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1 Introduction

One of the classical themes of Equilibrium Statistical Mechanics is the study of the
fluctuations of extensive quantities, such as the particle numbers and the energies
of particle configurations in finite boxes, in the infinite-volume limit. This includes
the problems of existence and variational characterization of the pressure, and of
the asymptotic equivalence of the Gibbs ensembles on the level of measures. (A
detailed discussion of these problems and their physical background can be found
in the lectures of Lanford [11] and Martin-Lo6f [12].) For spin systems on a lattice,
all these questions have been reconsidered successfully in the light of the recent
progress in large deviation theory, see [8] and the references therein. In the case
of continuous systems of point particles in Euclidean space, the situation is less
satisfactory; the status so far is essentially still that set out by Lanford [11]. In this
paper we develop a large deviation theory for such particle systems, with the aim
of contributing to a systematic study of the questions above.

The general setting is as follows. We consider the Euclidean space R? of any
dimension d =1. A configuration of particles (without multiple occupancies) is de-
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scribed by a locally finite subset w of R?, ie., a set @ C R? having finite inter-
section with every bounded set. We write Q for the set of all such configurations
w. Q is equipped with the o-algebra F generated by the counting variables
Nz : @ — card(w N B) for Borel subsets B of RY. It is well-known [10, 13] that
F is the Borel g-algebra for a natural Polish topology on €. The translation group
O = (¥y),cga acting on (2, F) is defined by o = {y —x:y € o}, 0 € Q,x € R
The mapping (x,w) — J,w is known to be measurable [13]. We let P denote the
set of all probability measures P on (2, F) with finite expected particle numbers
P(N4) = [ N4dP in bounded Borel sets 4 C R?, and we write Pg for the set of all
O-invariant P € P. For each P € Pg there exists a number p(P) < oo, the inten-
sity of P, such that P(N4) = p(P)|4| for all Borel sets A. Here |4| is the Lebesgue
measure of A.

We introduce a topology 7. on P as follows. Let £ denote the class of all
measurable functions / : € — R which are Jocal, in that f{w) = f(w N 4) for some
bounded Borel set 4 and all w € Q, and tame, in that |f]|Z<c(1 + Ny) for (without
loss the same) A and some constant ¢ < oo. The topology . of local convergence
is then defined as the weak® topology on P relative to £, i.e., as the smallest
topology on P making the mappings P — P(f) = [ fdP continuous. In particular,
the mappings P — P(N,) for bounded Borel sets 4 are continuous relative to ..
This shows that 7, is much finer than the usual weak topology on P which is
based on the above-mentioned Polish topology on €.

The basic objects of interest for studying large deviations are the @-invariant
empirical fields in increasing boxes. ( For general information on concepts, use,
and recent developments in large deviation theory we refer to the monographs [1,
2].) Thus, for each n=0 we consider the half-open cube A, = [—n — %,n + %[d of

volume v, = (2n + 1)? and the associated translation invariant empirical field
Ruw =0, [} 85 mdx (1.1)
of any configuration @ € Q. In (1.1), we replaced w by the A,-periodic continuation
oW ={x+Qn+Di:xcond,iclZ

of its restriction to A,. This has the advantage of making R, translation invariant.
Thus R, € Pe for all n and . If Pg is equipped with the evaluation g-algebra
generated by the maps P — P(4),4 € F, the random measure R, : v — R, be-
comes a measurable mapping from Q to Pe. The asymptotic behavior of the em-
pirical fields can be described as follows: For each P € Pg,

Tr — nIEEO R, =P; in P-probability, (1.2)

where w — PZ is a regular conditional probability of P relative to the o-algebra 7
of @-invariant sets in F. This follows immediately from Wiener’s multidimensional
mean ergodic theorem, cf. [10].

In this paper we study large deviations from the ergodic theorem (1.2) when
P is Gibbsian relative to a suitable pair interaction ¢. More precisely, we estab-
lish a large deviation principle for R, when the particles are distributed according
to a Gibbs distribution in A, with free or periodic boundary condition and the
underlying potential ¢ is superstable and satisfies a decay condition called regular-
ity (see Theorem 2). Under the stronger hypothesis that ¢ diverges at the origin
sufficiently fast, we obtain a uniform large deviation principle relative to Gibbs
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distributions with boundary configurations { € Q satisfying a uniform condition of
temperedness (Theorem 3(a)). By virtue of the well-known superstability estimates
of Ruelle [18], this leads to a large deviation principle for tempered Gibbs measures
on (2, F) (Theorem 3(b)). The rate function is, of course, given by the excess of
the free energy density over its equilibrium value. In particular, we establish the
Gibbs variational formula which asserts that this equilibrium value is given by the
pressure (Egs. (2.15) and (2.22)). A basic ingredient of all this is the existence
and lower semicontinuity of the (internal) energy density (Theorem 1). Finally, we
prove a limit theorem for conditional Poisson distributions of microcanonical type,
implying the equivalence of Gibbs ensembles on the level of measures (Theorem
4). This is an instance of the maximum entropy principle and is closely related to a
(microcanonical) Gibbs variational formula for the thermodynamic entropy density.

In the Poissonian case of no interaction, the analoguous results were obtained
earlier in [10]. Our results here rely heavily on this paper. A weak version of a
large deviation principle for particles with superstable interaction of finite range is
also contained in [15]. The case of particles with hard core (which is contained in
the present work) was already treated in [9].

2 Statement of results

We begin describing the particle interactions which we will consider. We assume,
for simplicity, that the interaction is only pairwise and thus given by an even
measurable function ¢ : R — R U {oc}. Such a ¢ is called a potential. For each
n=0,

1
Hy(0) = Hyfree(w) = 5 Z oy —x), weQ, 2.1)
XYEONAp,xFy

is called the associated Hamiltonian in A, with free boundary condition. A potential
@ is said to be stable if there exists a constant b = b(@) < oo such that

H,= —bN, forall n20. 2.2)

Here N, = Ny4,. In particular, (2.2) implies that ¢ = — 2b. Sufficient conditions for
¢ to be stable can be found in [17] . Let us say that ¢ is purely repulsive if ¢ is
nonnegative and bounded away from zero near the origin, i.e., if there exists some
0 = o(p) > 0 such that

(p§51{|.|§5}. 2.3)

Here and below, |-| stands for the maximum norm on R“. A potential ¢ is called
superstable if

p=0¢"+¢ 24)
for a stable ¢° and a purely repulsive ¢". The use of this concept was revealed
by the pioneering work of Ruelle [16, 18] (Related ideas appeared also in the
independent work [3, 4].)

Besides the hypothesis of superstability which assures that large particle numbers
in a bounded region require a large amount of energy we shall also need a condition
on the decay of ¢. A potential ¢ is called lower regular if there exists a decreasing
function ¥ : [0, oo[— [0, cof such that

p(x)= — Y(|x]) forall xeR? (2.5)
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and -
Of\//(s)sd”lds < oo. (2.6)

o will be called regular if ¢ is lower regular and, in addition, there exists some
r(®) < oo such that

e(x)=Y(lx|) whenever |x|Zr(p). Q.7

Our first result is the existence of the energy density of any P € Pg. To state it
we need to recall that the Palm measure of P € Pg is defined as the unique finite
measure P° on (€, F) satisfying

JPw)>” f@,9,0) = [dx[P°(dw)f(x,0) 2.8)

X€w

for all measurable functions f : RY x © — [0,00[. We have P°(Q) = P°({w € Q:
® 3 0}) = p(P), and the normalized Palm measure p(P)~'P° can be viewed as the
natural version of the conditional probability P(-|{ew € Q: w 3 0}); see [13] for
more details. Let us introduce the set

73(@2) = {P € Pg: P(N7) < oo for all bounded Borel sets A4} 2.9)
of all second-order elements of Pg. For each n=0 and P € Pg we let
®,(P) = v, ' P(H,), (2.10)

be the expected @-energy per volume in A,. In view of (2.2), &, is well-defined
(possibly equal to +c0), and @, = — bp. In Section 3 we shall prove the following.

Theorem 1 Suppose ¢ is superstable and lower regular. Then, for each P € Py,
the limit ®(P) = lim, o D,(P) exists and satisfies

o : (2)
B(P) = { Ple) Y2EPe @11)
where .
fo@)=5 3 00) weQ (2.12)

O+ycw

Moreover, the function ®:Pg — RU{oo} is lower semicontinuous (relative
to tc).

@(P) is called the energy density of P. It is clear that & is affine. To state
our large deviation results we next need to introduce the entropy density. We let
Q € Pg denote the Poisson point random field on R? with intensity p(Q) = 1. For
each P € Pg and n20 we write

P,=PH{weQ:0nA4,€-})

for the restriction of P to A,. We think of P, as an element of P which is supported
on 2, ={we Q:wC A,}. The negative entropy density of P is then defined as
the (existing) limit

[(P)= lim v, I(Py; On), (2.13)
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where I(-;-) stands for the relative entropy; see [10] for more details. 7 is an affine
function with 7.-compact level sets [10].

Suppose now we are given an inverse temperature f > 0 and an activity z > 0.
(Later on, we shall assume without loss that the units are chosen so that f =z = 1.)
The excess free energy density of P € Pg is then given by

Lg(P) = I(P) + BO(P) — p(P)logz + p(z, ), (2.14)
where
p(z, B) = —min[l + p& — plogz]. (2.15)

Theorem 2 below asserts that p(z, f) is nothing other than (f times) the pressure,
and L is the rate function in a large deviation principle for the distribution of
the empirical fields R, under the Gibbs distributions with free or periodic bound-
ary conditions. (Configurational boundary conditions will be considered later in
Theorem 3.)

For n=0, the Hamiltonian in A, with periodic boundary condition is defined by

Hn,per(w) = v, @(Ry0)
1
=5 > oy —x). (2.16)
xE0NAz,yco®,y+x

The last equation follows from (2.11) and the easily verified fact that the Palm
measure of R,,, is given by

Ry =v;" > 850 @.17)
x€EwNAy

cf. [10]. For a given boundary condition bc € {per, free}, the associated Gibbs
distribution in A, with parameters z, § > 0 is defined by

Pozppe(d) = Z, g 2" Pexpl —fHype(0)]Qn(d), (2.18)
where
Znzppe = On (2" exp[—fHopc)) (2.19)

is the so-called partition function. It follows from (2.2) resp. Theorem 1 and (3.3)
below that Z,,gp. is finite. Thus Py, gy is well-defined. Again, we think of it as
an element of P with support £,.

Theorem 2 Let ¢ be superstable and regular, z, > 0, and F : Pg — R U {oo}
a measurable functional satisfying F = — c(1 + p) for some ¢ < oo. Then, for bc
= per or free,

lim sup v; 'log Pz gpc(e 7)) < — inf[l, 5 + Figc] (2.20)
n— 00
and
lim infv; 'log Py ppe (e ) 2 — inf[L 5 + F*], (2.21)
n—oC

where Fig is the largest lower semicontinuous minorant and F*¢ the lowest upper
semicontinuous majorant of F relative to 1. In addition, I, g has t.-compact level
sets, and
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Pz, B) = lim v log Z, pe. (222)

Note that (2.20) and (2.21) take the familiar form of a large deviation principle when
F is chosen to be zero on some measurable set 4 C P and equal to +oo outside
A. The existence of the limit in (2.22) is the classical result on the existence of the
pressure; p. 68 of [17] contains the relevant bibliographical notes. The coincidence
of the right sides of (2.15) and (2.22) is called the Gibbs variational formula. (In
the case of a hard-core interaction, this variational formula has already been proved
in [6].) The upper bound (2.20) will be proved in Sect. 4 and the lower bound
(2.21) in Sect. 5.

We now turn to large deviations for Gibbs distributions with configurational
boundary conditions, and for infinite-volume Gibbs measures. We need some nota-
tions. Let C = [—1/2,1/2[*= A, be the centered half-open unit cube and L = Z¢.
The sets C +1i,i € L, form a partition of R?. For n=0 we set L, =LN A4, =
{ieL:li|<n} and

T,= Ni,. (2.23)
i€y
For t > 0 we define
Q) ={T,=w, foral nx=0}. (2.24)

The configurations in Q* = |J,_,Q(f) are called tempered. The multidimensional
ergodic theorem shows that P(Q*) =1 for all P € Pg).
For each { € Q* and n=0 we let

Hyo)=H(@)+ Y.  op-x) (2.25)

X€EONAnyENA,

denote the Hamiltonian in A, with boundary condition {. The associated Gibbs
distributions P, .4 are defined by (2.18) with bc = {. By Lemma 4.2, the last sum in
(2.25) exists when ¢ is regular. Under the hypotheses of Theorem 3 below, Lemma
6.1 and the estimates in the proof of Lemma 6.3 even imply that Z,,5; < oo, so
that P,z is well-defined.

A measure P € P is called a tempered Gibbs measure for z,f > 0 if P(Q*) =1
and, for all n=0 and measurable functions £ =0 on £,

P(f) = [P(d0) [Puzpi(dw)f(w UL\ An)).

Note that the identity above is equivalent to the equilibrium equations in [18].
Let us say ¢ is non-integrably divergent at the origin if there exists a decreasing
function y :10, co[— [0, co[ such that

@x)Zy(|x|) whenever @(x)=0 (2.26)

and 1
[x(s)s*ds = 0. (2.27)

0
Together with the lower regularity, this condition implies that ¢ is superstable, see

Proposition 3.2.8 of [17]. It also follows that tempered Gibbs measures exist; this
was proved independently in [3, 18]. Under this hypothesis, the following theorem
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provides a uniform large deviation principle for Gibbs distributions with (uniformly)
tempered boundary conditions, and a large deviation principle for tempered Gibbs
measures. Its proof will be given in Sect. 6.

Theorem 3 Suppose ¢ is reqular and non-integrably divergent at the origin. Also,
let F be as in Theorem 2 and z,§ > 0.
(a) For each t > 0, we have

lim sup v, 'log sup Pyp¢ (e_””F(R”)) £ ~inf[Lg + Fis] (2.28)
=00 LeQd)
and
| . —0nF@a)\ > _: usc
lim infv, log{érglzf('z)Pn s (e )= —inf[Lp + F*). (2.29)

Moreover, (2.22) holds with bc = { uniformly for all { € Q(¢).

(b) Each tempered Gibbs measure P with parameters z, § satisfies a large deviation
principle for R, with rate function l,p, in that inequalities (2.20) and (2.21) hold
with P instead of P,z ppe.

Let us note that an application of the contraction principle to Theorems 2 and
3 leads to analoguous large deviation principles for the individual empirical fields
R; in (2.17); see [10] for more details. We also note that, under the hypotheses of
Theorem 3, the rate function I, vanishes precisely on the set of all @-invariant
tempered Gibbs measures with parameters z, . One direction of this variational
principle follows by standard arguments from Eq. (1.2) and the upper bound in
Theorem 3 (b). The reverse direction can be obtained by an adaptation of the proof
of the analogous result in the lattice case, see Theorem (15.37) in [7]. Details will
be provided elsewhere.

Our last result is a version of the equivalence of ensembles. For any non-
degenerate interval D C [0,00[ and real € we consider the microcanonical Gibbs
distribution

Qn|D,5,per = Qn(an € v,D, Hn,per S0s)
= Ou(-|p(Ry) € D, D(Ry)<¢) (2.30)

in A, with periodic boundary condition. As we will see, the conditioning event
has positive probability for all sufficiently large n whenever ¢ > inf¢(D). Here
¢ : [0,00[— R U {00} is defined by

$(v) = inf{®(P) : P € Po, p(P) = v,I(P) < oo} 231)

Since @, p and I are affine, ¢ is convex. ¢ is finite on an interval [0,v(@)[, where
v(¢p) = 0o except when ¢ has a hard core, see Lemma 7.1. Intuitively, v(¢) is the
close-packing density of {¢ = oco}-balls.

We write acc,_,..P™ for the set of all accumulation points (relative to 7.) of
a sequence P™ in P.

Theorem 4 Suppose ¢ is superstable and regular, let D C [0,00[ be a non-
degenerate interval with inf D < v(¢@), and ¢ > infp(D). Then there exists some
B=0 and z > 0 such that

D acc Onpoper C {up =0} D 8CC Przgper +0. (232)
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In particular, if {I,p = 0} consists of a unique element P,z then

nlinganw,s,per = nlglgop nzpper = Lzp.
Moreover,

= —inf{I(P) : P € Po,p(P) € D, H(P)<c}. (2.33)

lim v, '10gQn(Ny, € 1,D, Hyper < 04)
nH—00

If ¢ < infp(D) or infD > v(¢@) the limit in (2.33) equals —co.

(2.32) expresses the asymptotic equivalence of microcanonical and grandcanon-
ical Gibbs distributions. (2.33) is an analogue of the classical existence result for
the thermodynomic entropy density, cf. [11, 17]. The difference here is that the par-
ticle number is not fixed but ranges in a whole interval, and that we use periodic
boundary conditions. In addition, (2.33) provides a microcanonical Gibbs variational
formula. The proof of Theorem 4 will be given in Sect. 7 which also contains some
additional information on the involved functions. With the same techniques, one can
derive the asymptotic equivalence of small canonical and grand canonical ensembles.
In addition, an obvious extension of Lemma 7.2 in the spirit of Sects. 4 and 5 leads
to a large deviation principle for the empirical fields R, under the microcanonical
distributions Oy peper- We leave this to the reader.

3 The energy density

In this section we prove Theorem 1. We begin with some basic estimates. For
P € Pg we set pP(P) = P(N2), where again C = A, is the centered half-open unit
cube. Since

m m
Ni<my Nj when 4c|]4, (3.1)
j=1 j=1

p@(P) < oo if and only if P € PP, cf. (2.9).

Suppose now we are given a superstable lower regular potential ¢. The presence
of the purely repulsive part ¢” of ¢ implies that, for fixed n, H, tends to infinity
quadratically as N, — oo. This is asserted in our first lemma. Recall the definitions
(2.23) and (2.10) of T, and P,.

Lemma 3.1 There exist constants a > 0, b < oo such that for each n=0
H,zal,—bN, (3.2)

and
&, zap® —bp. (3.3)

Proof. (3.2) follows from (2.4), (2.2) and (2.3) by partitioning A, into k% v, half-
open cubes 4; of size 1/k (where k is the smallest integer exceeding 1/6 for the
number § in (2.3)), and applying (3.1) with 4 = C +i,i € L,, and m = k?. (One
can take a = 6/2k?. b exceeds the constant in (2.2) by §/2.) (3.3) follows from
(3.2) by integration. |
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As a consequence of (3.3), if P& Pg) then &,(P) =oc0 for all =0 and thus

lim,, o @,(P) = co. To prove Theorem 1 we can therefore assume that P € P(QZ).
In this case, ©,(P) admits a convenient description in terms of the Palm measure
P° of P.

Lemma 3.2 For all P € 73(@2) and n=0 we have 0,(P) = P°(f,,), where

for@ =5 32 WA Ay~ Dlftr, € 0.

0+yEw

Proof. Consider the (measurable) function

1
M) =33 o0 @)

O+ycw
x € R4, w € Q. Since 9= — 2b, f,(x, )= — bl 4,(x)N,(I_ ). Also,
JP°(dw) [dx1 4,(x)N.(I_xw) = P(N?) < oo

for all P € Pg), by (2.8). Equation (2.8) therefore also holds for f =f,. But for
f =fu, the left-hand side of (2.8) coincides with ¢,(P) and the right-hand side with
P°(fon). L

Since A, N (A, — y)|/vn, — 1 as n— oo, it is natural to expect that P°(f,,) —
P°(f,), which will give us the first assertion of Theorem 1. To make this rigorous
we need the lower regularity of ¢. Let again L = Z¢ and, for each i € L,

¥i = Y(d(C,C + 1)), (G4
where d(C,C +1) = (|i] — 1);+ is the distance of C and C +i. Hypothesis (2.6)
implies that )., ¥; < co. Moreover,
1
foz =5 ; ¥iNews (3:5)

and the function on the right-hand side is P°-integrable for all P € Pg ) because for
allieclL

P°(Nesi) = [P(dw) D Newi(Bxo)

x€wnNC
SP(NcNy, ) SPWNG) PPN )Y
<39p9(P). (3.6)

In the last step we used (3.1). It follows that $(P) = P°(f,) is well-defined for all
Pe 73'(@2). We now compare P(P) with &,(P).

Lemma 3.3 There exists a sequence ¢, — O such that for all P € P(@z) and n=0,

P(P)Z Du(P) — £apP(P).
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Proof Let P e Pg) and n=0 be given. Since |4, N (A, — /v, <1, (2.5) and
Lemma 3.2 imply that ®(P)= @,(P) — &,(P), where

(P = 3 [P(0) Y WA (4 D

O+ycw

Distinguishing the cubes C + i containing y, we conclude from (3.4) and (3.6) that
en(P) <&, P(P), where

1 d
& =53 %l//iyrggfi|/l” \ (s =)l

But the dominated convergence theorem shows that g, — 0 as n — co.

Proof of Theorem 1 We first show that, for all P € Pg, lim,_., ®,(P) exists and
has the claimed value. The case P ¢ P(@2) was already discussed after Lemma 3.1.
For P € Pg), Lemma 3.2 and Fatou’s lemma imply that

&(P) = P(lim inf f,,) <lim inf ®,(P)

because the functions f,, are not less than the right-hand side of (3.5). Together
with Lemma 3.3, this shows that &(P) = lim,_,o @,(P).

To prove the lower semicontinuity of @ we note first that each @, is lower semi-
continuous. This is because H, satisfies (2.2) and is thus the supremum of functions
in £. Now let ¢ € R and (P,),ep be a net in {® Zc} which converges (in ) to
some P € Pg. Then p(Py) — p(P) < oo. We thus can assume without loss that
s = sup, p(Py) < oco. In view of (3.3) and the first part of this proof, we have for
all e D

c2O(Py)ZapP(P,) — bp(Py)

and thus p®(P,)<(c + bs)/a = c'. Together with Lemma 3.3 this implies that

D,(P) — g,¢' < lim inf $,(P,) — enC’
aeD

< I i <
< llr;lell)nf P(P)=c

for all n=0. Letting n — oo we see that P € {P=c}.

We conclude this section proving the compactness of the level sets of the functionals
L defined in (2.14).

Lemma 3.4 For any two numbers cy,cy, the set {I + ® <c| + ¢ p} is 1o-compact.

Proof. The set above is closed because p is continuous and / and ¢ arc lower
semicontinuous. In fact, / even has compact level sets, see Proposition 2.6 of [10].
The same is true for /%, the relative entropy density with reference measure (7,
the Poisson point random field with intensity p(Q?) =z > 0. It is easy to see that
IF=Ly=1—-plogz+z-1. By (2.2), &= — bp. The set under consideration is
therefore contained in the compact set {I* <c¢; +z — 1}, where z = exp(b + ¢3). !
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4 The upper estimate

Let ¢ be superstable and regular and F : Pg — RU {oo} a measurable function
such that F = — ¢(1 + p) for some ¢ < co. In this section we shall prove the fol-
lowing result.

Proposition 4.1 For bc = per or free,

lim sup v, 10g0,(expl—vaF(Rs) — Hypel) S — inf[I + @ + Figc].

A= OQ

In the case bc = per, the above proposition follows directly from the results of
[10] combined with those of Sect. 3. Namely, let G = F -+ @. The integrand under
consideration then equals exp[—v,G(R,)]. By Theorem 1 and (3.3), G= — '(1 + p)
with ¢/ = ¢+ b, and G is clearly measurable because so is @. Theorem 3.1 of [10]
thus implies that the lim sup in Proposition 4.1 is not larger than — inf[/ + Gys].
But G = Fisc + @ because @ is lower semicontinuous.

The proof of Proposition 4.1 for bc = free is based on a comparison with the
case of periodic boundary conditions. We need several lemmas. First, we use the
regularity of ¢ to estimate the interaction of suitably separated configurations.

For each integer k=0 we define

1
o = 5 ;;k (s, (4.1)

where oY) =yY(f — 1) — y(£)=0 for £=1,00(0) =0, and ¥ is as in (2.5) and
2.7). By (3.4),

= o) 42)
zlil
for all i € L. Hence
S o = i <
20 i€l

and thus oy — 0 as k£ — oo. For all n=>0,w € Q, and { € Q we have

Y Ve -ns Y, hNew@Ney(©). (4.3)

x€m,y€el i€Ll,,jeL

We estimate the long-distance contribution to the right-hand side of (4.3) in two
cases. (The second case will be used later in Sect. 6.)

Lemma 4.2 For all n=20,w € Q, and k=0,

> Yi-j Newi(@Ney(©)

i€Ly,jEL:|i—j| 2k

<) &+ 2DT(w) if { = @™ for some m=n,
=\ [Tn(w) + v,£2%] if { € Q(t) for some ¢ > 0.

Proof. In view of (4.2), the sum above is not larger than
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DA D New(@WNey(©).

{2k i€Ln,jELp+i
Using the inequality wv <(u#* + v?)/2 we obtain the upper bound
1
5 2 WO Tu(@) + S,/0)]
rzk

with
Sne(@) =D Newi () card (L, N (Ls +)-

JeL

For { = o™ with m>n we have

Sur(@™) = > Neyr(@) Y card {j € Lo +i:j =j mod 2m + 1}
J'ELy icLy

< 022702 /0m) To() £2%0, To().
On the other hand, if { € Q(f) then
Sns(Q) = (Wn A ve) e (0)
< Upnstioavey 127050,

which implies the lemma in the second case.
Recall the notation r(¢) in (2.7).
Lemma 4.3 For all n20 and k=r(), |Hy — Hyspper| 298, T, on Q.
Proof. After a comparison of (2.1) and (2.16), the lemma follows immediately from
(2.5) and (2.7) together with (4.3) and Lemma 4.2. |
Next we need to compare R, with R, ;. For n=0,s > 0 we define

Q(s,n) = {w € Q: T(w)Zsvy ). (44)
Lemma 4.4 For all k=1,s > 0 and f € L,

lim  sup |Rn+k,w(f) - Rn,w(f)l =0.

O we Qs,n+k)

Proof. The case of bounded 1 is trivial. We thus assume for simplicity that |f| <N,
for some centered cube 4 O C with /' = f(- N 4). For each n we can write, setting
m=n-+k,

1Rm,w(f) - Rn,m(f)] é(vn_l - U,;!)fAmNA_H(CO(m))dX
+ Un_lfAm\AnNA-f—x(w(m))dx
+ 00 fog, NVaaa@®) + Ny x(@®)) dx,

where 04, ={x € A, :x+ A ¢ A,}. On the other hand, for each m with A, D
A+ C and all V' C A, we have
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JyNasl@™)dx <Y~ New(@™){x € V- (4 +x) N (C + i) +0}]
ieL

<274l > New(@™)
LNV +44C)

<4?4] )" Neylw)
JELm(V)

<4%|4| card Ln(V)/*Tp(w)"?

with L,(V)={j €L, :j =i mod 2m+ 1 for some i € ¥ + A+ C}. In the cases

V=AnV = Ay \ Ay, and V = 34, we have card L, (V)=<c,|V| for some constant
¢4 < oo. Combining all estimates above one can now easily complete the proof.

Lemma 4.5 For any three constants cy,cz,¢;3 > 0 there exists some s = s(c1,¢2,¢3)
< oo such that
Qn (ecan—czTn; Q(S, n)C) é e—C31)n

for all n=0.

Proof. Let s be so large that scy=c3 + el — 1. The result then follows from the
inequality
IQ(s,n)c <explex(Ty — svn)l

and the fact that Q,(e™) = exp[(e®! — 1)v,].

Before completing the proof of Proposition 4.1 we need one further notation. We
let U denote the system of all sets of the form

U= {(Pl,Pz) € Py X Po : 112?§k|P1(ﬁ) — Py(f5)] §s}

with k=1,& > 0, and f1,...,/r € L. By definition, i/ is a uniformity base for 7.

Proof of Proposition 4.1 in the case bc = free. For given s > 0 and arbitrary n
we can write

Qrf (exp[_UnF(Rn) — H,]) = pa(s) + gu(s),

where p,(s) is defined by restricting the integral on the left-hand side to the set
Q(s,n) and g,(s) is the remaining contribution corresponding to Q(s,n)°. Let © > 0
be any given number, and let s = s(c + b,a,7 + ¢) be chosen according to Lemma
4.5. Here c is the constant appearing in the hypothesis 2 — c(1 + p), and a,b are
as in (3.2). It then follows that g,(s) <exp[—1v,] for all n.

To estimate the main term p,(s) we choose an arbitrary integer & =r(¢). Then for
each n=0 we can write, setting again m = n + k and using Lemma 4.3 and (2.16),

Pu(s) = € Op(exp[—vaF (Rn) — Hyl; Qs,n) N {Ng,\ 4, = 0})
Zexplvm — vy + 270150, 10m(expl—Gnl),

where G, = 0,F(R,) + v, P(R) + 00 - Lo mye. Next we choose any U € U and
¢ > 0 and define F¥ = F A/,

F4(P) = inf{F/(P"): (P,P") € U},
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and GY, = F{, + ®. Lemma 4.4 asserts that (R,,R,) € U on Q(s,m) for sufficiently
large m. Since v, F Z v, F' 7 (vm — vy)¢, we conclude that for these m

U G Z G5 (Rn) — (1 = vn/Om)Y.

But this is all what is needed for the large deviation upper bound (3.2) of [10], cf.
the proof of Lemma 5.6 there. (Measurability of G{, is not required.) Hence

lim sup v,,'log On(expl—Gnl) < — infl/ + (G{) )i ]-

n— 00

In view of the lower semicontinuity of @, (Gf )i 2 ~ (F{)ise + @. Also, Lemma
3.4 shows that the argument of Remark 1.4 of [8] can be applied, yielding

sup inf[J + @ + (F o] = inf[l + @ + Fi] = 9.
£>0,Ueld

Hence
lim sup v, 'log pu(s) <2%64s — 7.

j amde )

Since k& is arbitrary, we finally get

lim sup Un_IIOg[pn(S) + g~y AT,

00

and letting 1 — oo we obtain the result.

5 The lower estimate

We still assume that ¢ is superstable and regular. Our proof of the lower bound
(2.21) follows the standard device of changing the measure so that untypical
events become typical, and controlling the Radon-Nikodym density by means of
McMillan’s theorem. But some refinements are necessary. The basic observation is
that the familiar approximation of invariant by ergodic probability measures can be
sharpened as follows. For g > 0 we define

I'y={0eQ:¢o(x—-y)<q and |x —y|=1/q for any two distinct x,y € w}. (5.1)

It is easy to check that I'; is measurable.

Lemma 5.1 Let P € Pg be such that I(P)+ ®(P) < oco. For each open neigh-
bourhood U of P and any ¢ > 0 there exists some @-ergodic P' € U such that
I(P") < I(P)+ &, ®(P') < ®(P)+¢, and P'(I';) =1 for some 0 < q < o<.

Proof. 1) Let n=0 be given. Since ®(P) < oo, we have p@(P) < co and thus,
by Lemma 3.3, @,(P) < oc. Hence P,(I';) T 1 as g T co. Therefore we can choose
a number 0 < g(n) < oo such that p, = P,(I'qe) — 1 as n — co. We also fix
an integer k=1 such that 2k =2r(¢), where r(p) is as in (2.7). We can assume
without loss that g(n) =y (k) for all . In the following we use again the abbreviation
m=n-+k.

2) Let 2" € P be the probability measure relative to which the particle
configurations in the disjoint blocks A, + 2m + 1)i,i € L, are independent with
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identical distribution P} = P,(:|I'y). This means in particular that the corridors
(Am \ Ay) + 2m + 1)i,i € L, contain no particles. We also set

P =yt f Amp(”) o9 .

It is then obvious that P € Pg, and a standard argument shows that P® is ergodic;

see, for example, Theorem 14.12 of [7]. Since Iy is @-invariant and p(”)(r o) =
1, it also follows that P™(Iyy) = 1.
3) Next we show that lim sup, ../ (P™)<I(P). By an analogue of Lemma 5.5
of [10], :

I(P™) <Py On)/m

= [I(Pn('qu(n)); On) + U — Un)/Up.
On the other hand, since /(P) < oo we have P, <« O, with a density f,, and thus
I(Pn('lpq(n)); On) = Py(log fu/ps; Fq(n))/pn
S{(Pu; On) + 1)/pn — log pn

because xlog x= — 1 for all x=0 and thus

Py(log fo; I'gmy) = On(falog fu; Igm) 2 — 1.

Since (v, — Un)/vm — 0 and p, — 1 as n — o0, the desired result follows.
4) The regularity of ¢ implies that lim supn_,oo45(P(”))§d5(P). Indeed, since
obviously P ¢ P, (2.11) and (2.8) yield

PP = [POdw) Y fu(¥w)

xEwNC

= v, [, duf P(n)(dw)-;- > ler@e(y —x)

XYEW,yEXx
—1rg® 1
=0, [P o)y Y 9y =0)lAnN(x—O)
X, yEW,YyEX
=a, + b,.

Here a, = v, 11’-’3(”)(H,,) and

A(n 1
b=y [PP0); Y o),

XEONAn,yEw\Am

and we have used that for ﬁ(")—alrnost all @ and all x € w either x € A,, and thus
x—C C Ay, or A, N (x — C) = 0. Now,
ay = Pn(Hn; Fq(n))/pnum
= Du(PY0u/PrOm + PNy Iy} /[Prm
<L ,(P)(1 + (1)) + bPIN)' (1 — )" [pwtm
= @,(P)(1 + o(1)) + o(1)
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because of (2.2) and (3.1), and b, = o(1) because of (2.7), (4.3), the inequality

~ (1) A (1) A1)
PP (NeyiNery) = P Ne )P (Ne ) < p(P)p?

for i € L,,j & Ly, and the summability of i — .

5) We finally show that P®™(f) — P(f) as n — oo for all f € £. Since this is
quite obvious when f is bounded, we assume for simplicity that |f|<N,, where 4
is any cube with f = f(- N 4). Then we can write

‘P(n)(f) . P(f)l S(Sn + ta)/Vm
with
51 = L e s ny @PACT 0 B4l ) — PUS 092

and -
I = faA,,,dx [P (N44x) +P(NA+x)} ,

where 0/, is as in the proof of Lemma 4.4. Now P(N4y,) = |4|p(P),

5

P ! (NA-HC) = Pn(NA-f—xmodZm—l-l{Fq(n))é iAlP(P)/Pn,
and therefore £, = o(v,). On the other hand, the integrand defining s, is at most

11— 17 1PaW s1xs Tgm) + PaWaa s Ty
<|4lp@P)L = p |+ PNDVA(1 — pa)' 2,
whence s, = o(v,). This completes the last step of the proof.
The main advantage of the classes
Pog={P € Po:P(Iy) =1} (5.2)

is the following continuity property of &.

Lemma 5.2 For each q > 0, @ is continuous on Pog.

Proof. For each n.gO, H, is local and bounded on I';. Hence @, is continuous
on Pgg. Also, a glance at Lemma 3.3 and its proof shows that the convergence
@, — & is uniform on Pe,. This gives the result.

Let r=r{p) be a fixed integer. For n=r we define the modified empirical fields

R} =Ruwna,_,- (5.3)

Lemma 5.3 For each ergodic P € Pg,R? — P in P-probability as n — oo.
Proof. This follows in the same way as (1.2); cf. the proof of Remark 2.4 in [10].
Let F be as in Theorem 2.

Proposition 5.4 For all P € Pg and be € {per, free},

liminf v, ! 1og0n(exp[—vaF (Ry) — Hype]) Z — [I(P) + B(P) + F**(P)].
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Proof. We may assume without loss that the right-hand side of the asserted in-
equality, denoted by —yp, is finite. By Lemma 5.1, we can even assume that P
is ergodic and supported on I' = I, for some g=y«(r). For nzr let Pi =P,,.
We think of Pff as a measure on Q, which leaves D, = 4, \ A,—, free of parti-

cles. Since I(P) < 00, Pp_, € Q,_, with a density f,_,. Hence P} < O, with the
density fn# = I{NDnzo}ﬁ,_,exp[vn — vy_r]. Given any & > 0, we define

Ay = {FRy) < F*(P) + &,0; Hype < D(P) + &,0, ' logfy < I(P)+e¢}.

A well-known estimate (see, e.g.,[10]) then shows that the lim inf in the proposition
is not less than
—yp — 3¢+ lim inf v ! log P!(4,).
n—00

It is therefore sufficient to show that P#(4,) — 1. But
Pi(FR,) < F*™(P)+¢) = P(F(R) < F™(P)+¢) — 1
because of Lemma 5.3, and
Pi(v;og fif < I(P)+ &) =Py (v;'l0g fror + 1 — v "0y < I(P)+2) — 1

by McMillan’s theorem [5, 14]. Moreover, for bc = per we obtain from Lemmas
5.2 and 5.3 that

Pi(v; ' Hyper < ®(P)+¢) = P(DR]) < &(P)+¢) — 1

because P(RY € Pg,) = 1. Thus P#(4,) — 1 for bc = per, and the same result
follows for bc = free because

1
sup|Hy(@ N Ap—y) = Hyperel N An )| SV iy = 0(vy),
oel 2 e e

where v = sup Nc(I',). This proves the proposition.

The proof of Theorem 2 is now completed as follows. First, there is no loss in
assuming f = 1. Next, we apply Propositions 4.1 and 5.4 to F, = —plog z. Since
p(Ry) = Ny/v,, this proves (2.22). Combining (2.22) with Proposition 4.1 (applied
to F + F, instead of F) we arrive at the upper bound (2.20), and the lower bound
(2.21) follows in the same way from (2.22) and Proposition 5.4.

6 Uniform estimates for tempered boundary conditions

This section 1s devoted to the proof of Theorem 3. We thus assume that ¢ is regular
and non-integrably divergent at the origin. By Proposition 3.2.8 of [17], the stable
part @° of ¢ may be chosen bounded. So we can assume that the repulsive part ¢”
satisfies (2.26). This gives us the following sharpening of the basic inequality (3.2).

Lemma 6.1 There exists a constant b < oo and an increasing function h: L, —
[0, oo such that h(0) = 0,h(£)/¢* — oo as £ — oo, and for all n=0

H,=T"— bN,, (6.1)
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where
Ty =) hNcy). (62)

€Ly

Proof. This is essentially Lemma 1 of [3]. For completeness we sketch the argument.
Since the stable part of ¢ satisfies (2.2), and in view of the remarks above, we can
assume without loss that ¢ = ¢" =0. We can further assume that y(1) = 0 for the
function y satisfying (2.26) and (2.27). It is also sufficient to prove (6.1) for n = 1.

Let @ C C be a configuration of some cardinality N =3¢ and K =3 the integer part
of N4 Using (2.26) and writing yx = y(1/k) we then have

K

Ppx)z Z(Xk — Y= (x| =1k}
k=2

for all x. For each k=2 we divide C into k% cubes V(i) of size 1/k, and we let
N; =card o N V(i),i = 1,...,k% Then

1 YN,
5 2 leismz ) < 2')
i=1

XYEWXFEY

>- (k™'N*-N).

NI»—*!

Summing over £ we thus obtain

1 K
Hi()Z 5 g(xk — 2=k TN = N)

K—1
1 _ PN P
:NZEkE:Zij (k™ =G+ D7) + S (KN = N)

1 1
ZN2d37 = [ y(s)s?ds = h(V).
21/(K*1)

Setting A(N) = 0 for N < 3¢ we obtain the lemma.

The next lemma establishes a simple relation between superquadratic and sub-
quadratic functions on Z. by means of the Legendre-Fenchel transform. Observe
that this transform preserves the parabola £ — £2/2.

Lemma 6.2 Suppose g:Z, — [0,00[ is such that g(0) =0 and g(£)/* — oo as
¢ — oo. Let g* : L, — [0,00[ be defined by g*(m) = sup,[m¢ — g(£)]. Then g* is
increasing, g*(0) =0, and g*(m)/m*> — 0 as m — oo.

Proof. This is a straightforward computation. Note that no convexity of g is re-
quired. !

The following lemma will allow us to reduce the case of tempered boundary con-
ditions to that of the free boundary condition.

Lemma 6.3 Let ¢ > 0,¢t > 0 be given. If n is sufficiently large,
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inf H,;=H, — eI" — ¢ev,,
equ MEETE “ "

where h is as in Lemma 6.1.
Proof. In view of (2.25), (2.5) and (4.3) we must show that

sup Z Yi—;NewiNew (O SeT? + ev, 6.3)
Ce) ser, jglL,

for large n. Let ¢ be such that A(£)=¢? for all £/=¢q. Then T, £q%v, + T" for all n.
By Lemma 4.2, the contribution of all i,j with |{ — j| 2k to the sum on the left-hand
side of (6.3) is not larger than &;[T" + v,(£2¢ + ¢*)]. Choosing k sufficiently large
we can achieve that this is less than e(T” + v,)/2.

To estimate the remaining part of the sum in (6.3) we define g(¢) = Zh(¢)"?,
£20. g is increasing with g(0) = 0 and satisfies g(£)/¢> — co and g(£)/h(¢) — 0
as £ — oo. Let g* be as in Lemma 6.2. Then /m < g(¢) + g*(m) for all £,m=0 and
therefore

Z Vi iNciNcyi (D)

I€Lp,jELn: |i—j| <k

<Y Y gWe)+ ¥ D g New(©) (6.4)

i€Ln\Ly JELp g \Ln

for all nzk and { € Q. Here ¥ =}, ;. Since g(£)/h({) — 0 as £ — oo, the
first expression on the right-hand side of (6.4) is at most e7/2 + O(v, — vn_s).
Similarly, Lemma 6.2 implies that the second term on the right-hand side of (6.4)
admits a bound of the form

el 41 (0)/4t + OV ik — ).

Since vy4r — Uy = 0(vy), it follows that, for { € Q(¢) and sufficiently large n, the
left-hand side of (6.4) is not larger than &(7% + v,)/2. This proves (6.3). [

Proof of Theorem 3, assertion (a). Let F and ¢ be as in the theorem, and let
0 < & < 1/2 be given. In view of Lemma 6.3 we have for sufficiently large n

Bu0)= sup 0, (expl—0aF (R) — Hig))
{eQ()

<0y (CXP[“UnF(Rn) —Hy + ET:]) .

By Lemma 6.1 and the hypothesis on F, the exponent in the last integral is not
larger than cv, + (¢ + )N, — (1 — &)T?. An analogue of Lemma 4.5 thus shows that
we may restrict the integral to a set of the form {T? <sv,} with suitable 5 < oo, the
remainder being at most e " for any prescribed t > 0. Together with Proposition
4.1 ( for bc = free ), this gives the estimate

lim sup v, 'log5,()< (e + &s — ) V (—7),

00

where y = inf[/ + @ + Fi,.]. Letting first ¢ — 0 and then 7 — oo we obtain the
uniform upper bound
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lim sup vn_l logp,(H)< — . (6.5)

n—o0

To obtain a lower estimate of
En(t) = ng;t)Qn<exp[_vnF(Rn) - Hn,d)

we can proceed just as in the proof of Proposition 5.4, the only difference being
that now we must show that

Cier}zf(‘t)P,,“,, (v;'Hyy < ®(P)+¢) =1 as n— oo

for any given ¢ > 0, each ergodic P € Pg which is supported on some I'y, and
suitable » Zr(¢). But (2.7), (4.3) and Lemma 4.2 imply that

sup Hyy<H, +ev,/2 on I'yNQ,_,
{eQ(n)

when r is large enough, and we know from the proof of Proposition 5.4 that
Por(v; ' Hy < ®(P)+¢/2) =1 asn— oo
We thus arrive at the uniform lower bound

lim inf v} logp ()2 —inf[l + &+ F*]. (6.6)

Assertion (a) of Theorem 3 now follows from (6.5) and (6.6) in the same way as
Theorem 2 from Propositions 4.1 and 5.4.

We now turn to the large deviation principle for tempered Gibbs measures. Our
main tool are the remarkable probability estimates of Ruelle [18]. (Similar estimates
appear in [3].) The implication (a)=-(b) of his Corollary 5.3 gives us the following.

Proposition 6.4 For given z, > 0, there exist constants 7,0 > 0 such that, for
all tempered Gibbs measures P with parameters z,f and all n 20, P, is absolutely
continuous relative to Q, with a density f, satisfying f, Lexplv, — yT, + ON,].

For t > 0 and n=0 we define

Q.0 ={eQ:{\ 4, € QD} (6.7)

Corollary 6.5 Let z, > 0 and t,c > 0 be any constants. Then there exists some
t > 0 such that, for each tempered Gibbs measure P with parameters z, § and all
n=0,

P (eCN” ; Q,,(t)c) <e ™n,

Proof. We may assume that 7 > log2. Let 9,5 be as in Proposition 6.4 and ¢ so
large that #y — e+® > . Then we can write
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P(e™; Q) Y P(eM T, > 1)
£>n

< Z P(exp[cN; + yT; — ytvz])

£>n

<Y O(explue(c + SN, — yiv])

£>n

< D exp[-w/]
{>n

i

This implies the corollary because v, > v, + ¢ —n when £ > n.

Proof of Theorem 3, assertion (b). Let z,f > 0 and P be a tempered Gibbs
measure for z,f. Also, let F:Pg — RU{ooc} be such that F= — ¢(1 + p) for
some ¢ < 00, T > ¢ an arbitrary constant, and ¢ as in Corollary 6.5. Then

P(eU”F(R"); Qn(t)c) Se—(r—c)v,,

and
P(eunF(R,,); Qn(t)) = fgn(,)P(dC)Pn,z,ﬁ,C (evnF(Rn))

é sup P n,z,B,{ (ev,,F(Rn))
{eQ()

for all n. The uniform upper bound (2.28) thus implies
lim sup v, " logP(e™ &))< —inf[l, 5+ Fi] At —¢),

n—0o0

and letting t — oo we obtain the upper large deviation bound for P. The lower
bound follows from the inequality

P(eUnF(Rn)) > P(Q(1)) ng?f;t)Pn,z,p,g (evnF(Rn))

together with (2.29) and the fact that P(€2(¢)) > 0 for sufficiently large ¢. |

7 The equivalence of ensembles

In this section we prove Theorem 4. let ¢ be superstable and regular. We first look
at the function ¢ defined in (2.31). Let

Q, = {w EQ:p(x—y)<oo forall xye w,x:{:y}

and
W) = sup{p(P) : P € Po,I(P) < 00,P(Q,) = 1}. (7.1)

Clearly, v(¢) depends on ¢ only via the set {¢ = co}. If ¢ is finite {(except possibly
at the origin) then v(¢} = oo. For in this case we have 2, = Q so that the Poisson
point random fields P = (° of arbitrarily large intensity z appear on the right-hand
side of (7.1).

Lemma 7.1 ¢ is convex. On [0,v(@)[, ¢ is finite and continuous. Also, $(v) = av* —
bv for all v=0 and the constants a,b in (3.3), and if A= [ @(x)dx is finite then
S Ziv2/2 for all v=0. (In particular, it follows that A=a.)
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Proof. The inequalities for ¢ follow from (3.3) and the easily verified fact that
&(QF) = 1z2/2 for all z > 0. It only remains to show that ¢ is finite on [0, v(¢@)[.
For, together with the obvious convexity of ¢, this will imply that ¢ is continuous
on 10, v(¢p)[. The continuity of ¢ at 0 is clear because ¢(0) =0 and ¢(v)= — bv.
To prove the finiteness of ¢ we fix any v < v(¢). By (7.1} there exists some
P € Pg such that p(P) > v,I(P) < oo, and P(2,) =1. A glance at the proof of
Lemma 5.1 shows that its hypothesis &(P) < oo can be replaced by the condition
P(Q,) = 1. Therefore we can find some P’ € Py such that p(P") > v,I(P’) < oo,
and P'(I';) =1 for some g < oo. Since I'y is @-invariant, the Palm measure of
P’ is also supported on I',. This and the regularity of ¢ immediately imply that
@(P") < oo. Writing s = v/p(P’) we thus obtain that P = sP’ 4 (1 — 5)dy has the
properties p(P") = v, ®(P"") < oo, and I(P") < oo. Hence ¢(v) < co0.
In view of (7.3) and (7.7) below, the function ¢(v) coincides with the function
go(p) on page 50 of [17]. Note, however, that not necessarily ¢(v) — co when
v — v(@) < oo; indeed, if ¢ is a pure hard core potential (taking only the values

0 and o0) then ¢(v) = 0 for all v < vw(g).
Next we define

s(v,&) = —inf{I(P) : P € Pg, p(P) = v, P(P)<¢}. (7.2)
Clearly, s(-,-) is increasing in ¢ and concave, and (2.31) means that
o) =inf{s(v,") > —o0} forall v=0. (73)

Using the lower semicontinuity of @ and the fact that 7 has compact level sets [10]
we also see that s(-,-) is upper semicontinuous. s(-,-) is the entropy density, as is
shown in the next lemma which proves (2.33).

Lemma 7.2 Let D C [0,00[ be a nondegenerate interval with inf D < v(p), and
let ¢ > inf (D). Then

lim v, 1log Oy (N,, € D, Hyper gvns) = s(D, &) = sups(v, &).
n—00 veD

If mfD > v(@) or ¢ < inf¢(D) then the limit above equals —oc.

Proof. Let D be the closure and D° the interior of D. By the continuity of ¢ on
[0, (@), inf(D) = inf$(D°) = inf(D). In view of the continuity of p and the
lower semicontinuity of @, the set 4 = {p € D,®<¢} is closed. The upper bound
(2.20) for f =0,z = 1 thus implies that

lim sup o, log Qu(R, € A)< — min I(A) (74)
n— 00
(I attains its minimum over 4 because I has compact level sets.) On the other hand,
consider the convex set U = {p € D°, @ < ¢}. Since & > infp(D°), UN{l <
oo} %M. A standard convexity argument (together with the fact that 7, p and @
_ are affine) thus shows that inf I(U) = infI(4) = —s(D, ¢). But

lim inf v log Ou(R, € U)= — inf I(U)
H— 00

by the arguments of Sect. 5. Indeed, let P € U be such that /(P) < oo. For given
& > 0, Lemma 5.1 provides us with some ergodic P’ € U such that I(P) < I(P) +
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¢ and P'(I';) =1 for some g > 0. As in the proof of Proposition 5.4, we have the
estimate

v, 'log Ou(Ry € UY2 — I(P') — e+ v, log P' (R € U, vy 'ogf SI(P') + &),

and McMillan’s theorem [5, 14] and Lemmas 5.2 and 5.3 show that the last proba-
bility tends to 1 as # — oo. The second statement of the lemma follows from (7.3)
and (7.4). |

Proposition 7.3 Suppose D C [0, c0[ is a nondegenerate interval with infD < (@),
and let ¢ > inf (D). Then the sequence (Qupsper)nz0 is relatively compact (in
1c ), and every accumulation point belongs to the set Mp, of all I-minimizers in
{peD,d<e}.

Proof. Lemma 7.2 implies that the conditioning event in (2.30) has positive prob-
ability for sufficiently large n. Thus, for all these n, Qupgper is well-defined. Let

" € P denote the measure relative to which the configurations in the disjoint
blocks A, + (2n+ 1), i € L, are independent with identical distribution On|p g pers

and P™ ¢ Py the invariant average of IS(n) od7 L, x € A,. Since On|e,per 1S invariant

under translations modulo A,, P™(f) = Qupsper(f) — 0 as n — oo, for all f € L;
cf. Lemma 4.6 of [8]. Just as in Step 3) of the proof of Lemma 5.1 we obtain

PPy <, HQupspers On) = —; ' 1080, (p(R,) € D, B(R,) <e).

Lemma 7.2 thus implies that

lim sup/(P™)< — s(D, ) < oo.

n—oo

Since I has compact (and sequentially compact) level sets, it follows that the se-
quence (P™), >, and thus also the asymptotically equivalent sequence (Qpp.sper)nz05
are relatively compact. Moreover, each accumulation point of any of these sequences
belongs to the set {I < —s(D,¢)}. On the other hand, Lemma 5.7 of [10] asserts
that P is asymptotically equivalent to

Qn|D,a,pear = f QniD,a,per(dw)Rn,w

as n— oo, and the latter measures all belong to the closed convex set {p €

D, P <&}, as is easily seen by approximating OniDycper by suitable discrete measures.
This proves the proposition. _|

To deduce the first part of (2.32) from Proposition 7.3 we choose a tangent plane
(v,&') — p + B¢’ — vlogz to the concave function s(-,-) on the subset of Dx] — 00, €]
on which s(-,-) attains its maximum s(D, ¢). The monotonicity of s(v,-) implies that
B=0. Tt then follows that, for all P € Pg with ¢(P) < oo,

I(P)z — s(p(P), &(P)) = — p — BD(P) + p(P)logz
with equality when P € Mp,. Since Mp, +0, we may conclude that p = p(z, f) and

MD,e C {Iz,ﬁ = 0}. (7.5)
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Together with Proposition 7.3, this gives the first part of (2.32). The second part is
the subject of the next proposition.

Proposition 7.4 For all z,p > 0, the sequence (Py . ppec)nz0 is relatively compact,
and all its accumulation points belong to {I,5 = 0}.

Proof. We proceed just as in the proof of the last proposition. For each n=0 we
have
_Un_IIOan,z,ﬂ,pcr :v;ll(Pn,z,ﬁ,per; Qn)

+ ﬁPn,Z,ﬁ,per(qS(Rn)) - Pn,z,ﬁ,per(v;an)logZ-

The first term on the right-hand side is not less than I(P™), where P™ is the in-

variant A,-average of the A,-periodic measure ja making the configurations in the
blocks A, + (2n+ 1)i, i € L, independent with identical distribution P, ;g ser. Using
Lemma 3.3 and the observation that P, ; gper(0@(Ry)) = p@(Pypper) < 00 We see
further that the second term on the right-hand side is not less than SP(P, ,gperRy).
Combining this with (2.22) we obtain

lim sup [I(P®™) + BO(P,, . pperRn) — p(P™)logz] < — p(z,f) < o0.

n— 0

The compactness of the level sets of I, the lower semicontinuity of @, and the
asymptotic equivalence of P(”),Pnyz,ﬂ,pear, and P, pper thus give the result.

To conclude, we mention without proof that the entropy function s(-,-) is related
to the pressure by the classical Legendre transformation as follows. For all z, § > 0,

P p) = Vgg?éR[S(v, g) — Pe + vlogz]. (7.6)

Conversely,
s(v,e) = min [p(z, f) + Be — viogz] .7
pz0,z>0

whenever v > 0 and s(v,e) > —o0.
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