the countable semigroups resp. groups Nd, Zd and S∞ (the group of all finite
permutations of N);

(2) the compact metric groups Rd/Zd, SO(d), and {−1, 1}N; and therefore
(3) Rd and Rd

+ (because Rd
+/Nd is isomorphic to Rd/Zd);

(4) the semidirect products Rd � SO(d) (the group of Euclidean motions) and
{−1, 1}N � S∞; and so on.

Here is our main result.

Theorem. For any (left) action of a semigroup S ∈ S on a standard space (E,B),
any two probability measures on (E,B) admit an orbit coupling.

The proof of this theorem will be given in Section 3. The next section is devoted to
a few elementary applications which illustrate the possible use of orbit couplings.

2 Some applications

In the setting of (1.1), it is well-known that µ = ν on T if and only if ‖µ ◦ θ−n −
ν ◦ θ−n‖B → 0 as n→∞. Our first goal in this section is an analogue of this statement
which refers to the ergodic rather than the tail behaviour. We need some definitions.

Consider a standard measurable semigroup (S,S). The right translation of S by
some t ∈ S is defined by rt : s→ st. A net (ρi)i∈D of probability measures on (S,S) is
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called right–ergodic if limi∈D ‖ρi◦r−1
t −ρi‖S = 0 for all t ∈ S. Left translations and left–

ergodic nets are defined similarly. The existence of a right–ergodic net of probability
measures on (S,S) is equivalent to the right–amenability of S, which means that there
exists a right–invariant mean on S [4]. If S is a locally compact group with a countable
basis, this is further equivalent to the existence of a right–ergodic sequence of the form
ρn = m(· |Λn), where m is right Haar measure and (Λn) a Følner sequence of compact
sets. See Section 3 of the Appendix of [10] for references and further discussion. The
equivalence (b) ⇔ (c) in the following corollary is an extension of a result of Berbee [2]
for S = N; see also [1, 12, 13].

Corollary 2.1 For any action of a semigroup S ∈ S on a standard space (E,B) and
any two probability measures µ, ν on (E,B), the following statements are equivalent:

(a) µ = ν on I = I(S)
(b) There exists a successful orbit coupling of µ and ν, i.e., a coupling P with

P (TσX = TτY ) = 1.

If S is right–amenable, these statements are equivalent to

(c) For any right–ergodic net (ρi)i∈D on (S,S),

lim
i∈D

‖ρi(µ)− ρi(ν)‖B = 0,

where ρi(µ) =
∫
ρi(ds)µ ◦ T−1

s .

Proof. (a) ⇒ (b): This is obvious from the theorem.
(b) ⇒ (a): This follows from Remark (b) in Section 1.
(b) ⇒ (c): Let P be a successful orbit coupling of µ and ν. Then for all B ∈ B and

i ∈ D we have

|ρi(µ)(B)− ρi(ν)(B)| ≤
∫
dP

∣∣∣ ∫
ρi(ds)(1B ◦ TsX − 1B ◦ TsY )

∣∣∣
≤

∫
dP

[∣∣∣ ∫
ρi(ds)(1B ◦ TsX − 1B ◦ TsσX)

∣∣∣
+

∣∣∣ ∫
ρi(ds)(1B ◦ TsτY − 1B ◦ TsY )

∣∣∣]
=

∫
dP

[
|(ρi − ρi ◦ r−1

σ )(ΛX)|+ |(ρi ◦ r−1
τ − ρi)(ΛY )|

]
,

where Λx = {s ∈ S : Tsx ∈ B} ∈ S for x ∈ E. In the second step we have used that
TsσX = TsTσX = TsτY for all s ∈ S P–almost surely. Taking the supremum over
B ∈ B in the preceding estimate we find

‖ρi(µ)− ρi(ν)‖B ≤
∫
dP

[
‖ρi − ρi ◦ r−1

σ ‖S + ‖ρi ◦ r−1
τ − ρi‖S

]
.

The result thus follows from the dominated convergence theorem.
(c) ⇒ (a): This is obvious. 2

Assertion (c) above is dual to a mean ergodic theorem, as is specified in the following
example.
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Example 2.2 Suppose S ∈ S is an amenable group, (λi)i∈D a left–ergodic net and T
a measure preserving left action of S on a standard probability space (E,B, µ). Then
for all f ∈ L1(µ),

lim
i∈D

∫
dµ

∣∣∣ ∫
λi(ds)f ◦ Ts − f̄

∣∣∣ = 0, (2.1)

where f̄ is the conditional expectation of f relative to I and µ. (We refer to [10] for a
general account of this and other ergodic theorems.)

To verify this we can assume without loss that f ≥ 0 and
∫
f dµ = 1. Then fµ

and f̄µ are probability measures that agree on I, and f̄µ is invariant. Corollary 2.1
therefore implies that

lim
i∈D

‖ρi(fµ)− f̄µ‖B = 0, (2.2)

where ρi is the image of λi under the inversion s→ s−1. But ρi(fµ) has the µ–density∫
λi(ds)f ◦ Ts, so that the left–hand sides of (2.1) and (2.2) coincide.
In the non–invertible case when S is only a right–amenable semigroup, ρi(fµ) has

the µ–density
∫
ρi(ds)Psf , where Ps is the Perron–Frobenius operator corresponding to

Ts. So, in this case we obtain that for any right–ergodic net (ρi),
∫
ρi(ds)Psf converges

to f̄ in L1(µ)–norm. 2

We continue with two further elementary examples which illustrate the use of suc-
cessful orbit couplings. A less immediate application will appear in a separate paper
[5].

Example 2.3 Let T be a measure preserving transformation of a standard probabil-
ity space (E,B, µ), A ∈ B a set of positive measure, and TA the induced transformation
on A. It is well–known that the conditional probability µA = µ(· |A) is TA–invariant.
It is also well–known that TA is ergodic whenever T is ergodic. Let us derive this fact
using an orbit coupling.

Suppose B ⊂ A with µ(B) > 0 is TA–invariant. Since µ is T–ergodic, µA and µB

coincide on I(T ), so that there exists a successful orbit coupling P of µA and µB relative
to T . In fact, P is even a successful orbit coupling relative to TA. For, if TmX = TnY

for suitable m,n ∈ N then Tm+`X = Tn+`Y for all ` ≥ 0. Since X,Y ∈ A with P–
probability 1, by Poincaré recurrence we can find an ` such that m+ ` is a return time
of X to A, and thus n+ ` is a return time of Y to A. Hence T j

AX = T k
AY for suitable

j, k ∈ N with P–probability 1. By Corollary 2.1, µA = µB on I(TA) and therefore
µA(B) = µB(B) = 1. This proves the ergodicity of TA.

An analogous argument works in a continuous time setting. For example, it can
be used to show that a flow under an integrable function (cf. [9], p.11) is ergodic
if and only if the underlying discrete dynamical system is ergodic. In particular, a
stationary marked point process on R of finite intensity is ergodic if and only if, under
the associated normalized Palm measure, the stationary sequence of point marks and
spacings is ergodic. We leave this to the reader. Further applications of orbit couplings
to point processes on Rd can be found in [12, 14]. 2

Example 2.4 Let G be a countable abelian (additive) group and p a probability
measure on G which is strongly aperiodic, in that G is generated by the set {u − v :
p(u)p(v) > 0}. A variant of an argument of Ornstein (see [7], pp. 68–70, or [5]) then
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shows that for each z ∈ G there exist two processes (Zn)n≥0 and (Z ′n)n≥0 on a common
probability space such that

(i) (Zn)n≥0 and (Z ′n)n≥0 are random walks on G with jump distribution p and start
at 0;

(ii) Z ′n = Zn + z eventually with probability 1.

In fact, one can achieve that each increment of each random walk is independent from
the previous increments of the other walk.

Here we will show how one can use an orbit coupling to construct such a pair of
processes. This construction, however, does not produce the additional independence
property.

Let E = GN (with its natural σ–algebra) and S = S∞ the countable group of all finite
permutations of N, i.e., of all bijections s : N → N with s(n) = n eventually. S acts on
E in a natural way by interchanges of coordinates. Let µ = pN be the product measure
on E. By the Hewitt–Savage zero–one law, µ is trivial on I(S). Since p is strongly
aperiodic, we can find z1, . . . , zk, z

′
1, . . . , z

′
k ∈ G with p(zj)p(z′j) > 0 for all 1 ≤ j ≤ k

and z =
∑k

j=1(zj − z′j). Let A = [z1, . . . , zk] and A′ = [z′1, . . . , z
′
k] be the cylinder

events in E which fix the first k coordinates as indicated. The conditional probabilities
µA and µA′ are then well–defined and agree on I(S). By the theorem, they admit
a successful S–orbit coupling P . Under P , the shifted processes θkX = (Xj)j>k and
θkY = (Yj)j>k have distribution µ. In other words, the sum processes Zn =

∑n
j=1Xk+j

and Z ′n =
∑n

j=1 Yk+j satisfy property (i). On the other hand, we know that, with
P–probability 1, the sequence (z1, . . . , zk, Xk+1, Xk+2, . . .) is a finite permutation of
(z′1, . . . , z

′
k, Yk+1, Yk+2, . . .), so that

∑k
j=1 zj + Zn =

∑k
j=1 z

′
j + Z ′n for sufficiently large

n. This gives (ii).
The construction above can easily be extended to give the following result: For any

standard measurable abelian group (G,G), any probability measure p on (G,G), and
any U,U ′ ∈ G such that p∗k(U)p∗k(U ′) > 0 for some k ≥ 1, there exists a pair of
processes (Zn) and (Z ′n) satisfying (i) and

(ii’) Zn − Z ′n = Zn−1 − Z ′n−1 ∈ U − U ′ eventually, with probability 1.

One may use this coupling for a proof of the Choquet–Deny theorem and of Blackwell’s
renewal theorem, for example. 2

3 Proof

The theorem consists of two parts which correspond to countable extensions and com-
pact group extensions. These two parts are stated explicitly in Propositions 3.1 and
3.5 below. For convenience we will call a measurable semigroup (S,S) an orbit cou-
pling semigroup if for any left action of S on a standard measurable space, any two
probability measures on this space admit an orbit coupling.

Proposition 3.1 Suppose (S,S) is a standard measurable semigroup and R ∈ S a
normal subsemigroup such that S/R is countable and normal. If R is an orbit coupling
semigroup, then so is S.

7



This proposition implies in particular that any countable normal semigroup S is an
orbit coupling semigroup. This follows from Remark (d) in Section 1 because we can
assume without loss that S has an identity.

Turning to the proof we let S and R be as in the hypothesis and assume that R is
an orbit coupling semigroup. We then have the following lemma.

Lemma 3.2 Let (E,B) and (E′,B′) be two standard spaces, ϕ,ψ : E → E′ two
measurable mappings, T an action of R on E′, and µ, ν two finite measures on E of
equal mass. Then there exists a coupling P of µ and ν such that

2P (Tr ◦ ϕ ◦X 6= Ts ◦ ψ ◦ Y for all r, s ∈ R) = ‖µ ◦ ϕ−1 − ν ◦ ψ−1‖I(R). (3.1)

Proof. Let us note first that the event on the left–hand side is universally measur-
able. This follows from Remark (a) and Lemma 8.4.6 of [3].

Next we assume without loss that µ and ν have mass 1. Let µ′ = µ◦ϕ−1, ν ′ = ν◦ψ−1

and P ′ an R–orbit coupling of µ′ and ν ′. Define

P =
∫
P ′(dx′, dy′) µx′ ⊗ νy′ ,

where µx′ and νy′ are regular versions of the conditional probabilities µ(· |ϕ = x′) and
ν(· |ψ = y′), respectively. P is clearly a coupling of µ and ν. Its image under ϕ × ψ

is P ′ because µx′(ϕ−1A′) = 1A′(x′) for µ′–almost all x′ and all A′ ∈ B′, and therefore
P (ϕ−1A′ ×ψ−1B′) = P ′(A′ ×B′) for all A′, B′ ∈ B′. The conclusion is thus equivalent
to the R–orbit coupling identity (1.4) for P ′. 2

Remark 3.3 Let D denote the decoupling event on the left–hand side of (3.1), and
let P be as in the preceding lemma. Then

P (Dc ∩ {ϕ ◦X ∈ · }) = P (Dc ∩ {ψ ◦ Y ∈ · }) on I(R)

and therefore

‖µ ◦ ϕ−1 − ν ◦ ψ−1‖I(R) = ‖P (D ∩ {ϕ ◦X ∈ · })− P (D ∩ {ψ ◦ Y ∈ · }‖I(R).

Equation (3.1) is thus equivalent to the statement that the measures P (D∩{ϕ◦X ∈ · })
and P (D ∩ {ψ ◦ Y ∈ · }) are mutually singular on I(R). 2

To show that S is an orbit coupling semigroup we fix a standard space (E,B) and
two probability measures µ and ν on (E,B). We need to construct an S–orbit coupling
of µ and ν. This construction, which consists in an iterated application of Lemma 3.2,
is the common core of the construction of orbit couplings and tail couplings. Under
different wrappings, it appears both in Goldstein’s proof of the tail coupling (1.1) (see
[8]), and in Aldous and Thorisson’s proof of the shift coupling (1.2) [1, 12]. To make
this evident we consider a generalized setting as follows.

Suppose we are given two sequences ϕn, ψn of measurable mappings from (E,B) into
itself, and (E,B) is equipped with an action of R. Consider the coupling events

Cn = {Tr ◦ ϕn ◦X = Ts ◦ ψn ◦ Y for some r, s ∈ R} (3.2)
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in E ×E and the decoupling events Dn = Cc
n, and define C =

⋃
n≥1Cn and D = Cc =⋂

n≥1Dn

Recursive construction of a coupling P with coupling event C. Let P1 be a coupling
of µ and ν such that

P1(D1 ∩ {ϕ1 ◦X ∈ · }) ⊥ P1(D1 ∩ {ψ1 ◦ Y ∈ · }) on I(R).

Such a P1 exists by Lemma 3.2 and Remark 3.3. If Pn is already defined, we let µn+1

and νn+1 be the two marginals of 1DnPn and use Lemma 3.2 to find a coupling Pn+1

of µn+1 and νn+1 such that

Pn+1(Dn+1 ∩ {ϕn+1 ◦X ∈ · }) ⊥ Pn+1(Dn+1 ∩ {ψn+1 ◦ Y ∈ · }) on I(R). (3.3)

Then we can write

µ = (1C1P1) ◦X−1 + µ2

= (1C1P1) ◦X−1 + (1C2P2) ◦X−1 + µ3 = . . . (3.4)

=
n∑

k=1

(1Ck
Pk) ◦X−1 + µn+1

so that ∑
k≥1

(1Ck
Pk) ◦X−1 ≤ µ

and similarly ∑
k≥1

(1Ck
Pk) ◦ Y −1 ≤ ν.

We can therefore pick a measure P∞ on E×E with marginals µ−
∑

k≥1(1Ck
Pk) ◦X−1

and ν −
∑

k≥1(1Ck
Pk) ◦ Y −1. Setting C∞ = E × E, we define

P =
∑

1≤k≤∞
1Ck

Pk .

It is then evident that P is a coupling of µ and ν. The essential feature of this coupling
is that

P (D ∩ {ϕn ◦X ∈ · }) ⊥ P (D ∩ {ψn ◦ Y ∈ · }) on I(R) for all n ≥ 1. (3.5)

To verify this property we note that for all n ≥ 1

(1DP ) ◦X−1 = µ− (1CP ) ◦X−1

=
n∑

k=1

(1Ck
Pk) ◦X−1 + µn+1 − (1CP ) ◦X−1 (3.6)

≤ µn+1 = (1DnPn) ◦X−1 .

The second equality comes from (3.4), and the inequality from the definition of P .
Similarly, (1DP ) ◦ Y −1 ≤ (1DnPn) ◦ Y −1. Assertion (3.5) thus follows from (3.3).
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When specialized to the cases of orbit couplings and tail couplings, assertion (3.5)
implies the required maximality of the coupling P . Let us demonstrate this first in the
case of tail couplings.

Let (E,B) = (F,F)N for some standard space (F,F), ϕn = ψn = θn the n’th iterate
of the shift, and R = {e} the trivial group. The coupling event C defined below (3.2) is
then equal to the tail coupling event on the left–hand side of (1.1), and property (3.5)
means that P (D ∩ {X ∈ · }) ⊥ P (D ∩ {Y ∈ · }) on θ−nB for all n, and therefore on T .
An analogue of Remark 3.3 thus implies (1.1). In fact, an obvious refinement of (3.6)
even shows that for each n

2P (θnX 6= θnY ) = ‖µ− ν‖θ−nB .

This is the usual finite version of (1.1).

We now return to the proof of Proposition 3.1. Let T be an action of S on (E,B),
and suppose S/R is countable and normal. Then we can find a countable section
Σ ⊂ S (i.e., a countable set of representatives for the equivalence classes in S/R) and
an enumeration n→ (s(n), t(n)) of Σ×Σ. We set ϕn = Ts(n), ψn = Tt(n) and let P be
constructed as above relative to these mappings. Then it is easily checked that the set
C defined below (3.2) is given by

C =
{
∃n ∈ N ∃ q, r ∈ R : Tqs(n)X = Trt(n)Y

}
=

{
∃ s, t ∈ S : TsX = TtY

}
;

that is, C is the S–coupling event (1.5). On the other hand, property (3.5) of P can
be exploited as follows.

Lemma 3.4 Under the conditions above, (1DP ) ◦X−1 ⊥ (1DP ) ◦ Y −1 on I(S).

Proof. For brevity we write π = (1DP ) ◦ X−1 and ρ = (1DP ) ◦ Y −1. Assertion
(3.5) then reads

π ◦ T−1
s ⊥ ρ ◦ T−1

t on I(R) for all s, t ∈ Σ. (3.7)

In a first step, we construct a set B ∈ I(R) such that π ◦ T−1
s (B) = 0 and

ρ ◦ T−1
t (Bc) = 0 for all s, t ∈ Σ. Let s→ n(s) be a bijection from Σ to N and

λ =
∑
s∈Σ

2−n(s) [π ◦ T−1
s + ρ ◦ T−1

s ] .

λ is finite, and for any s ∈ Σ there exist I(R)–measurable functions fs, gs ≥ 0 such
that π ◦T−1

s = fsλ on I(R) and ρ ◦T−1
s = gsλ on I(R). By (3.7), fs ∧ gt = 0 λ–almost

surely for all s, t ∈ Σ. We define B =
⋂

s∈Σ{fs = 0} and B′ =
⋂

t∈Σ{gt = 0}. Then
π ◦ T−1

s (B) = 0 for all s ∈ Σ. Also, for all t ∈ Σ we have ρ ◦ T−1
t (B′) = 0,

λ(Bc \B′) = λ(
⋃

s,t∈Σ

{fs ∧ gt > 0}) = 0

and therefore ρ ◦ T−1
t (Bc) = 0.

We will now use the set B to construct a set A ∈ I(S) which separates π and ρ.
Since B ∈ I(R), the mapping β : t → T−1

t B from S to I(R) is constant on the ∼R
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equivalence classes and can therefore be considered as a map from the countable normal
semigroup Q ≡ S/R to I(R). We thus can define

A =
⋃
a∈Q

⋂
b∈aQ

β(b) .

Then A ∈ I(R), so that also the map α : t→ T−1
t A on S can be viewed as a mapping

on Q. For all c ∈ Q we have

α(c) =
⋃
a∈Q

⋂
b∈aQ

β(bc) =
⋃
a∈Q

⋂
b∈aQc

β(b).

Since Qc ⊂ Q, aQc ⊂ aQ and therefore α(c) ⊃ A. On the other hand, since Q is
normal we have aQc = Qac, whence

α(c) =
⋃

a∈Qc

⋂
b∈Qa

β(b) ⊂ A.

Hence α(c) = A for all c ∈ Q, which means that A ∈ I(S). Finally, it is evident that

A ⊂
⋃
a∈Q

β(a) and Ac ⊂
⋃
b∈Q

β(b)c,

and from the first step we know that π(β(a)) = 0 and ρ(β(b)c) = 0 for all a, b ∈ Q.
This shows that π(A) = 0 and ρ(Ac) = 0. 2

To complete the proof of Proposition 3.1 we now only need to note that eq. (1.4)
follows from Lemma 3.4 by an analogue of Remark 3.3.

We now turn to the proof of the second half of the theorem, which can be stated as
follows.

Proposition 3.5 Let (S,S) be a standard measurable semigroup, and suppose (S,S)
is a compact group extension of a normal subsemigroup R ∈ S. If R is an orbit coupling
semigroup, then so is S.

Together with Remark (d), the proposition shows in particular that each compact
metric group is an orbit coupling group.

Let S and R be as in the hypothesis of the proposition, T a left action of S on a
standard measurable space (E,B), and µ, ν two probability measures on (E,B). By
assumption, the factor semigroup Q ≡ S/R is a compact metric group, which gives us
the existence of the normalized Haar measure m on Q. We consider the probability
measures µ̃ = m⊗µ and ν̃ = m⊗ ν on the standard space (Ẽ, B̃) ≡ (Q×E,B(Q)⊗B).
Writing φ : Q → S for the measurable section which exists by assumption, we also
consider the measurable mapping Φ : (a, x) → Tφ(a)x from (Ẽ, B̃) to (E,B). By Lemma
3.2, there exists a coupling P̃ of µ̃ and ν̃ such that

P̃
(
Tr ◦Φ ◦ X̃ = Ts ◦Φ ◦ Ỹ for some r, s ∈ R

)
= 1− 1

2‖µ̃ ◦Φ−1 − ν̃ ◦Φ−1‖I(R) . (3.8)

In the above, X̃, Ỹ are the two projections from Ẽ × Ẽ onto Ẽ. Finally, we introduce
the projection ξ from Ẽ × Ẽ onto E × E and define P = P̃ ◦ ξ−1. By construction, P
is a coupling of µ and ν. We claim that P is an S–orbit coupling.
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Consider first the S–coupling event C in (1.5). Since φ is a section of Q = S/R,

C =
{
∃ a, b ∈ Q ∃ r, s ∈ R : Trφ(a)X = Tsφ(b)Y

}
= ξ

{
∃ r, s ∈ R : Tr ◦ Φ ◦ X̃ = Ts ◦ Φ ◦ Ỹ

}
.

Together with (3.8), this shows that

P (C) = P̃ (ξ−1C) ≥ 1− 1
2‖µ̃ ◦ Φ−1 − ν̃ ◦ Φ−1‖I(R) . (3.9)

To estimate the variation distance on the right–hand side we fix any A ∈ I(R) and
consider the function

fA(x) =
∫
m(da) 1A(Tφ(a)x)

on E. Since T−1
s A only depends on the equivalence class [s] of s ∈ S, we have

fA(Tsx) =
∫
m(da) 1A(Tφ(a[s])x) = fA(x)

for all s ∈ S. The second equality comes from the invariance of m under translations.
This shows that fA is I(S)–measurable. It follows that

|µ̃ ◦ Φ−1(A)− ν̃ ◦ Φ−1(A)| = |
∫
fA d(µ− ν)|

= |
∫

(fA − 1
2)d(µ− ν)|

≤ ‖fA − 1
2‖ ‖µ− ν‖I(S)

and therefore
‖µ̃ ◦ Φ−1 − ν̃ ◦ Φ−1‖I(R) ≤ ‖µ− ν‖I(S) .

Combining this estimate with (3.9) and Remark (b) we obtain (1.4). This completes
the proof of Proposition 3.5 and the theorem.
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