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Abstract

Let S(N) be a random walk on a countable abelian group G which acts on
a probability space E by measure–preserving transformations (Tv)v∈G. For any
Λ ⊂ E we consider the random return time τ at which TS(τ) ∈ Λ. We show that
the corresponding induced skew product transformation is K–mixing whenever a
natural subgroup of G acts ergodically on E.
Key words: Random group action; skew product; induced transformation; K–
system; random walk in a random landscape.

1 Introduction and result

This note is concerned with an abstract version of the following
Basic example: Kasteleyn’s random walk in a random scenery. Let Zd be the integer

lattice of dimension d ≥ 1, and suppose we are given

(i) a stochastic coloring of Zd, that is, a translation–invariant {0, 1}–valued random
field C = (C(v))v∈Zd — the vertices v ∈ Zd with C(v) = 1 will be called black;
and

(ii) a random walk (SN )N≥0 on Zd which starts at the origin and is independent of
the coloring.

Let C0 = (C0(v))v∈Zd be the conditioned coloring for which the origin is black, and let
τk denote the k–th time at which the random walk visits a black point of C0. (Note that
the consideration of these times connects the two independent data, the coloring and
the walk.) At time τk, the random walker observes the coloring Ck = (C0(Sτk

+v))v∈Zd

around his position. The conditioning of the coloring ensures that the sequence (Ck)k≥0

of observed colorings is stationary. By Kakutani’s random ergodic theorem [4], the
process (Ck)k≥0 is ergodic when the coloring C is ergodic with respect to translations.
Are there any stronger mixing properties of (Ck)k≥0 which can be deduced from suitable
mixing properties of C?

This question was posed by Kasteleyn in [5] — this paper gives a survey of the early
work on the model above. A first answer was found by Keane and den Hollander [6]:
If C is a Bernoulli coloring and (SN ) is transient, (Ck)k≥0 is (strongly) mixing. This
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result was much improved by den Hollander [2]: (Ck)k≥0 is mixing whenever C has a
trivial tail σ–field. He conjectured that the mixing property of (Ck)k≥0 already holds
when the coloring is ergodic with respect to the subgroup of translations generated by
the differences of possible steps of the random walk. In this note we shall establish this
conjecture. In fact, we will even show that (under the above assumption of ergodicity)
the stationary process (Ck)k≥0 has a trivial tail. Also, there will be no difficulty in
considering a more general setting which we will describe now.

The setting. We consider the following objects:

• a standard Borel probability space (E,B, µ);
• a countable abelian (additive) group G;
• a µ–preserving measurable action (Tv)v∈G of G on E (which means by defini-

tion that the Tv are µ–preserving invertible transformations of (E,B) such that
TvTv′ = Tv+v′ for v, v′ ∈ G and T0 = id for the null element 0 of G);

• a probability measure p on G which serves as the jump distribution for a random
walk on G. The latter is defined on the Bernoulli space (W,W, ν) = (G,P(G), p)N

by SN (w) ≡ S(N,w) =
∑N

n=1 wn, where wn is the n–th coordinate of w ∈ W .

The joint system is described by the product space

(Ω,F , P ) = (E ×W, B ⊗W, µ⊗ ν)

together with the skew product transformation

T (x,w) = (Tw1x, θw), (x,w) ∈ Ω,

where θ : W → W is the left–shift. It is well–known and easy to see that T preserves
P . Its iterates are given by the formula

TN (x,w) = (TS(N,w) x, θNw), (x,w) ∈ Ω, N ≥ 1.

This shows that the first coordinates of TN (x,w) perform a random walk through the
G–orbit of x.

We make the following assumption of ergodicity.

(A) µ is ergodic with respect to (Tv)v∈Γ, where Γ = Γ(p) is the smallest group con-
taining

supp p− supp p = {u− v : u, v ∈ G, p(u)p(v) > 0} .

p is called strongly aperiodic if Γ = G. In this case assumption (A) simply means
that µ is ergodic with respect to the whole transformation group (Tv)v∈G .

The following proposition is essentially due to Meilijson [8] and den Hollander [2].
It can be phrased by saying that — due to the Bernoulliness of the random walk — the
skew product transformation T has much better mixing properties than the original
transformation group (Tv)v∈G .

Proposition Under assumption (A), T is a Kolmogorov–endomorphism. That is,
for all A ∈ F we have

sup
B∈F

|P (A ∩ T−NB)− P (A)P (B)| → 0 (1)
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as N →∞.

Let us return for a moment to the basic example. In this case G = Zd, E = {0, 1}G,
µ is the distribution of the coloring, and Tv the shift of E by v ∈ G. The objects of
study are the distinguished event Λ = {C(0) = 1} that the origin is black, and the
sequence of random times N at which TS(N) ∈ Λ.

Abstracting again from the example, we thus need to include a final ingredient into
our general setting, namely

• a fixed measurable set Λ ⊂ E with µ(Λ) > 0.

For (x,w) ∈ Ω we consider the time

τ(x,w) = inf{N ≥ 1 : TS(N,w) x ∈ Λ}

of the first visit in (or, if x ∈ Λ, first return to) Λ. The sequence of all later return times
to Λ is defined by the recursion τ1 = τ , τk+1 = τk + τ ◦ T τk for k ≥ 1. As T is ergodic,
the Poincaré recurrence theorem implies that all τk are finite with P–probability one.

For a point (x,w) ∈ Λ × W , the consideration of the return times τk amounts
to considering the induced dynamical system (Λ × W,FΛ, PΛ, TΛ), where FΛ is the
restriction of F to Λ×W , PΛ = P ( · |Λ×W ) = µ( · |Λ)⊗ ν the conditional probability
measure, and TΛ = T τ the induced transformation of T on Λ × W . Explicitly, for
(x,w) ∈ Λ×W and k ≥ 0 we have

T k
Λ(x,w) = (TS(τk(x,w),w)x, θτk(x,w)w).

Let us mention at this point that the central concepts of this paper — random group
action and induced transformation — were both developed by Kakutani [3, 4].

What are the mixing properties of the induced dynamical system? In general, an
induced transformation inherits only ergodicity, but no stronger mixing property from
its primitive transformation. In fact, the stationary Markov chain with state space
{0, 1, 2} and transition probabilities p00 = p01 = 1/2, p12 = p20 = 1 provides an example
of a K– (even Bernoulli) system for which the induced subchain with state space {1, 2} is
periodic and therefore not weakly mixing. However, the dynamical system (Ω,F , µ, T )
under consideration is so well–behaved that even the induced subsystem is K–mixing.
This is the essence of our main result.

Theorem Under assumption (A), the induced transformation TΛ is a Kolmogorov–
endomorphism. Explicitly, for all A ∈ FΛ,

sup
B∈FΛ

|PΛ(A ∩ T−k
Λ B)− PΛ(A)PΛ(B)| → 0 (2)

as k →∞.

Remarks (a) Setting Λ = E in the theorem we reobtain the proposition. Neverthe-
less, for the sake of exposition we will first prove the proposition and then refine the
argument to obtain the theorem.
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(b) As is well-known, (2) is equivalent to the statement that PΛ is trivial on the future
tail σ–algebra

⋂
k≥1 T−k

Λ FΛ. Another way of writing (2) is the following statement of
convergence to equilibrium: For each A ∈ FΛ,

‖P (T τk ∈ · |A)− PΛ‖ → 0 (3)

as k →∞, where ‖ · ‖ stands for the total variation norm. Assertion (3) even holds when
A is not contained in Λ. Indeed, for each A ∈ F we have that P (T τ ∈ · |A) � PΛ, and
a standard extension argument allows to insert the associated Radon–Nikodym density
in the place of A in (2). In fact, our proof of the theorem gives (3) directly for all
A ∈ F .

(c) Reducing (3) to events in E we obtain: For all ∆ ∈ B,

sup
B∈B

∣∣∣ ∫
ν(dw) µ(x : TS(τk(x,w),w) x ∈ B|∆)− µ(B|Λ)

∣∣∣ → 0

as k →∞. Another corollary of (3) is that for all A ∈ F ,

‖P (τk+1 − τk ∈ · |A)− PΛ(τ ∈ · )‖ → 0

as k →∞. In particular, if
∫

τ dP < ∞ then∫
(τk+1 − τk) dP ( · |A) →

∫
τ dPΛ = 1/µ(Λ)

as k →∞ because in this case the sequence (τk+1 − τk)k≥1 is uniformly P–integrable.
To see this one may use the equations P (τ = n) = µ(Λ) PΛ(τ ≥ n) and P (τk+1 − τk =
n) = µ(Λ) PΛ(τ ; τk+1 − τk = n) for n, k ≥ 1 which follow readily from the fact that T

is P–preserving and ergodic.
(d) The theorem breaks down for induced transformations TM on subsets M of Ω

which are not of the particular form M = Λ×W . Here is a counterexample. Let G = Z

and p be such that p(0) = p(1) = 1/2. Define M = E × {w ∈ W : w1 = 1}, and let
τk denote the k–th return time to M . (Note that τk is a function of w only.) Then
S(τk) = k and T k

M = Tk × θτk . As a consequence, assertion (2) (with TΛ replaced by
TM ) can only hold when µ is a Dirac measure. This shows that assumption (A) is by
far not sufficient for TM to be K–mixing.

(e) T and TΛ become invertible if we replace W by the two–sided sequence space
GZ. It is routine to restate and prove the theorem in this setting.

We shall prove the proposition in Section 2 and the theorem in Section 3. As den
Hollander in [2], we make extensive use of coupling arguments. Actually we adopt some
of his ideas. The main difference is the following. Den Hollander used the tail triviality
of the coloring to obtain a tail coupling of conditioned colorings. By this we mean a
realization of the conditioned colorings on a common probability space which is such
that the colorings coincide outside of a finite random box. He then had to deal with
the difficulty that — in the case that the random walk is recurrent — the random box
of disagreement will be visited infinitely many often. We can avoid this problem by
replacing the tail coupling with an orbit coupling. This only requires the ergodicity of
the coloring and provides a realization of conditioned colorings on a common probability
space which is such that each coloring is a random translate of the other. This leads
to great simplifications of the argument.
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2 Proof of the proposition

We start with stating the orbit coupling lemma which is our fundamental tool.

Lemma 2.1 (Orbit coupling) Suppose assumption (A) holds, and let ∆,∆′ ⊂ E

be two measurable sets with µ(∆)µ(∆′) > 0. Then there exist a probability measure
µ̄ = µ̄∆,∆′ on (E × E,B ⊗ B) and a measurable function γ : E × E → Γ such that

(i) µ̄ has marginals µ( · |∆) and µ( · |∆′), and
(ii) µ̄(X ′ = TγX) = 1, where X, X ′ are the two projections from E × E onto E.

Proof. In view of (A), µ is trivial on the σ–algebra I(Γ) of all (Tv)v∈Γ–invariant
events in E. Hence µ( · |∆) = µ( · |∆′) on I(Γ). The lemma is therefore a particular
case of the orbit coupling theorem (in fact of Proposition 3.1) in [1]. 2

Our second tool is a coupling of random walks. It is merely a slight variant of a
coupling proposed by Liggett on pp. 69–70 of [7]. For later use, however, we need to
give the details of the proof.

Lemma 2.2 (Random walk coupling) Let v ∈ Γ and C,C ′ two cylinder events
in W with ν(C)ν(C ′) > 0. Then there exists a probability measure ν̄ = ν̄v,C,C′ on
(W ×W,W ⊗W) such that

(i) ν̄ has marginals ν( · |C) and ν( · |C ′), and
(ii) ν̄(SN = S′N + v eventually) = 1.

Here SN = SN (ξ) and S′N = SN (ξ′) for the two projections ξ, ξ′ from W ×W onto W .

Proof. We may assume that, for some ` ∈ N, C and C ′ prescribe fixed values for
the first ` coordinates. The general case then follows by an averaging argument.

For such C,C ′, the conditional probabilities ν( · |C) and ν( · |C ′) govern two random
walks which start at time ` at certain points u, u′ ∈ G with u − u′ ∈ Γ. This shows
that we can, in fact, assume without loss that C = C ′ = W .

By the definition of Γ, there exist some k ∈ N and u1, . . . , uk, u
′
1, . . . , u

′
k ∈ supp p

such that uj 6= u′j for 1 ≤ j ≤ k and
∑k

j=1(uj − u′j) = v. We introduce the stopping
times ρ0 = 0 and

ρj = inf
{
N > ρj−1 : SN − S′N =

j∑
i=1

(ui − u′i)
}
,

1 ≤ j ≤ k. We define a probability measure ν̄ on W ×W = (G × G)N by prescribing
its recursive conditional probabilities. Namely, for n ∈ N and 1 ≤ j ≤ k we stipulate
that on the set {ρj−1 < n ≤ ρj},

ν̄
(
ξn = a, ξ′n = a′

∣∣∣(ξi, ξ
′
i), i < n

)
=


p(a) if a = a′ /∈ {uj , u

′
j}

p(a)− δj if a = a′ ∈ {uj , u
′
j}

δj if {a, a′} = {uj , u
′
j}

0 otherwise
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with δj = p(uj)p(u′j) > 0, while on {ρk < n} this conditional probability is equal to
p(a) if a = a′ and 0 otherwise; here a, a′ ∈ G. [Note that the preceding definition makes
sense because ρ1, . . . , ρk are stopping times, so that the events {ρj−1 < n ≤ ρj} are
measurable with respect to σ((ξi, ξ

′
i), i < n).] Intuitively, the preceding prescription

means that on the time interval ]ρj−1, ρj ] the two random walks SN and S′N + v are
allowed to make different steps of size uj or u′j , but otherwise run in unison. They also
run in unison after the final coupling time ρk.

Since the preceding conditional probabilities on G × G have marginals p inde-
pendently of the condition, ν̄ satisfies (i). To prove (ii) we only need to show that
ν̄(ρk < ∞) = 1. This will follow once we have shown that the set {ρj−1 < ∞ = ρj} has
ν̄–probability zero for each 1 ≤ j ≤ k. On this set, the sequence

(SN − S′N −
j−1∑
i=1

(ui − u′i) : N ≥ ρj−1)

performs a simple symmetric random walk on the one dimensional group (uj − u′j)Z
with neighbor transition probability δj and holding probability 1− 2δj , but never hits
the point (uj − u′j). Since this cannot occur with positive probability, the proof of the
lemma is complete. 2

We are now able to prove the proposition. The proof of the theorem will be quite
similar but uses a refined coupling of random walks.

To establish (1) we can assume without loss that A = ∆ × C for some ∆ ∈ B and
cylinder event C ⊂ W such that P (A) = µ(∆)ν(C) > 0. We choose µ̄ = µ̄∆,E according
to the orbit coupling lemma, and for v ∈ Γ we let ν̄v = ν̄v,C,W be as in Lemma 2.2. We
define a probability measure P̄ on Ω× Ω = E × E ×W ×W by

P̄ (dx, dx′, dw, dw′) = µ̄(dx, dx′) ν̄γ(x,x′)(dw, dw′) .

Writing X, X ′ : Ω × Ω → E and ξ, ξ′ : Ω × Ω → W for the four projections we then
have P̄ ((X, ξ) ∈ · ) = P ( · |A) and P̄ ((X ′, ξ′) ∈ · ) = P .

Consider the coupling time

ρ = inf
{
M ≥ 1 : SN = S′N + γ(X, X ′) for all N ≥ M

}
.

By construction, P̄ (ρ < ∞) = 1. On the set {ρ ≤ N} we have ξn = ξ′n for all n > N

and
TS(N)X = TS′(N)+γ(X,X′)X = TS′(N)X

′ .

This means that TN (X, ξ) = TN (X ′, ξ′) on {ρ ≤ N}. Thus for each B ∈ F we can
write, using that P (T−1B) = P (B),

|P (T−NB|A)− P (B)| ≤
∫
|1B ◦ TN (X, ξ)− 1B ◦ TN (X ′, ξ′)| dP̄

≤ P̄ (ρ > N) . (4)

Assertion (1) now follows immediately.
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3 Proof of the theorem

To prove (2) we can assume without loss that µ(Λ4TvΛ) > 0 for some v ∈ Γ. Indeed,
in the alternative case Λ is almost surely invariant under the transformation group
(Tv)v∈Γ. Assumption (A) then implies that µ(Λ) = 1, and this means that PΛ = P and
P (TΛ = T ) = 1. So in this case the theorem is reduced to the proposition which has
already been proved.

Since {v ∈ Γ : µ(Λ4TvΛ) = 0} is a group and Γ is generated by supp p − supp p,
the assumption above can be written in the form

(B) µ(TuΛ4TvΛ) > 0 for some u, v ∈ supp p.

We will use this property to introduce a refined coupling of random walks which ac-
counts for the number of visits in Λ. Let

VN =
N∑

n=1

1Λ×W ◦ Tn =
N∑

n=1

1Λ ◦ TS(n,·)

be the number of visits in Λ up to time N .

Lemma 3.1 Suppose (A) and (B) hold, and let v ∈ Γ, k ∈ Z and C,C ′ be two cylinder
events with ν(C)ν(C ′) > 0. Then there exists a probability kernel x → ν̄x = ν̄x,v,k,C,C′

from (E,B) to (W ×W,W ⊗W) such that

(i) for all x, ν̄x has marginals ν( · |C) and ν( · |C ′), and
(ii) for µ–almost all x,

ν̄x(SN = S′N + v and VN (x, · ) = V ′
N (Tvx, · ) + k eventually ) = 1 .

Here VN (x, · ) = VN (x, ξ) and V ′
N (x, · ) = VN (x, ξ′) in the notation of Lemma 2.2.

Proof. 1) Construction of ν̄x. We proceed as in the proof of Lemma 2.2. As
explained there, we only need to consider the case C = C ′ = W . The measure ν̄x will
again be constructed by prescribing its conditional probabilities

qx,n(a, a′) = ν̄x

(
ξn = a, ξ′n = a′

∣∣∣(ξi, ξ
′
i), i < n

)
, a, a′ ∈ G.

This prescription will again be different for different periods of time.
Let ρ1, . . . , ρk be the stopping times defined in terms of v in the proof of Lemma

2.2, and let ρ be the smallest even number exceeding ρk. On the set {ρ ≥ n} we define
qx,n(a, a′) as in Lemma 2.2. This means that the coupled random walks SN and S′N +v

run through k different regimes which enable them to meet, and then (if ρk is odd)
make one step in unison so that they are still equal at the even time ρ. After time ρ,
we introduce a new regime of alternating uncoupling and recoupling. Namely, SN and
S′N +v are allowed to make independent steps at odd times, and then interchange these
steps to meet again at even times. The independent steps at odd times give VN (x, · )
and V ′

N (Tvx, · ) + k the chance to meet. Once this is achieved, we let SN and S′N + v

evolve in unison. (The idea to introduce this regime is taken from [2].)
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To make the preceding description precise we introduce the stopping time

σx ≡ σx,v,k = inf
{
N > ρ : N even, VN (x, · ) = V ′

N (Tvx, · ) + k
}

,

where as usually inf ∅ = ∞. For each n we require that on the set {ρ ≤ n < σx},

qx,n(a, a′) =

 p(a)p(a′) if n is odd

δ(ξ′n−1, a)δ(ξn−1, a
′) if n is even,

where δ(·, ·) is the Kronecker–Delta. The final recoupling is achieved by requiring that
on {σx < n}, qx,n(a, a′) = p(a)δ(a, a′).

By the Ionescu–Tulcea theorem, there exists a unique probability measure ν̄x on
W ×W with conditional probabilities qx,n, and since these depend measurably on x it
follows by routine arguments that x → ν̄x is a probability kernel.

2) Verification of property (i). We consider the conditional two–step probabilities

ν̄x

(
ξn = a, ξ′n = a′, ξn+1 = b, ξ′n+1 = b′

∣∣∣(ξi, ξ
′
i), i < n

)
for odd n and a, a′, b, b′ ∈ G. On {ρ < n ≤ σx}, these are equal to p(a)p(a′)
δ(a′, b)δ(a, b′), whence

ν̄x

(
ξn = a, ξn+1 = b

∣∣∣(ξi, ξ
′
i), i < n

)
= p(a)p(b)

on this set, and similarly for the primed marginal. In the proof of Lemma 2.2 we have
seen that the same conclusion holds on the complementary set. This proves (i).

3) Verification of property (ii). We need to show that ν̄x(σx < ∞) = 1 for µ–almost
all x ∈ E. From the proof of Lemma 2.2 we know that ν̄x(ρ < ∞) = 1. For fixed x ∈ E

and v ∈ Γ we consider the functions

ZN ≡ ZN,x,v =
[
VN (x, ·)− VN∧ρ(x, ·)

]
−

[
V ′

N (Tv x, ·)− V ′
N∧ρ(Tv x, ·)

]
=

∑
ρ<n≤N∧σx, n odd

[
1Λ(TS(n) x)− 1Λ(TS′(n)+v x)

]
on W . [The last equality comes from the fact that Sn = S′n + v for even n > ρ and all
n > σx, with ν̄x–probability one.] It can easily be checked that the sequence (ZN ) is
a martingale relative to ν̄x. The increments of (ZN ) are ±1 or 0. It follows that (ZN )
either converges or oscillates unboundedly, in that sup ZN = ∞ and inf ZN = −∞.
On the latter event, σx is both infinite and, by a ‘continuity’ argument, finite. So this
event cannot occur with positive probability, and we can conclude that ZN converges
with ν̄x–probability one.

To complete the proof of property (ii) it is therefore sufficient to show that
ν̄x(ZN converges, σx = ∞) = 0 for µ–almost all x. To check this we write for any
even M and u ∈ G

ν̄x

(
ZN converges, σx = ∞

∣∣∣ ρ = M,SM = u
)

≤ ν̄x

(
1Λ(Tu+ξ(M+1)+...+ξ(n+1) x) = 1Λ(Tu+ξ(M+1)+...+ξ(n)+ξ(n+2) x)

for all sufficiently large even n
∣∣∣ ρ = M,SM = u

)
= ν

(
1Λ(TS(n)+ξ(n+1)+u x) = 1Λ(TS(n)+ξ(n+2)+u x)

for all sufficiently large even n
)

(5)
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The inequality follows from the particular definition of qx,n on {ρ < n ≤ σx}. The
equality is a consequence of the fact that the sequence (ξn)n>M has distribution ν and
is independent of {ρ = M,SM = u}. The subsequent Lemma 3.2 will show that the
last probability in (5) vanishes for µ–almost all x and all u. So for these x we have

ν̄x(σx < ∞) ≥ ν̄x(ZN converges) = 1

This completes the proof of the lemma. 2

Lemma 3.2 Under assumptions (A) and (B), the last probability in (5) vanishes for
µ–almost all x ∈ E and all u ∈ G.

Proof. Since µ is invariant under Tu, we only need to consider the case u = 0. The
µ–integral of the probability in question is equal to

1− P (T 2n ∈ Σ for infinitely many n) ,

where Σ = {(x,w) ∈ Ω : x ∈ T−1
w1

Λ4T−1
w2

Λ}. Assumption (B) implies that P (Σ) > 0,
and the proposition shows that T 2 is ergodic. The lemma thus follows from the Poincaré
recurrence theorem. 2

We now turn to the proof of the theorem. In fact we shall prove (3) for all A ∈ F .
As in the proof of the proposition, we can assume that A = ∆×C for some ∆ ∈ B and
a cylinder event C ⊂ W such that P (A) = µ(∆)ν(C) > 0. Let µ̄ = µ̄∆,Λ be chosen
according to Lemma 2.1, and for v ∈ Γ and x ∈ E we let ν̄x,v = ν̄x,v,0,C,W be as in
Lemma 3.1. We define a probability measure P̄ on Ω× Ω by

P̄ (dx, dx′, dw, dw′) = µ̄(dx, dx′)ν̄x,γ(x,x′)(dw, dw′) .

Letting again X, X ′, ξ, ξ′ denote the four projections on Ω × Ω, we then have that
P̄ ((X, ξ) ∈ · ) = P ( · |A) and P̄ ((X ′, ξ′) ∈ · ) = PΛ.

We consider the coupling time

σ = inf
{
k ≥ 1 : SN = S′N + γ(X, X ′) and VN (X, ξ) = VN (X ′, ξ′) for all N ≥ k

}
.

By construction, P̄ (σ < ∞) = 1. As in the proof of the proposition we see that, on
the set {σ ≤ k}, θNξ = θNξ′ and TS(N)X = TS′(N)X

′ for all N ≥ k and, in addition,
VN (X, ξ) = VN (X ′, ξ′) for all N ≥ k. The last property implies that τk(X, ξ) =
τk(X ′, ξ′). Hence T τk(X, ξ) = T τk(X ′, ξ′) on {σ ≤ k}. An estimate analoguous to (4)
thus shows that

‖P (T τk ∈ · |A)− PΛ‖ ≤ 2 P̄ (σ > k) → 0 as k →∞.

This proves (3) for all A ∈ F and in particular the theorem.
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